| Cpt | 
	K.I. Harrington and H.T. Siegelmann | 
	Adaptive Multi-modal Sensors | 
	50 Years of Artificial Intelligence, eds. M. Lungarella, F. Iida, J. Bongard, R. Pfeifer | 
	2007 | 
	164-173 | 
	 pdf  | 
	
	
	| Cpt | 
	Bhaskar DasGupta, Derong Liu and Hava Siegelmann | 
	Neural Networks | 
	Handbook on Approximation Algorithms and Metaheuristics, ed. Teofilo F. Gonzalez, Chapman & Hall/CRC (Computer & Information Science Series, ed. Sartaj Sahni) | 
	2007 | 
	22.1-22.14 | 
	 -  | 
	
	
	| Cpt | 
	H. T. Siegelmann | 
	Neural Computing | 
	New Trends in Computer Science, ed. Gheroge Paul | 
	2003 | 
        - | 
	 -  | 
	
	| Cpt | 
	H.T. Siegelmann | 
	Neural Automata and Computational Complexity | 
	 in Handbook of Brain Theory and Neural Networks, ed. Michael A. Arbib | 
	2002 | 
	- | 
	 -  | 
	
	
	| Cpt | 
	H.T. Siegelmann | 
	Universal Computation and Super-Turing Capabilities | 
	Field Guide to Dynamical Recurrent Networks, eds. S.C. Kremer and J.F. Kolen, IEEE Press | 
	2000 | 
	- | 
	 -   | 
	
	
	| Cpt | 
	H.T. Siegelmann | 
	Finite vs. Infinite Descriptive Length in Neural Networks and the Associated Computational Complexity | 
	Finite vs. Infinite: Contributions to an Eternal Dilemma, eds. C. Calude and Gh. Paun, Springer Verlag | 
	2000 | 
	- | 
	 -  | 
	
	
	| Cpt | 
	H.T. Siegelmann | 
	Neural Automata and Computational Complexity | 
	Handbook of Brain Theory and Neural Networks, ed. Michael A. Arbib | 
	2000 | 
	- | 
	 -  | 
	
	
	| Cpt | 
	H. Lipson and H.T. Siegelmann | 
	High Order Eigentensors as Symbolic Rules in Competitive Learning | 
	Hybrid Neural Symbolic Integration, eds. S. Wermter and R. Sun, Springer | 
	1999 | 
	- | 
	 -  | 
	
	
	| Cpt | 
	H.T. Siegelmann | 
	Neural Dynamics with Stochasticity | 
	Adaptive Processing of Sequences and Data Structures, eds. C.L. Giles and M. Gori, Springer | 
	1998 | 
	346-369 | 
	pdf  | 
	
	
	| Cpt | 
	H.T. Siegelmann | 
	Computability with Neural Networks | 
	Lectures in Applied Mathematics, Vol. 32, J. Reneger, eds. M. Shub, and S. Smale, American Mathematical Society | 
	1996 | 
	733-747 | 
	 -  | 
	
	
	| Cpt | 
	H.T. Siegelmann | 
	Neural Automata | 
	Shape, Structures and Pattern Recognition, eds. D. Dori and F. Bruckstein, World Scientific | 
	1995 | 
	- | 
	 -  | 
	
	
	| Cpt | 
	H.T. Siegelmann | 
	Towards a Neural Programming Language | 
	Shape, Structures and Pattern Recognition, eds. D. Dori and F. Bruckstein, World Scientific | 
	1995 | 
	- | 
	 -  | 
	
	
	| Cpt | 
	H.T. Siegelmann | 
	Recurrent Neural Networks | 
	The 1000th Volume of Lecture Notes in Computer Science: Computer Science Today, ed. Jan Van Leeuwen, Springer Verlag | 
	1995 | 
	29-45 | 
	 -  | 
	
	
	| Cpt | 
	H.T. Siegelmann | 
	Welcoming the Super-Turing theories | 
	Lecture Notes in Computer Science, Vol. 1012, eds. M. Bartosek, J. Staudek, J. Wiedermann, Springer Verlag | 
	1995 | 
	83-94 | 
	 -  | 
	
	
	| Cpt | 
	H.T. Siegelmann, B.G. Horne, and C.L. Giles | 
	What NARX Networks Can Compute | 
	Lecture Notes in Computer Science: Theory and Practice of Informatics, Vol. 1012, eds. M. Bartosek, J. Staudek, J. Wiedermann, Springer Verlag | 
	1995 | 
	95-102 | 
	 -  | 
      
	
	| Cpt | 
	B. DasGupta, H.T. Siegelmann, and E. Sontag | 
	On the Intractability of Loading Neural Networks | 
	Theoretical Advances in Neural Computation and Learning, eds. V.P. Roychowdhury, K.Y. Siu, and A. Orlitsky, Kluwer Academic Publishers | 
	1994 | 
        - | 
	 -  | 
	
	| Cpt | 
	H.T. Siegelmann | 
	On the Computational Power of Probabilistic and Faulty Neural Networks | 
	Lecture Notes in Computer Science, Vol. 820: Automata, Languages and Programming, eds. S. Abiteboul and E. Shamir, Springer Verlag | 
	1994 | 
	20-34 | 
	 -  | 
	
	
	| Cpt | 
	H.T. Siegelmann and O. Frieder | 
	Document Allocation in Multiprocessor Information Retrieval Systems | 
	Lecture Notes in Computer Science, Vol. 759: Advanced Database Concepts and Research Issues, eds. N.R. Adam and B. Bhargava, Springer Verlag | 
	1993 | 
	289-310 | 
	 -  |