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Abstract. Compressing real-time input through bandwidth constrained
connections has been studied within robotics, wireless sensor networks,
and image processing. When there are bandwidth constraints on real-
time input the amount of information to be transferred will always be
greater than the amount that can be transferred per unit of time. We
propose a system that utilizes a local diffusion process and a reinforce-
ment learning-based memory system to establish a real-time prediction
of an entire input space based upon partial observation. The proposed
system is optimized for dealing with multi-dimension input spaces, and
maintains the ability to react to rare events. Results show the relation
of loss to quality and suggest that at higher resolutions gains in quality
are possible.

1 Introduction

Sensor systems are often required to transfer spatially related data across band-
width constrained connections. This data can come from many forms: visual, au-
ditory, electrical, etc. [1,2,3,6,8,9,19,21]. We propose a system that compensates
for these constraints by accessing a subset of the available input and performs
a real-time spatio-temporal extrapolation for the values of the unknown input.
The result of this extrapolation is an expectation of the input space. Once an
expectation of the input space is established behaviors can be performed, such
as reacting, planning, and learning [12,20]. The result of the system is a smaller
input size causing a faster update rate, this increases the potential for reactivity,
the relevancy of plans, and pertinence of knowledge. The system described in
section 2 performs this recreation.

Embodied intelligent systems have sensorimotor loops. These loops allow such
systems to observe the environments with which they may interact. Intelligent
systems can then learn to exploit sensorimotor relationships within the envi-
ronment, for example causal relationships. The work of Lungarella and Sporns
provides a foundation for understanding how to learn and exploit such rela-
tionships [7]. The authors suggest an inherent link between a system’s physical
representation and information flow within the system. However, in order to ex-
ploit such relationships the system must have an internal representation of its
physical state.
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An internal representation of physical state and innate knowledge of the sen-
sor and motor systems is not always given; however, they can be learned. Olsson
et al. describe a system which learns a model of its sensorimotor system with
no a priori knowledge [10]. The system initially performs exploratory actions
to develop a map of the relationships between the sensor and motor systems.
An entropy based metric is used for measuring the informational distance be-
tween sensors. The system which is described in this paper follows an alternative
approach of strictly utilizing spatial and temporal relationships between sensors.

Related work in robotics, wireless sensor networks, and image processing ap-
proach the bandwidth constraint problem at different levels. Rixner et al. use
a bandwidth hierarchy specific to media applications [13]. Webb developed a
new set of communications primitives for parallel robotics image processing [19].
Hull, Jamieson, and Balakrishnan used a rule-based approach for real-time band-
width allocation [4]. The proposed system uses temporal and spatial information
to allocate bandwidth in real-time.

A similar approach was investigated by Schneider et al. in a power grid control
application in which distributed value functions were used. Their system allows
nodes to learn a value function which estimates future rewards at every node
in the system [14]. In the context of the proposed system this means that each
sensor stores an estimate of all activity in the system. The most prominent
difference is that diffusion is used as the method for distributing this estimate
along the sensor grid.

2 System

The system consists of a lattice of locations where sensors can reside. Each
and every sensor is capable of accessing multiple types of input at its location.
Examples of these types of input are red, green, and blue sensing modes Sensor
activation ranges from [0, 1] for each mode. 0 means that there is no activity in
the given mode, and 1 means the mode is maximally active. Each type of input
is referred to as a sensing mode. By adaptively selecting each sensor’s active
sensing modes based upon a set of sensor memory chemicals it is possible to
reduce the number of sensors necessary to adequately sense the environment, as
well as the reduce the amount of bandwidth used by sensors. These reductions
are the result of an iterative chemical diffusion process. These components are
further described in the following subsections.

2.1 Sensors

The sensors are homogeneous, in that each sensor is capable of sensing the same
number of modes as the others. In order to replicate the observed environment
every sensor must observe every mode in the environment, this is equivalent to
performing a complete copy of the environment. However, in many cases the
environment changes in a temporally related manner. This temporal relation
is exploited by sensing fewer than the total available number of modes, and



166 K.I. Harrington and H.T. Siegelmann

Fig. 1. First, a sensor accessing all n modes at once which requires n observations.
Second, a sensor accessing ζ dynamically selected modes which requires ζ observations,
where ζ < n.

extrapolating the values of modes based upon learned sensor histories, which we
refer to as chemical because they are distributed via diffusion.

2.2 Sensor Chemicals

Sensor activity is stored in chemicals just as value functions are learned by
temporal-difference reinforcement learning[15]. For each sensing mode, there are
two chemicals that act as sensory memory, CS , short-term memory and CL,
long-term memory. The parameters γS and γL are the discount-rate, the rate at
which a value fades from memory, and γS < γL. These chemicals are produced
by the rate equations

CS = CS + α((SA + γSCS) − CS)
CL = CL + α((SA + γLCL) − CL)

where, SA is the activation value of the sensor for mode A, and α is the learning
rate. In this case state refers to the chemical configuration. An example of sensor
chemicals within a sensor changing over time can be seen in figure 2. The sensor
chemicals also represent short- and long-term activation values. This allows the
short-term chemical to be used directly for reconstruction.

In order for the system it must be able to reconstruct an expectation of the
environment based upon the current chemical configuration. Reconstruction is
a simple local process performed at each sensor for every sensing mode. If the
sensor has already observed activity in the given mode, then the activity is
already known and that value is used. Otherwise, the value of the short-term
chemical is used. This allows the system to automatically maintain expectations
of activity in every observable mode.

The diffusion coefficients of the sensor chemicals are numbers in the range
of [0, 1]. This allows the system to exhibit a continuum of behaviors. When the
diffusion coefficient is set to 0 all local history is retained, to 1 all local history is
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Fig. 2. Sensor chemicals over time for an example sensor. 2 of 3 possible modes were
active in this case. The sensor switches its 2 active modes based upon the current
concentration of short- and long-term chemicals.

distributed to neighboring sensors causing a global history. The diffusion coeffi-
cients allow control to be exercised on the amount of information that is shared
amongst neighboring nodes.

2.3 Diffusion

The premise for using diffusion is inspired by Turing’s explanation of pattern
formation by reaction-diffusion [17]. Two properties appear by diffusion. First,
older information can be retained. By diffusing off the edges of the lattice some
information is lost. Second, localized diffusion propagates information globally
over time, allowing sensors to anticipate unobserved activity. Diffusion occurs
according to Ci

r = Ci
r + Di

∑
r∼r′(Ci

r′ − Ci
r), where Ci is the amount of sensor

chemical i, and Di is the diffusion coefficient for sensor chemical i. The relation
r ∼ r′ is held for the Von Neumann neighborhood [18] of the target node for
diffusion along the lattice, and the relation r ∼ r′ is from a sensor to the node
it occupies for diffusion into the sensor.

2.4 Sensor Mode Selection

A variable ζ ∈ [0, m], where m is the total number of modes, controls the number
of active modes in each sensor. ζ modes are selected incrementally using ε-greedy
based on the greatest difference between CS and CL for each mode. The ε-greedy
selection process has two results, the greedy result where the selected mode
max(CS − CL), or the random result where a random mode is selected. Greedy
is always selected, unless p < ε, where p is the probability of selecting a random
mode [16]. As is mentioned with respect to sensing rare events, the value of ε
controls the minimum frequency at which events can be detected.
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2.5 Sensing Rare Events

The sensing of rare events is heavily reliant on the use of ε-greedy selection for
modes. By increasing the value of ε towards 1 it is possible to detect more rare
events by the random selection; however, it decreases the performance on sensing
the overall environment. In most cases it is more beneficial to, instead of or in
conjunction to increasing the value of ε, to increase the number of active modes.
This is because ε-greedy selection is applied for each mode to be sensed during
a given update.

2.6 Observed Environment

The specifications for an environment are minimal. The environment must have
a function that returns the value for a region defined by a point and a radius,
shown in figure 3. In our case the radius is a Von Neumann neighborhood radius
and the value for the region is the sum of activity at each point within that region,
Fig. 3 illustrates this. The environment can consist of multiple modalities to be
sensed, in this case a function is necessary for each mode. It is also possible for
the observed environment to be dynamic with respect to time. The dynamics of
the environment should be spatially and temporally related.

Fig. 3. Sensor with center, c, and radius, r=2. This sensor would return the sum of
the values of each highlighted cell.

3 Experiments

3.1 Experiment I: Rare Events Are Detected

The system’s ability to detect rare events was evaluated in an environment with
a blue background and one small red circle, which moved across the environment
infrequently from some same edge 4 times over 1000 iterations. The area of the
red circle was 7% of the entire environment. A prevalent tactic for compres-
sion is spatial generalization; however, when generalizing based on the spatial
relationships of sensory information it is frequent that small rare events may
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Fig. 4. Snapshot of experiment I, a blue environment with red circle that moves into
the environment periodically. First is the original image. Second are the observations
colored for respective their modes, black sensors are observing modes for which there
is no activity. Third is the chemical prediction of original image. The environment and
the sensor lattice are 100x100, the red circle is of radius 15. ζ = 1, meaning only one
color can be sensed by any given sensor.

be filtered out. The use of the ε-greedy method allows for small rare events to
be fairly easily detected if the value of epsilon is adjusted according to the size
of potential rare events. The system strictly favors more recent sensor memory,
regardless of its value. This experiment was designed to test whether the system
was still capable of responding to new events even after saturating its memory
with a single mode.

For the case of rare events the set of parameters that were of the most interest
were a mode compression of ζ = 1 given a blue background and a relatively small
mobile red event. This is because this parameter setting allows the system to
be saturated with activity from one mode, then a rare event from another mode
is presented. The detection of the rare event can then be observed. Results for
ζ = 1 for 100x100 environments had an average error less than 2.5%. The quality
of this detection is exemplified in Fig. 5, which illustrates a 100x100 observed
environment with no resolution compression, and a mode compression of 1.0.

3.2 Experiment II: Simultaneous Activity Is Observed for All ζ

This experiment was designed to demonstrate the system’s ability to handle
simultaneous activity. For this experiments there were 3 modes which were rep-
resented by the colors, red, green, and blue. All instances were evaluated for
1000 iterations. The experiment utilizes three trajectories, each represented by a
different colored circle. The trajectories are as follows: red, a half-circle from top-
left to bottom-left, green, a circle rotating around the environment, and blue,
a horizontal hourglass across the environment. The trajectories were selected
such that each combination of overlapping circles occurred multiple times. This
is to ensure that even with small values of ζ all modes are still sensed. This
environment was evaluated in three cases, A, a 10x10 observable environment
and 10x10 sensor lattice, B, a 100x100 observable environment and 10x10 sensor
lattice, and C, a 100x100 observable environment and 100x100 sensor lattice.

Our results show the utility of this system with variety of dimensions of the
sensor grid and environment with respect to simultaneous activity. We evolved a
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Fig. 5. Image of the system demonstrating the ability to represent 3 modes with 2
active modes. Three circles, one for each mode, follow unique trajectories with multi-
ple intersections. Images of 3 of these intersections are shown, each of which has the
following 4 displays Top left, sensors’ prediction of the environment. Top right, activity
recorded by sensors. Bottom left, original image. Bottom right, the absolute value of
difference between the original and predicted image.

Fig. 6. Results for the three cases in experiment II, A, a 10x10 observable environment
and 10x10 sensor lattice, B, a 100x100 observable environment and 10x10 sensor lattice,
and C, a 100x100 observable environment and 100x100 sensor lattice. The relationship
between the number of active modes and prediction accuracy is shown. For cases A and
B the percent error is approximately equal to the amount of the environment that is
not observed. For case C the percent error is less than the amount of the environment
that is not observed.

population of 50 parameter settings for 1, 000 different parameter settings. Fig.6
illustrates the effect of mode compression, ζ

m where m is the number of modes,
on the quality of the final product. We define this quality in terms of prediction
error, which is simply defined as the difference between the original image and
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the prediction summed over all modes for all sensors. Cases A and B show the
system producing results of approximately equal quality to percentage of the
environment that is known. Both of these cases consisted of low resolution grids,
yet the system still maintained an output that was at least consistent with the
amount of compression, if not actually providing enough inference to reduce the
error beyond minimal expectation. In both cases the amount of error and the
amount of compression sum up to approximately 100%. This means the amount
of error is equivalent to the amount of the environment that the system did
not observe. The similarity between the cases A and B suggest that the size
of the sensor grid limits the quality of the compression. Case C illustrates the
difference between compression and error with an image of higher resolution.
The compression and error sum to significantly less than 100%.

4 Conclusions

It is important that the results with low resolutions show the compression to
maintain a total quality that does not decrease beyond that of unprocessed in-
put with an equivalent bandwidth constraint. This observed quality threshold
is suggestive when considered with the results in Fig. 8. By increasing the res-
olution of the image it possible for the quality to increase above the quality
of uncompressed data through an equivalently small bottleneck. This suggests
that it is possible for high resolution images to maintain smaller storage and/or
network transfer footprints. These benefits are similar to those Kansal et al.
obtained by using motion control [5].

We have presented a system which allows real-time input to be scaled through
a bandwidth constraint while maintaining a level of quality appropriate to the
amount of compression used. The system does not require any overhead band-
width, instead selects which values from the environment are transferred. Values
are recorded as sensor chemicals which are diffused across the sensor grid. When
used at higher resolutions, some values of ζ allowed for quality surpassing 100%.
Our results suggest that this system is useful for compressing some types of
real-time input through bandwidth constraints.

5 Future Work

Future work will investigate an implementation of the previously described sys-
tem in a 3-dimensional environment. Additionally, discretization of sensor input
will be used to further reduce bandwidth usage [11]. Embodied implementa-
tions of this system should investigate sensorimotor regularities induced by the
addition of a motor system for further optimization [7].
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