Machine Learning with Spike-Timing-Dependent Plasticity


  1. G. H. Y. LeCun, Y. Bengio, “Deep learning,” Nature, no. 521, pp. 436–444, May 2015.
  2. S. W. Lee, J. P. ODoherty, and S. Shimojo, “Neural Computations Mediating One-Shot Learning in the Human Brain,” PLOS Biology, vol. 13, no. 4, p. e1002137, Apr. 2015. [Online]. Available:
  3. W. Maass, “Lower Bounds for the Computational Power of Networks of Spiking Neurons,” Neural Computation, vol. 8, no. 1, pp. 1–40, Jan. 1996. [Online]. Available:
  4. ——, “Networks of spiking neurons: The third generation of neural network models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, Dec. 1997. [Online]. Available:
  5. M. C. P. U. Diehl, “Unsupervised learning of digit recognition using spike-timing-dependent plasticity,” Frontiers in Computational Neuroscience, Aug. 2015.
  6. Y. B. Y. LeCun, L. Bottou and P. Haffner, “Gradient-based learning applied to document recognition.” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.
  7. D. Liu and S. Yue, “Fast unsupervised learning for visual pattern recognition using spike timing dependent plasticity,” Neurocomputing, vol. 249, pp. 212–224, Aug. 2017. [Online]. Available:
  8. S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, “STDP-based spiking deep convolutional neural networks for object recognition,” arXiv:1611.01421 [cs], Nov. 2016, arXiv: 1611.01421. [Online]. Available:
  9. P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu, and M. Pfeiffer, “Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN), Jul. 2015, pp. 1–8.
  10. W. M. K. W. Gerstner, Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge University Press, 2002.
  11. G.-q. Bi and M.-m. Poo, “Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type,” Journal of Neuroscience, vol. 18, no. 24, pp. 10 464–10 472, 1998. [Online]. Available:
  12. R. B. D. F. M. Goodman, “The Brian simulator,” Frontiers in Computational Neuroscience, Sep. 2009.
  13. D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin, “Backpropagation,” Y. Chauvin and D. E. Rumelhart, Eds. Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1995, pp. 1–34. [Online]. Available: