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The interaction between gene activation and cellular activity has recently emerged as a critical aspect of

brain behavior, but the dynamics of networks incorporating these interactions are poorly understood. An

interesting phenomena arises when the genetic activation oscillates endogenously and a network of such

cells synchronize to a coherent rhythm, such as is the case with the suprachiasmatic nucleus. To explain this

synchronization, we propose a model in which a mRNA/protein expression cycle drives neurons electrical

activity, and synaptic activation shifts the phase of the protein rhythm. Using lattice networks, we

demonstrate that these interactions are sufficient to generate coherent oscillation. © 2006 Wiley Periodicals,

Inc. Complexity 12: 67-72, 2006
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INTRODUCTION
yncronicity has been examined in many natural sys-
tems. Pendulums placed on the same wall synchro-
nize their swing. The rhythmic firing of groups of
fireflies creates a visually spectacular form of synchrony.
Most fireflies light under their own sense of timing, cre-
ating a seemingly random array of lights. But certain
species of fireflies synchronize their rhythm based on the
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flashes of other nearby fireflies, until the whole group
fires as one mass [1].

Synchronicity of oscillators is crucial in the human body.
Plasma insulin oscillates with frequency of 5-10 min. Sim-
ilarly the secretion from individual beta cells in the pancreas
are also synchronized. The beta cells are organized into
islets and synchronize both within and between islets [2].
Perhaps most important, the healthy human heart beats at
regular intervals of about 60 to 100 times per minute at rest.
This is initiated at the sinoatrial node (SAN) of the right
atrium, which is considered the heart’s pacemaker [3]. Our
main focus in this article is on cells that control many
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circadian rhythms, such as the sleep-wake cycle and
rhythms of hormone release.

The suprachiasmatic nucleus (SCN), located within the
hypothalamus of the mammalian brain, is the master circa-
dian pacemaker. As such, it is responsible for coordinating
peripheral oscillators such as the liver and lungs [4], as well
as daily activity rhythms. The 15,000-20,000 neurons com-
prising the SCN coordinate their circadian rhythms (~24 h)
in both protein expression and firing rates. However, these
neurons show a wide range of free running periods when
dissociated from the SCN [5-8]. Understanding how indi-
vidual SCN cells communicate in vivo to maintain syn-
chrony is essential to advancing knowledge about the cir-
cadian system and its resynchronization after disruption of
circadian timing, such as during jet lag and shift work [9,10].

We address the general question of interactions be-
tween protein expression and neural activity by modeling
these processes as they are here hypothesized to occur in
the SCN. The neurons of the SCN are ideal units for
modeling these interactions because of their stable firing
rate and because their protein expression rhythm has
been researched experimentally. As with all modeling
research, we cannot prove that the biology chooses the
exact method synchronization we propose, but we hope
that it will spark future biological experiments. In addi-
tion, because of the ubiquity of synchronizing systems,
our fundamental work may be applicable to many bio-
logical systems as well as to the construction of oscillator
networks in the field of biotechnology.

Increasing evidence implies that SCN cells may synchro-
nize via firing rates [11,12]. Most recently it was shown that
after a week of treatment with tetrodotoxin, an action po-
tential inhibitor, protein rhythms of individual cells main-
tain a circadian oscillation, but are no longer synchronized
[13]. In order for neural activity to effectively communicate
circadian phase between SCN cells, two mechanisms must
exist. First, a neuron’s firing rate must be driven by the state
of the molecular clock. It has been shown that light-induced
changes in the level of core clock protein perl within an
SCN cell can regulate K* channels and thus modify the
firing rate of the cell hours after light exposure [14]. Further
support comes from the fact that many dissociated SCN
neurons continue to show a circadian firing rate rhythm
when dissociated from other neurons, suggesting that the
molecular clock is likely driving this rhythm [6,15]. Second,
input from other neurons must be able to phase-shift the
molecular clock. It has been shown that in the hippocam-
pus, synaptic activation of neurons can effect mRNA tran-
scription through a second-messenger system [16,17]. It has
also been shown that the rate of mRNA transcription of perl
increases in response to light, which is thought to cause
photic phase shifts [14]. We hypothesize that this mecha-
nism of changing mRNA transcription rates to phase shift

SCN cells may not solely be used to entrain to photo-
periods, but also for synchronization.

Extensive modeling has been done on the molecular
circadian clock of a single cell; however, only a few recent
studies have focused on the circadian system at a com-
munication-network level. Kunz and Achermann [18]
demonstrated that some circadian properties can be sim-
ulated using a network of simple oscillators that commu-
nicate phase angle directly. Zariffa et al. [19] discussed
more biologically plausible connections, but did not show
that their model can be extended beyond two oscillators.
More recently, Gonze et al. [20] showed that synchrony
can be achieved through a phase-dependent neurotrans-
mitter release in a population of oscillators that are glo-
bally coupled. Our focus is on communication via inter-
actions between molecular clocks and membrane
potentials driving neural firing rates in the SCN. We will
show that synchrony can be achieved with a local cou-
pling only.

MODEL

At the heart of our theory is a model neuron whose firing
rate is driven by the state of a circadian molecular clock.
The molecular clock is independent of the activity of the
neuron it is within; however, when two or more neurons
are synaptically connected the molecular clock of the
postsynaptic neuron is affected by the firing rate of the
presynaptic neurons. We call these genetically regulated
oscillatory spiking (GROS) neurons (Figure 1).

The molecular clock of the GROS neuron is a limit
cycle oscillator, and following Scheper et al. [21] is mod-
eled by two fundamental state variables: the level of
mRNA, M, and the level of protein P. These peak out of
phase with one another but with the same period. Al-
though the protein is not specified, the equations de-
scribe realistic dynamics of the entrainment and phase
response curves (PRCs). This clock model does not de-
pend on a large number of biological rate constants that
are presently not fully known and thus is general enough
to be applied to many genetic oscillatory systems, whose
core clocks vary in their constituent proteins and inter-
actions.

The coupled dynamics of the molecular clock is de-
scribed by the following:
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Parameters and Variables
Parameters Value
R, resistance i
Ip, internal drive 200
uM, endogenous rate of mRNA production 1 hr'!
Ip, rate of protein production I hr!
o Tate of mMRNA degeneration 0.21 hr
qp, rate of protein degradation 0.21 hr'!

h, Hill coefficient 2.0

8, nonlinearity in synthesis cascade 2.5-3.5
Y, scaling constant 0.000005
A, duration of synthesis cascade 4 hr

a, scaling constant 10

B, scaling constant 10

1, membrane time constant 200
Variables

Iy, rate of mMRNA production

M, mRNA level

V, membrane potential

P, protein level

S, synaptic input

1g, synapse dependent current
Ip, protein dependent current

GROS neuron. (A) Circuit diagram of the GROS neuron. Input from
presynaptic neurons arrives at =5, and ouput to postsynaptic neurons
is through S. (B) Parameters and variables of the GROS neuron.

where 1, is the rate of protein production, g,, is the rate of
mRNA degradation, ¢, is the rate of protein degradation, &
is the nonlinearity of the protein cascade, A is the duration
of the protein synthesis cascade, and h is a Hill coefficient.
The Hill coefficient defines the form in which the protein
inhibits mRNA production.

In the GROS neuron the production rate, r,, is affected
by both the endogenous mRNA production rate, u,, and
the spiking rate of presynaptic neurons, S; Here we de-
scribe the effect on a neuron i from all neurons j, where

the set K; consists of all neurons presynaptic to the neu-
ron i:

T™vi= byt E 'YSj (3)

jeK;:

where v is a constant that converts the sum of oscillating
neurons synaptic inputs to mRNA production.

A GROS neuron is based on the leaky integrate and fire
neuron model [22]. However, the internal steady current,
I, that drives the membrane potential Vis now inhibited
by current from both the synaptic inputs, I, and from the
protein level, I, of the molecular clock. The development
of the neurons membrane potential is described by the
following equation:

av;
dt

T = —R >, I+ Ry, — Iy) = V; (4)

ek

where Is, = a$;, §;=0 for V; < 0and S; = 1 for V; = 0.
Ip, = BP;, whereas P; is the amount of clock protein. R is
the resistance potential of the neuron, 7is the membrane
time constant, and « and B are scaling constants that
convert the inputs of active synapses and the molecular
clock protein, respectively, to values and units of currents
that affect the membrane potential. The set K; again
consists of all neurons presynaptic to the neuron i. Action
potentials occur in the cell when Vreaches the threshold
voltage 6. An action potential that occurs in cell j activates
the synapses, §;, of all its postsynaptic cells.

SIMULATION RESULTS

In the computer implementation, the above differential
equations are time-discretized. Equations (1) and (2) are
discretized to 6-min time steps. Synaptic inputs to the clock,
as in Eq. (3), are summed over the preceding 6-min time
step, Eq. (4) is discretized to 10" % s.

We next consider a network of coupled GROS neurons.
For biological plausibility, the nonlinearity in the protein
cascade parameter, 9§, is set randomly within the range of
2.5-3.5, resulting in oscillatory periods in the range of
~23-25 h. The clocks are initialized to random phases
within a 24-h window. Parameter values for I, and 3 are
set to provide a biologically plausible firing rate of ~10 Hz
during subjective day, and 0 Hz during subjective night.
The firing rate oscillates roughly anti-phase to the level of
protein.

We demonstrate here that a network of GROS neurons
is able to synchronize to a coherent rhythm through
communication that occurs at the speed of neural firing
(Figure 2), rather than by directly shifting the phase of the
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Synchrony simulations. (A) The degree to which the population is
synchronized, r, is measured using the Kuramoto order parameter that
averages over the angles of the oscillators, 6(f), at time £ (B) Fully
connected Network of 20 neurons with a y value of 0.00005. With
normal GROS neurons and all connections intact, synchrony arises
(r = 0.97). (C) To verify the necessity of the effect of the molecular
clock on the membrane potential, we set parameter 8 to 0, and the
correlation value reaches 0.26, indicating the lack of synchronization.
(D) To verify the necessity of the effect of presynaptic neurons to the
postsynaptic molecular clock, we set parameter y to 0, and the
correlation value reaches 0.22, indicating no synchronization.

clocks—as had previously been assumed (e.g., [18,23]).
Population synchrony, r, is measured by the Kuramoto
order parameter [Figure 2(A)] [24]. The value of r approaches
0 when the population of oscillators’ peaks are uncoordinated,
and approaches 1 when the population peaks together. After
20 simulated days, using a network of fully connected GROS

neurons, the correlation value reaches 0.97, indicating a high
level of synchrony. To validate that synchrony arose out of
interactions between the molecular clock and the electrical
firing components of the GROS neuron, two options are test-
ed: with no effect from the molecular clock to the membrane
potential [Figure 2(C)], and with no effect from the presynaptic
neurons to the postsynaptic molecular clock [Figure 2(D)].
Both result in an r value of less than 0.26 after 20 days of
simulation, indicating a lack of synchrony. We thus conclude
that synchronization of GROS-like neurons requires both of
these effects.

To test the GROS neurons sensitivity to network topol-
ogy, a lattice network is compared to a small world net-
work. The small world network architecture, a combina-
tion of stochastic connectivity and the bias of having
more neighboring nodes connected than distant ones
[25,26], was found previously to improve global syn-
chrony of Kuramoto oscillators [27]. The same architec-
ture was found to reduce synchrony of integrate and fire
oscillators [28]. Here we investigate how a small world
topology changes in the flow of activity in networks of
GROS neurons.

To determine the consequence a small world topology
has on network dynamics we recorded starting at a de-
synchronized initial state and advancing toward the
steady state. In simulations with locally connected net-
works, a number of distinct clusters of neurons are
formed, but these clusters never synchronize into a uni-
fied population rhythm [Figure 3(A)]. Applying a small
world network architecture to these neurons creates links
between separate clusters, resulting in neurons synchro-
nizing into a coherent rhythm [Figure 3(B)]. Interestingly,
recent biological studies of core clock gene mperl acti-
vation in mice shows a wave that travels from one side of
the SCN to the other over the course of the day [14].
Similar waves of activity occurred in our observed simu-
lations, as demonstrated in Figure 3(C).

DISCUSSION

The interaction between firing rates and protein expression
is modeled for the circadian rhythm, by introducing a new
kind of neuron that combines spiking with protein oscilla-
tions. We believe that this as of yet poorly understood
interaction could be crucial to understanding much of hu-
man body and behavior.

Antle et al. [23] have shown that a population of limit
cycle oscillators can be synchronized by nonoscillating
cells. They propose that these nonoscillating cells act as
a threshold function, sending a synchronizing signal
based on the global output of the oscillators. The model is
based on studies showing that lesioning a subsection of
the SCN that contains these nonoscillating cells marked
an expression of protein calbindin-D (CalB), disrupts all
circadian rhythms in the animal [29]. It has also been
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Frames from 100 neuron simulations. The color of each square represents the level of mRNA of the neuron at that location: brighter squares represent higher
mRNA levels, and darker squares represent lower mRNA levels. The first frame is from day 2 (on day 1 not all of the molecular clocks have become active).
(A) p = 0.0; there is no rewiring: distinct clusters form. (B) p = 0.1; approximately 1 of every 10 connections is rewired: a more robust global rhythm.
(C) The progression of the network shown in (A) over 25 h. These frames are taken from day 21 and demonstrate the flow of mRNA peaking through the
network. Movies are available for download at http://binds.es.umass.edu/download/.

found that if the dorsal one-third of the SCN is sepa-
rated from the ventrolateral section, neurons in the dor-
sal section will continue to oscillate but will lose coher-
ency in their oscillations [13]. Both of these studies rely
on lesioning or slicing experiments, in which it is diffi-
cult to know exactly what important aspects of the net-
work might be disrupted by the procedure. In both
cases the lack of synchrony that resulted could be the re-
sult of removing CalB cells from the oscillating neu-
rons, or they could be the result of removing critical
connections between oscillating cells in different sections
of the SCN. Although not proving via biological experi-
ments, we do show that synchrony may occur already
through the interaction between just the oscillating cells
of the SCN.

Work remains to be done modeling the mammalian
circadian system, both with more detailed models and
with models at a higher level of abstraction. In the current
work, the choice of a molecular clock using only one

protein allowed investigation of network level interac-
tions among oscillators. Models at a finer level of detail
could incorporate known interactions between clock pro-
teins and ionic conductance [16,17], but these would be
less suitable for larger network simulations. At a higher
level of abstraction, the SCN consists of heterogeneous
populations of neurons that respond differently to light,
not all of which cycle and some of which have specific
projections to other SCN regions [30-33]. For these, net-
works of GROS neurons can be connected into larger
networks, enabling models that capture heterogeneous
tissues within the mammalian SCN, connections with
peripheral oscillators, and entrainment of complex net-
works. Such networks of networks can be used to address
questions about the interactions and dynamics that con-
trol phase angles between peripheral oscillators, explore
the splitting phenomena and also lead to techniques that
mitigate the disruption of the circadian system caused by
shift work and jet lag.
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