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Chaotic Dynamics in an Electronic Model
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We consider dynamics in a class of piecewise-linear ordinary differential equa-
tions and in an electronic circuit that model genetic networks. In these models,
gene activity varies continuously in time. However, as in Boolean or discrete-time
switching networks, gene activity is driven high or low based only on whether
the activities of the regulating genes are high or low (i.e., above or below cer-
tain thresholds). Depending on the “regulatory logic”, these models can exhibit
simple dynamics, like stable fixed points or oscillation, or chaotic dynamics. The
observed qualitative and quantitative differences between the dynamics in the
idealized equations and the dynamics in the electronic circuit lead us to focus
attention on the analysis of the dynamics as a function of parameter values. We
propose new techniques for solving the inverse problem – the problem of infer-
ring the regulatory logic and parameters from time series data. We also give new
symbolic and statistical methods for characterizing dynamics in these networks.
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1. INTRODUCTION

In the past decade there have been revolutionary advances in our knowl-
edge of the DNA sequences of a large number of different organisms.(1)

Yet, knowledge of these sequences alone is not adequate to determine or
understand the multiple developmental and physiological processes that
underlie normal and abnormal dynamics in biological systems. One of the
fundamental issues related to the functioning of genetic networks involves
the control of gene expression. Early papers from Jacob and Monod pro-
posed that different cellular dynamic behaviors, such as multiple attractors
or oscillations, might arise as a consequence of the differential expression
of genes.(2) In recent years synthetic genetic networks in bacteria have been
designed to display bistability and oscillations,(3–5) proving that in princi-
ple, dynamics in genetic networks might play the roles envisioned by Jacob
and Monod.

An early step towards placing the dynamics of genetic networks in a
theoretical context was taken by Kauffman, who proposed that genetic net-
works could be modeled by randomly constructed discrete Boolean switch-
ing networks, now called Kauffman networks.(6,7) The logical elements in
the networks were the genes. The inputs to each logical element represented
the proteins, called transcription factors, that regulate the genetic activity.
Since the transcription factors in turn are coded for by genes, a complex
network results, in which the attractors correspond to different cell types in
the organism. Kauffman networks with two inputs per gene have a compar-
atively small number of attractors. In further studies of Kauffman networks,
statistical physicists have computed the numbers of attractors as a function
of network size and connectivity,(8,9) developed criteria for irregular dynam-
ics,(10,11) and studied the effects of noise.(12) However, cells in the body do
not have clocking devices that can update the states of all genes simulta-
neously, as required by the Kauffman model. Consequently, we believe it
is more appropriate to analyze dynamics in differential equation models of
genetic networks that preserve the logical structure, and have carried out exten-
sive studies in this area,(13–22) for reviews see refs. 23 and 24. For any Bool-
ean switching network, there is a class of differential equations that have the
same underlying structure, but whose dynamics can depend on the values of
parameters such as decay constants, thresholds, and production rates.

In the following we study complex dynamics in an electronic circuit
that models a class of differential equations proposed to capture qualitative
aspects of the structure and dynamics of genetic networks. By analyzing a
real circuit, rather than an idealized equation, we focus on techniques that in
principle could be applied to real biological systems when sufficiently precise
data becomes available.
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In Section 2 we present the network equations, and summarize results
from our earlier work. We also describe a hybrid analog–digital electronic
circuit that simulates the differential equations.(25) We study a five-element
circuit that displays regular stable oscillations and a second circuit that
displays irregular behavior suggestive of chaotic dynamics. In Section 3,
we study the inverse problem, i.e., the determination of the underlying
equations based on observation of the dynamics in the electronic circuit,
extending earlier work on the idealized equations.(22) The inverse problem
consists of a determination of the logic of the circuit as well as the param-
eters. This leads to the recognition that the time constants of the different
elements of the network are different. Section 4 develops theoretical meth-
ods applicable to study the dynamics in the circuit. We consider methods
based on analytic computation of the return maps in these systems, with
particular focus on the problems introduced by the variations in the time
constants. We also propose methods for measuring the complexity of the
dynamics based on symbolic representations.

2. A MODEL GENETIC NETWORK

2.1. Differential Equations

A gene is a sequence of DNA that codes for a sequence of amino
acids that constitute a protein (see ref. 1 for more details on molecu-
lar biology). Even though all cells have the DNA code to make a vast
array of different proteins, a variety of regulatory mechanisms, still not
completely understood, determine which proteins will be synthesized in
each cell. One mode of gene regulation is through a class of proteins
called transcription factors. Transcription factors bind to the DNA, turn-
ing “on” or “off” the synthesis of specific mRNA molecules. These are in
turn translated into proteins, some of which may be transcription factors
and thus may influence mRNA synthesis. We model this dynamical system
in a simplified way by letting xi represent the concentration of chemical
species i in a cell. The time rate of change of xi is

dxi

dt
=hi(x)− xi

τi
, i =1, . . . ,N, (1)

where there are N chemical species, x is a vector giving their concentra-
tions, hi is a function giving the control of the synthesis of the ith chemi-
cal species by the others, and τi is a decay constant. Differential equation
models of biochemical and genetic networks are often of this form (for
example, see, refs. 3–5, 13, 14 and 26–29).
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In what follows, we adopt a highly simplified but nonlinear form for
the functions hi . To each continuous variable xi(t), we associate a discrete
variable Xi(t),

Xi(t)=0 if xi(t)< θi , otherwise Xi(t)=1, (2)

where θi is an arbitrary real-valued threshold. The key restriction we place
on Eq. (1) is that the synthesis rates depend only on discrete states of
chemical species.

dxi

dt
=fi(X(t))− xi

τi
, i =1, . . . ,N, (3)

where X(t) is the Boolean vector of discrete states of the chemical species
at time t . In the biochemical context, in which the xi are meant to rep-
resent concentrations, we assume all xi are nonnegative and all τi and θi

are positive. In general, however, we need not restrict the ranges of the xi

or θi , and we refer to the xi as elements in an interacting network.
Equation (3) is piecewise linear in x, with the pieces defined by the

threshold hyperplanes xi = θi , and hence is easily integrated. As long as
variables cross threshold hyperplanes transversally, there will be a finite
or countably–infinite sequence of switching times, {t1, t2, t3, . . . }, at which
some element of the network crosses its threshold. We can obtain the solu-
tion of Eq. (3) for each variable xi for tj < t < tj+1:

xi(t)=xi(tj ) e−(t−tj )/τi + τifi(X(t))
(

1− e−(t−tj )/τi
)

. (4)

Thus, for any point in the orthant defined by the Boolean vector X,
element i asymptotically approaches τifi(X). We call the vector of these
values the focal point for the orthant. If the focal point is within the orth-
ant, then it is an asymptotically stable fixed point. If it is within another
orthant, then some variable will cross its threshold, and the trajectory con-
tinues in the adjacent orthant. We assume that for all X, τifi(X) "= θi , so
that no focal points lie on threshold hyperplanes.

The flow is therefore piecewise focused, with the focal points depend-
ing in general on the current orthant. As a consequence of variables cross-
ing thresholds, the logical state changes and so might the focal point that
the solution approaches. It is possible to piece together the trajectories and
determine the dynamics for future times once the logical structure of the
network and the parameters are known.
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The logical structure of the differential equation can be represented as
a directed graph on an N -dimensional hypercube (N -cube). The N -cube
has 2N vertices, each corresponding to a logical state, X, of the network
and hence to a region of state space. A directed edge between two adja-
cent vertices indicates a change in the logical state of the network that can
be observed from some initial condition. Thus, edges in this representation
represent flows across the boundaries of adjacent orthants of state space.
The orientations of the directed edges in the graph can be determined by
checking, for each X and i, whether τifi(X) is greater than or less than
θi .

Alternatively, the logical structure can be represented by a 2N × 2N

adjacency matrix, W , in which wij =1 if there is a directed edge from ver-
tex i to vertex j ; otherwise wij =0.

In what follows we assume that for all i

sign(τifi(X)− θi ) is independent of Xi. (5)

This condition holds, for example, if there is no self input, i.e., if fi is
completely independent of Xi . If Eq. (5) holds, there is a directed edge
in precisely one of the two possible directions for every pair of adjacent
vertices and flows are transverse across threshold hyperplanes. Except for
unusual circumstances that we do not consider in this paper, only one ele-
ment crosses its threshold at a time. Consequently at each switch time pre-
cisely one element in the logical state of the network changes. In networks
where Eq. (5) does not hold, more complex behaviors are possible, and
Eq. (3) may need to be treated as a system of differential inclusions.(29)

2.2. Hybrid Electronic Circuit

To illustrate some of the properties of Eq. (3) and to set the focus for
the remainder of this paper, we present an electronic circuit(25) that sim-
ulates the properties of Eq. (3) for a network with N = 5. When N = 5,
there are of the order of 3 × 1020 different possible logical structures for
these networks.(19) Each of these logical structures further defines a family
of equations that can be generated by varying the τi , θi and fi . By con-
structing a hybrid digital–analog circuit we can rapidly change the logic
of the network.

Figure 1 gives a schematic diagram for element 5 of the circuit. We
briefly describe its operation but for more details see ref. 25. To model the
regulation of genes, we apply methods of combinatorial switching circuit
design(30) using CMOS logic. This allows us to rapidly change the logical
functions that control the regulation of the “on–off” states of the genes.
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Fig. 1. A schematic diagram of one element of the electronic circuit.

Any of the 216 logic functions of four variables can be synthesized by an
appropriate combination of the control lines β1,β2, . . . ,β16. In order to
generate any logical function, the βi are combined in an AND function
with all possible logical states of the four model genes that are inputs to
gene 5. The output at point I in the circuit is thus either high or low, nom-
inally 5 V or 0 V (see inset), and corresponds to fi(X(t)) in Eq. (3). This
output is fed into an RC circuit, so that the voltage at point II is given
by

V (t)=E + (V (0)−E)e− t
RC . (6)

Thus, the voltage across the capacitor is an exponential function that
approaches E with a time constant equal to RC. In this sense, the volt-
age V (t) is analogous to the concentration of a protein transcription fac-
tor xi(t). Moreover, we can pass the voltage through a threshold element
to provide a logical variable analogous to the logical variable Xi(t), point
III in the circuit. This voltage is then fed back into the input lines for the
other elements in the circuit. By selecting R =100 k$ and C =0.1µ F, we
set the time constant to be ≈10 ms.

To illustrate the operation of the circuit and some of the properties of
the differential equation, we present the output from two different choices
of the logical function. The first choice is a negative feedback circuit, in
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Table I. Truth Table for the Oscillator: the Parentheses are
for Section 3

X1 X2 X3 X4 X5 F1 F2 F3 F4 F5

0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 (1) (0) (0) (0) (1)
0 0 0 1 1 0 0 0 0 1
0 0 1 0 0 (1) (0) (0) (1) (0)
0 0 1 0 1 (0) (0) (0) (1) (0)
0 0 1 1 0 (1) (0) (0) (1) (1)
0 0 1 1 1 0 0 0 1 1
0 1 0 0 0 (1) (0) (1) (0) (0)
0 1 0 0 1 (0) (0) (1) (0) (0)
0 1 0 1 0 (1) (0) (1) (0) (1)
0 1 0 1 1 (0) (0) (1) (0) (1)
0 1 1 0 0 (1) (0) (1) (1) (0)
0 1 1 0 1 (0) (0) (1) (1) (0)
0 1 1 1 0 (1) (0) (1) (1) (1)
0 1 1 1 1 0 0 1 1 1
1 0 0 0 0 1 1 0 0 0
1 0 0 0 1 (0) (1) (0) (0) (0)
1 0 0 1 0 (1) (1) (0) (0) (1)
1 0 0 1 1 (0) (1) (0) (0) (1)
1 0 1 0 0 (1) (1) (0) (1) (0)
1 0 1 0 1 (0) (1) (0) (1) (0)
1 0 1 1 0 (1) (1) (0) (1) (1)
1 0 1 1 1 (0) (1) (0) (1) (1)
1 1 0 0 0 1 1 1 0 0
1 1 0 0 1 (0) (1) (1) (0) (0)
1 1 0 1 0 (1) (1) (1) (0) (1)
1 1 0 1 1 (0) (1) (1) (0) (1)
1 1 1 0 0 1 1 1 1 0
1 1 1 0 1 (0) (1) (1) (1) (0)
1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1

which gene k stimulates gene k + 1 for k = 1,2,3,4, but gene 5 inhibits
gene 1. The truth table is shown in Table I. Based on Example 3 on p.
216 in ref. 16 (see also the discussion in Section 4.1), we expect that this
network will display a stable limit cycle oscillation, Fig. 2(a). In comput-
ing the trajectory in Fig. 2(a), we assume that the voltage V (t) in Eq. (6)
asymptotically approaches 5 V or 0 V (corresponding to a 1 or 0, respec-
tively, in the truth table entry for X(t) in Table I), and that θi =2.5 V and
τi =10 ms for all i.
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Table II. Truth Table for the Complex Network: the
Parentheses and Brackets are for Section 3

X1 X2 X3 X4 X5 F1 F2 F3 F4 F5

0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 1 1 1
0 0 0 1 0 0 0 1 1 1
0 0 0 1 1 0 1 0 1 1
0 0 1 0 0 0 1 0 1 0
0 0 1 0 1 0 0 1 1 0
0 0 1 1 0 1 0 1 1 0
0 0 1 1 1 1 1 0 1 0
0 1 0 0 0 [0] 0 0 0 1
0 1 0 0 1 1 1 1 0 1
0 1 0 1 0 (1) (0) (1) (0) (0)
0 1 0 1 1 0 1 1 0 0
0 1 1 0 0 1 1 0 0 1
0 1 1 0 1 0 0 1 0 1
0 1 1 1 0 [0] 0 1 0 0
0 1 1 1 1 1 1 1 0 0
1 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 1 1
1 0 0 1 1 0 [1] 1 1 1
1 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0
1 0 1 1 0 1 0 0 0 1
1 0 1 1 1 1 0 1 0 1
1 1 0 0 0 [0] 0 0 0 1
1 1 0 0 1 1 0 0 0 1
1 1 0 1 0 (1) (0) (0) (0) (0)
1 1 0 1 1 (0) (1) (1) (0) (0)
1 1 1 0 0 1 0 0 0 1
1 1 1 0 1 0 1 0 0 1
1 1 1 1 0 (0) (0) (0) (0) (0)
1 1 1 1 1 (1) (0) (1) (0) (0)

The quantitative differences in the dynamics between the idealized
case and the actual circuit, Fig. 2(b), reflect differences in the time con-
stants, thresholds, and asymptotic values that are introduced by the actual
workings of the circuit. However, the observation of a stable oscillation
with a similar waveform poses theoretical questions concerning the stabil-
ity and classification of the limit cycle oscillation. The discussion of these
issues is the focus of Section 4.1.
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Fig. 2. Dynamics in the feedback inhibition loop of five variables given by the truth table
in Table I. (a) The dynamics in the differential equation with all τi = 10 ms, θi = 2.5 V and
assuming asymptotic approach to 5 V, if an element is on, or 0 V, if an element is off. (b) The
dynamics in the electronic circuit. (c) The dynamics in the differential equation using param-
eter values determined in the text (see Section 3).
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As a second network, we consider the truth table in Table II. The results
of integrating this network with focal point coordinates at 5 V and 0 V, τi =
10 ms, θi =2.5 V are shown in Fig. 3(a). Following the transient which is still
present in the figure, the trajectory approaches a stable limit cycle oscilla-
tion with period ≈60.8 ms. The operation of the electronic circuit generates
an extremely complex waveform, Fig. 3(b). Although the idealized equa-
tions show a stable limit cycle with complex waveform, the circuit generates
complex aperiodic dynamics. In Sections 4.2 and 4.3, we discuss theoreti-
cal issues posed by this network, and discuss symbolic methods that can
be used to characterize the dynamics. Although we are not able to prove
chaotic dynamics for the electronic circuit, the symbolic dynamic analysis
of the differential equation that we present in Sections 4.2 and 4.3 is con-
sistent with the conjecture that this network displays deterministic chaos
characterized by aperiodic dynamics with sensitive dependence on initial
conditions.

3. THE INVERSE PROBLEM

The inverse problem for gene regulatory networks is to estimate regu-
latory logic and parameters from observed dynamical behavior. In earlier
work, we showed that this was possible under idealized conditions and esti-
mated the amount of time series data needed.(22) DeJong and colleagues
have manually inferred the regulatory logic for several genetic network mod-
els of the type Eq. (3).(29) They do not have an automated technique, how-
ever, and they do not fit the quantitative parameters. Here, we focus on
solving the inverse problem for time series from the electronic network. We
make the simplifying assumption that for each element i, τifi takes only
one of two values, which we denote z0

i and z1
i . These two correspond to the

low and high focal point coordinates for element i, respectively. As such, the
inverse problem is to estimate the z0

i , z1
i , τi , θi and fi from time series data

of the form x(t1), x(t2), x(t3), . . . We describe an approach that is successful
on the oscillator time series. The complex time series is discussed at the end
of the section.

To infer z0
i , z1

i and τi for each element we select two intervals from
the oscillator time series – one in which xi is clearly rising and one in
which xi is clearly falling. For any choice of τi , the choices of z0

i and
z1
i that minimize the mean squared error between predicted and observed

xi values can be determined analytically. To optimize τi , we simply test
all possibilities in the finite set 5.00 ms, 5.01 ms, . . . , 15.00 ms. The range
includes the expected value of about 10 ms.
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Fig. 3. Dynamics in the complex network given by the truth table in Table 2. (a) The
dynamics in the differential equation with all τi =10 ms, θi =2.5 V and assuming asymptotic
approach to 5 V, if an element is on, or 0 V, if an element is off. (b) The dynamics in the
electronic circuit. (c) The dynamics in the differential equation using parameter values deter-
mined in the text, see Section 3.
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For a given choice of θi , we can estimate fi as follows. First, tenta-
tively assign xi(tj ) to be rising if the forward and backward differences are
positive. Assign it to be falling if both differences are negative. Now con-
sider a particular Boolean vector X. Find all time points at which the log-
ical inputs to fi , based on the given choice of θi , are X. If at these time
points, a tentative assignment of rising is more common than a tentative
assignment of falling, estimate fi(X) = z1

i /τi . If falling is more common,
then let fi(X)= z0

i /τi . Otherwise, let fi(X)=“?”.
To estimate the θi we use a local search procedure. We evaluate a

set of θi by estimating the fi as above, based on θi , and simulating the
dynamics starting from each x(tj ) for time tj+1 − tj . We sum the squared
error between the simulated x(tj+1) and the observed x(tj+1). Preliminary
analysis indicated that the thresholds θi ≈2.1 V. Therefore, we start with all
θi = 2.1 V, and we repeatedly find the single change of ±0.001 V to any
θi , which most reduces the sum of squared errors. The search ends at a
local minimum. Using this approach, we estimate the following parame-
ters based on the oscillator data.

i =1 2 3 4 5

θi (V) 2.084 2.077 2.092 2.128 2.073
z1
i (V) 4.895 5.009 5.006 4.952 5.021

z0
i (V) 0.179 0.048 0.045 0.067 0.032

τi (ms) 9.08 9.79 9.59 10.33 10.12

The logic inferred by this approach is indicated in Table I. Correctly
inferred logic is indicated in regular type and logic that could not be
inferred is indicated by parentheses. No inference was possible for many
of the logical network states because those states never occurred in the
time series. There were no incorrect inferences. Figure 2(c) shows the sim-
ulated dynamics resulting from these parameters. They match the observed
dynamics closely.

It is more difficult to extract network parameters from the complex
time series. The sampling frequency and switching frequency are close
enough that it is difficult to estimate when elements are rising and when
they are falling, a prerequisite of our technique. However, by manually
selecting and fitting multiple stretches of the time series in which an ele-
ment appears to be rising or falling, reasonable estimates of the z0

i , z1
i and

τi can be made. It is also possible to get most of the logic correct sim-
ply by assuming θi = 2.1 V for all elements. Table II shows the correctly
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inferred logic in regular type. Incorrect inferences are indicated by square
brackets (with the correct value displayed), and logic which could not be
inferred is indicated in parentheses. Most logical network states appeared
in the time series, allowing nearly the whole truth table to be inferred. Fig-
ure 3(c) shows the simulated dynamics when using the correct logic for the
complex network and the quantitative parameter estimates based on the
oscillator data (as opposed to those based on the complex time series).
The simulation in Fig. 3(c) appears to capture the observed time series
in Fig. 3(b) better than the simulation using the idealized parameters in
Fig. 3(a).

4. THEORETICAL ANALYSIS OF THE NETWORK DYNAMICS

Because of its piecewise-linear nature and logical structure, Eq. (3)
is amenable to theoretical analysis.(16,23,24) A motivating question in our
work is to make statements about the dynamics in Eq. (3) based simply
on the truth table for the network, as reflected in the associated directed
graph on the N -cube showing allowed transitions between neighboring
orthants. We now discuss theoretical methods that use the N -cube rep-
resentation to help determine properties of the dynamics based on com-
putation of the Poincaré map (Section 4.1) and using symbolic methods
(Sections 4.2 and 4.3).

4.1. Analytic Computation of the Poincaré Map

In certain special cases, knowledge about the dynamics in the differen-
tial equation follows immediately from the N -cube representation. A sta-
ble vertex on the N -cube is a vertex with no outgoing edges. A cycle is a
directed path on the N -cube that starts and ends on the same vertex. A
cyclic attractor is a cycle on the N -cube in which each vertex on the cycle
has N − 1 edges directed towards it, and one edge directed away from it.
If an N -cube has no cycles, then in the limit t →∞, solutions of Eq. (3)
approach a stable fixed point corresponding to one of the stable vertices
in the N -cube. Which vertex is reached depends on the initial condition
when there is more than one stable fixed point.

A cycle on the N -cube is a necessary condition for a cycle in Eq. (3).
For situations in which there are cycles, it is useful to compute the
Poincaré map describing the return to a hyperplane between two adjacent
orthants.

If all the decay constants τi are equal, the maps that take the flows
from one orthant boundary to the next have a simple form called a linear
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fractional map

M(x)= Ax
1+ 〈φ,x〉

, (7)

where the thresholds are translated to zero, x∈RN is a point on the initial
orthant boundary (in an N -dimensional network), A is an N ×N matrix,
φ∈RN , and 〈φ,x〉 represents a vector dot product between φ and x. This
form for Eq. (7) follows directly from the solution of Eq. (4), where A

and φ depend on the focal point coordinates fi of the flow for the orth-
ants being traversed. The composition of two linear fractional maps of the
same dimension is once again a linear fractional map. As a consequence of
this property, if there is a cycle we can analytically (usually with the assis-
tance of a computer) compute the return map for a given cycle of orth-
ants starting on a particular orthant boundary crossing. The return map
is often called the Poincaré map, which can be represented as in Eq. (7),
but where A is an (N − 1) × (N − 1) matrix, and φ and x are (N − 1)

vectors.(23)

If the directed graph on the N -cube displays a cyclic attractor, by a
change of coordinates we can represent A as a positive matrix and φ as
a positive vector. The limiting dynamics of Eq. (7) under iteration can be
analyzed by application of the Perron–Frobenius theorem.(16) If the lead-
ing eigenvalue of A is greater than 1, the iteration of the map converges
to a unique stable fixed point corresponding to a unique stable limit cycle
oscillation in the differential equation. Many other cycles are not cyclic
attractors but are nevertheless locally stable and the Perron–Frobenius
theorem still applies.(23)

The five-dimensional feedback inhibition network, represented by the
truth table in Table I, has the cyclic attractor: 00000 → 10000 → 11000 →
11100 → 11110 → 11111 → 01111 → 00111 → 00011 → 00001 → 00000 . . .

For the idealized case in which all time constants are equal to 1, all the
focal point coordinates are at 5 V and 0 V, and all the thresholds are 2.5 V,
the leading eigenvalue of A is greater than 1, and there is a unique sta-
ble limit cycle oscillation. Further, the period of the oscillation is given by
−10 ln w, where w is the unique root of the equation w4 +w3 +w2 +w−
1 = 0 in the interval 0 < w < 1.(15) Given the 10 ms time constant in this
circuit, we therefore predict that the period is ≈65.56256. . . ms, Fig. 2(a).
The actual dynamics in this circuit are shown in Fig. 2(b). There is a sta-
ble oscillation with a period of ≈65.4896 ms, close to the theoretical value.

This analysis depends on the explicit computation and analysis of the
Poincaré map, and this is only possible for the case in which all the time
constants are equal. The stable cycle observed for the circuit leads us to
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conjecture that, just as in the case in which all time constants are equal,
for networks displaying cyclic attractors based on their logical structure,
independent of the values of the time constants the dynamics will once
again either approach a stable limit cycle or a stable focus.

In support of this conjecture, we have been able to carry through
explicit computations for the case of the two-dimensional cyclic attractor
using the following proposition.

Proposition 1. (17) Suppose x0 ! 0 and xi+1 =g(xi) for i = 0,1,2, . . . ,
where g is continuous on [0,∞), twice-differentiable on (0,∞) and satis-
fies the following properties:

• g(0)=0;

• there is a c0 >0 such that g(c0)" c0;

• g′(x)>0 for x >0;

• g′′(x)<0 for x >0.

If g′(0)"1 (the derivative defined by a right-hand limit, or else g smoothly
extended below 0) then limi→∞ xi = 0, but if g′(0) > 1 then there is a
unique positive fixed point that is attracting for all x0 >0.

Proof. Let f (x)=g(x)−x. Note that f ′(x)=g′(x)−1, f (0)=0 and
f (c0)"0.

Suppose first that g′(0)"1, so f ′(0)"0. Since f ′′(x)<0, this implies
that f ′(x) < 0 and so f (x) < 0 for x > 0. Thus, g(x) < x for all x > 0, so
the sequence xi converges to 0 for any x0 >0 (or trivially if x0 =0).

Now suppose that g′(0)>1, so f ′(0)>0. Then f is initially increasing
so there is a point c1 ∈ (0, c0) with f (c1)>0. Since f (c0)"0, there is also
a point, c2 ∈ (c1, c0] such that f (c2) = 0. This fixed point is unique since
f ′′(x) < 0 for x > 0. Clearly, for x ∈ (0, c2) we have f (x) > 0 so g(x) > x.
Also, since g is increasing, we have g(x)<g(c2)=c2. Thus, xi converges to
c2. Similarly, for x ∈ (c2,∞) we have f (x)<0 so g(x)<x but also g(x)>

c2, so xi again converges to c2.

For the two-dimensional cyclic attractor (i.e., Eq. (3) with N =2 and
focal points chosen so that there is one entry boundary and one exit
boundary to each quadrant), we can show that the return map on the pos-
itive x1 axis has all the properties of g in the Proposition, and that g′(0)

depends on the focal point coordinates, but not the time constants. In
particular, if the truth table is:
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orthant (X) focal pt. (f)

0 0 a1 −b1
0 1 −a2 −b2
1 0 a3 b3
1 1 −a4 b4

with all constants ai and bi positive, then the mappings starting from the
positive x1 axis to each of the subsequent axes going counterclockwise
around the phase plane and returning to the positive x1 axis are given by:

M1(x) = b4τ2

[

1−
(

1+ x

a4τ1

)−τ1/τ2
]

,

M2(x) = a2τ1

[

−1+
(

1+ x

b2τ2

)−τ2/τ1
]

,

M3(x) = b1τ2

[

−1+
(

1− x

a1τ1

)−τ1/τ2
]

, (8)

M4(x) = a3τ1

[

1−
(

1− x

b3τ2

)−τ2/τ1
]

so that the composite return map is M(x)=M4(M3(M2(M1(x)))). It is then
tedious but straightforward to verify that the properties of g in the prop-
osition are satisfied by M, with c0 = max{b4τ2, a2τ1, b1τ2, a3τ1}. A further
calculation shows that

M ′(0)= b1a2a3b4

a1b2b3a4
,

so that M ′(0) > 1 and there exists a stable limit cycle if b1a2a3b4 >

a1b2b3a4. Note, however, that if there is no self input in the network, then
necessarily a1 = a3, b1 = b2, a2 = a4, and b3 = b4, so that M ′(0) = 1 and
the origin is a stable focus, regardless of the time constants. Stability and
existence of cycles in higher dimensions are more difficult to demonstrate
when the time constants are unequal.

Poincaré maps can also be used in computer–aided analysis of cha-
otic dynamics in these networks. Two different approaches are possible.
It is sometimes possible to demonstrate that the unstable manifold of a
fixed point in the Poincaré map intersects the stable manifold. This het-
eroclinic crossing does ensure that there will be a chaotic trajectory, but
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does not guarantee its stability.(18) In some cases, it is possible to go much
further.(20) By analyzing the return maps to a given threshold hyperplane,
in selected cases it has been possible to prove that there can be no sta-
ble fixed points given any periodic path that returns to a given threshold
hyperplane so that the dynamics must either be quasiperiodic or chaotic.
However, this method has only been successfully applied to four-dimen-
sional networks and has only been demonstrated in particular cases. There
is not a general method at present.

4.2. Symbolic Dynamics and Topological Entropy

Symbolic methods have played a prominent role in the study of
dynamical systems.(31,32) Because the trajectories in the dynamical sys-
tems considered here have a natural symbolic representation based on the
directed graph on the hypercube, concepts from symbolic dynamics are
applicable. In this section we discuss the dynamical properties of our net-
work from a perspective of symbolic dynamics using classical results and
also indicate some novel directions for further analysis.

Assume that the itinerary of the trajectory of a dynamical system Y is
represented by a sequence of symbols, called the alphabet. The number of
letters in the alphabet is called the size of the alphabet. Denote the set of
different blocks (i.e., symbol sequences) of length n in a partial sequence
of length k in the dynamical system Y by Bk

n(Y ) and the number of ele-
ments in this set by |Bk

n(Y )|. Bn(Y ) is the set of all blocks of length n as
k→∞, and |Bn(Y )|= limk→∞ |Bk

n(Y )|. One of the ways to characterize the
complexity of a dynamical system Y is by the topological entropy, which
is

h(Y )= lim
n→∞

1
n

log |Bn(Y )|. (9)

For the dynamical system in Fig. 3(c), a natural choice for the alpha-
bet is the set of vertices of the 5-cube. The trajectory is thus composed
of a sequence of integers from the set {0,1,2, . . . ,31} corresponding to
the decimal representation of the Boolean states. Based on the truth table
for the network in Table II, we can place an upper limit on |Bk

n(Y )|. The
adjacency matrix W for this network is a 32 × 32 matrix where the ele-
ments represent the allowed transitions in the differential equation. Recall
that wij = 1 if there is a directed edge from vertex i to vertex j in the
associated hypercube representation; otherwise wij = 0. The total number
of allowed paths of length n from vertex i to vertex j in a Markov pro-
cess based solely on these allowed single-step transitions is given by w

(n)
ij ,
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the (ij)th element of the matrix Wn. It follows from the Perron–Frobenius
theorem that

|Bn(Y )|=&ijw
(n)
ij "d0λ

n, (10)

where d0 is a positive constant, and λ is the leading eigenvalue of the
matrix W .(31,32) Consequently, the topological entropy is h(Y )" log λ.

This computation counts all paths that are allowed by the truth table.
However, in the differential equation it is possible that not all allowed
transitions between vertices will actually be found, or not all allowed
sequences of transitions. Thus, the above computation places an upper
limit on the number of paths. In order to investigate the applicability
of this theoretical result to the actual network, we numerically compute
the value of |Bk

n |, for Eq. 3 with focal points defined by Table II and
the derived parameters for the electronic network in Section 3, and com-
pare this with the upper limit computed using Eq. (10). Figure 4 shows
log2 |Bk

n | for n=5, 10, and 15, as a function of the number of switch times
for the differential equation, panel (a), and the number of iterations for
the Markov process based on the adjacency matrix defined by Table II,
panel (b). For the symbol sequence generated by the differential equation,
|Bn| appears to converge to a value much less than the theoretical max-
imum, whereas in the equivalent stochastic process, |Bn| appears to be
converging to the theoretical limit, as it must. This point is further illus-
trated in Fig. 4(c) which gives |B220

n |, for both the differential equation and
the Markov process and compares these with the theoretical maximum.
The leading eigenvalue of the adjacency matrix is λ≈ 2.1935, and so the
topological entropy is log2(λ) ≈ 1.1332 – which is the slope of the solid
line in Fig. 4(c). It is difficult to estimate the topological entropy of the
differential equation. Our numerical simulations suggest that it is consid-
erably lower than that of the Markov process. Nevertheless, the topological
entropy of the Markov process gives us a strict bound on the topological
entropy of Eq. (3), and this bound can be computed based only on the
logical structure of the system, without actually integrating the equation.

4.3. Symbolic Dynamics of the Poincaré Map

Although the representation of each vertex as a distinct symbol
seems natural in the context of classical approaches in symbolic dynamics,
other symbolic representations can also be useful for the current class of
networks.(15,21)

First, we need several definitions. The coordinate sequence is the
sequence of integers giving the logical coordinates (i.e., the indices of the
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Fig. 4. Symbolic dynamics using the set of vertices of the 5-cube as the alphabet. (a) The
number of unique blocks of length n as a function of the number of switch times, k, for the
differential equation with the truth table in Table II. (b) The number of unique blocks of
length n as a function of the number of iterations, k, for the Markov process defined by the
adjacency matrix associated with the truth table in Table II. (c) The number of unique blocks
of length n as a function of n following k = 220 iterations in the Markov process and switch
times in the differential equation with the truth table in Table II. The limiting value of the
slope is given by the leading eigenvalue of the adjacency matrix.
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variables) that change as a path is traversed. For example, for the five-
dimensional negative feedback cycle in Table I and Fig. 2 the coordinate
sequence is 1234512345 . . . The coordinate sequence is a compact way of
representing a cycle, helping to clarify its symmetry properties. However,
the coordinate sequence can be the same even for biological systems with
different structures. Consider a feedback loop with three elements each of
which only activates or inhibits the next in sequence. A loop with two acti-
vating links and one inhibitory link(14,15,19) and a loop with three inhibi-
tory links(4) would both be associated with a cyclic attractor on the 3-cube
and have the coordinate sequence 123123, perhaps following permutation
of the names of the elements.

A simple cycle is a cycle in which no vertex of the hypercube appears
more than once. A simple cycle of length L can be identified by the fol-
lowing criteria applied to the coordinate sequence: (i) L is even; (ii) for
any sequence of consecutive steps of length shorter than L, at least one
coordinate must appear an odd number of times; (iii) In the coordinate
sequence for the cycle of length L, each coordinate appears an even num-
ber of times. It follows that for dynamics on an N -cube, 4 " L " 2N . A
complex cycle is any cycle that is not a simple cycle. In the directed 5-cube
for our complex network, there are 35709 simple cycles including several
Hamiltonian cycles.

The dynamical significance of simple and complex cycles is that they
may be represented by a return map defined over a domain on the thresh-
old hyperplane associated with an edge between two of the vertices on the
cycle. In an earlier paper,(21) we analyzed four-dimensional chaotic systems
in Eq. (3) when all time constants were equal. For any choice of starting
threshold hyperplane, we may consider each different (simple or complex)
cycle arising in a return map to that hyperplane as a letter in an alpha-
bet. Thus, each letter in such an alphabet corresponds to a block of ver-
tex symbols in the alphabet of the previous subsection. A trajectory then
corresponds to a sequence of letters representing consecutive return cycles.
In general, we expect that the set of allowed sequences will be restricted.
For example, in a previous publication(21) we found that for a particu-
lar four-dimensional differential equation, we only needed two letters C
and D since there were only two return cycles to a designated Poincaré
section. Further, the subsequence CC was forbidden. Thus, the dynamical
system could be represented by the classical golden mean shift.(31,32) We
also described bifurcations that occurred as a function of the focal points.
There were two types of bifurcation. In one, the numbers of consecutive
allowed symbols could change. For example, we could have CC, but not
more than two consecutive appearances of C.
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Another type of bifurcation requires the introduction of new sym-
bols since the returns to the same Poincaré section could follow additional
paths through the hypercube so that the size of the alphabet increased
to four symbols. The change in the qualitative properties of the chaotic
dynamics here may be similar to the sudden qualitative changes called
“crises” in other chaotic systems.(33) All these bifurcations will lead to
changes in the topological entropy of the dynamical system. These ideas
have a correspondence in the theory of formal languages(34) which have
been discussed previously.(21)

The dynamics in the circuit and differential equations shown in Fig. 3
are more complex than the ones in ref. 21. We now consider a new
way to characterize the complexity of the dynamics by plotting the size
of the alphabet needed to characterize the return maps to the threshold
hyperplane that is represented by the edge of the hypercube lying between
vertices 00110 and 10110, in Fig. 5(a). Figure 5(b) shows the length dis-
tribution of the return map coordinate sequences found numerically after
220 switch times. The longest cycle found had 202 switches.

The count in Fig. 5(a) is drawn as a function of the number of iter-
ations for up to 220 switch times. The number of return maps appears to
be steadily increasing. To give an idea of the structure of the coordinate
sequences, we next list three coordinate sequences, of lengths 58, 54 and
38 switches, respectively, starting from the vertex 00110 that are computed
numerically during the complex dynamics displayed in Fig. 3(c).

1545121315[1212][1212][121424][124124][124124]32[4242][4242][4242][4242]4252
1545121315[1212][1212][121424][124124]32[421412][421412][421412]4252
1545121315[1212][124124]32[421412][425452]4252

A schematic representation of these three sequences is given in Fig. 6.
The coordinate sequences in square brackets represent simple cycles.
(Notice that there is not a unique way to parse these simple cycles and
we provide one way of parsing). If we eliminate the simple cycles in
square brackets from each example, we end up with the same coordinate
sequence. We say that all coordinate sequences that can be brought into
correspondence in this fashion, by continuing to eliminate simple cycles
until the same simple cycle remains, are members of the same family. Even
though the size of the alphabet characterizing the return map to a Poin-
caré section may be infinite, these will fall into a finite number of fami-
lies that is bounded by the number of simple cycles containing the edge
corresponding to the Poincaré section. However, the coordinate sequence
remaining after elimination of simple cycles is not necessarily unique. For
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Fig. 5. Symbolic representation of complex dynamics. (a) The number of distinct letters (each
representing a cycle) as a function of the number of switch times for the return to the boundary
between orthants 00110 and 10110 in the differential equation with the parameters determined
in the text. (b) The distribution of cycle lengths, i.e., numbers of vertices on each cycle. These
are based on the complex network with optimized parameters, and 220 switch times.

Fig. 6. Schematic representation of a family of coordinate sequences.
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example, the coordinate sequence 514142423543 can be simplified in two
different ways:

5[1414]2423543→52423543 or 5141[4242]3543→51413543.

Thus, a single coordinate sequence can belong to more than one family.
In Fig. 6, there are two vertices at which we have numerically found

three different simple cycles. We define a secondary simple cycle as a simple
cycle that is encountered as part of a return cycle, but that does not pass
through the starting hyperplane (corresponding to an edge between two
vertices). Further, the secondary simple cycles are traversed different num-
bers of times in these three examples. Based on our earlier studies in which
we found that some simple cycles could be traversed an arbitrary num-
ber of times (as a consequence of heteroclinic crossings) we believe that in
this network, there are situations in which one or more secondary simple
cycles, that might be represented as a loop on a path as in Fig. 6, can be
traversed an arbitrary number of times, and thus there will be an infinite
number of maps that would describe the return to the starting threshold
hyperplane. The numbers and characteristics of the return maps to differ-
ent threshold hyperplanes will be different. For the following two proposi-
tions, we assume that we have a dynamical system in which all transients
have dissipated so that the dynamics are on an asymptotic attractor.

Proposition 2. The size of the alphabet characterizing the return
map to a threshold hyperplane on a trajectory is infinite if and only if
there is a secondary cycle that can be traversed an arbitrary number of
times.

Proof. If there is no secondary cycle, then the alphabet is composed
of one letter for each simple cycle from the starting hyperplane (because
on each, the sequence of vertices is fixed), and the number of such cycles
is finite since the number of vertices is finite. If there are secondary cycles,
but there is a maximum number of consecutive traversals of any such sec-
ondary cycle, then the alphabet is still bounded. If there is a secondary
cycle that can be traversed an arbitrary number of times, then an infi-
nite number of different return cycles is possible and therefore an infinite
alphabet is required.

Proposition 3. In a differential equation described by Eq. (3), if for
any threshold hyperplane traversed in a trajectory, the size of the alpha-
bet needed to characterize the return map is infinite, then the dynamics are
aperiodic.

Proof. Suppose the attractor is periodic; then the alphabet needed
for one period, which is finite, suffices for infinite trajectories. Therefore,
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if there does not exist a finite alphabet for a return map regardless of the
choice of starting threshold hyperplane (or graph edge), then the attractor
cannot be periodic.

Note that arbitrarily long transients before convergence to an attrac-
tor can also require an infinite alphabet from some threshold hyperplane.
The proposition refers to the situation on the attractor.

Notice also that if a trajectory has at least two simple cycles that can
be traversed an arbitrary number of times, and these two simple cycles
do not share any common edges, then independent of the choice of the
threshold hyperplane, the size of the alphabet characterizing the return
map must be infinite.

From Propositions 2 and 3 we conclude that:

Theorem 4. A necessary condition for chaotic dynamics in Eq. (3)
is that there exists a complex cycle in the corresponding directed graph on
the N -cube.

5. CONCLUSIONS

This paper raises issues that relate the qualitative dynamics in bio-
logical systems to the underlying logical structure as well as the quantita-
tive values of the parameters in the system. The class of equations that we
analyze here is notable for its preservation of a logical structure in a piece-
wise-linear ordinary differential equation. This class of equations enables
mathematical analyses that incorporate traditional methods of nonlinear
dynamics, such as analysis of stability of fixed points on return maps, as
well as discrete methods, such as enumeration of the different return maps.
Despite the results obtained so far towards predicting the qualitative fea-
tures of the dynamics based on the logical structure, we still do not know
how to identify networks that can display chaos for some choice of param-
eter values based on their logical structure. The analysis of the symbolic
dynamics during chaotic dynamics raises intriguing theoretical questions
concerning the connections between different symbolic representations of
dynamical systems.

The potential relevance of these methods to real biological net-
works is not yet clear. Our study of chaotic dynamics in these networks
opens the question of whether real genetic networks might display cha-
otic dynamics or might have evolved in a fashion to favor or suppress
chaos, e.g., see ref. 7. Certainly, real systems differ from the equations here
in many ways, including variable thresholds for different control tasks,
continuous rather than step function control, stochastic effects, and time
delays. Our comparison of a real electronic network with a differential
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equation demonstrates that the qualitative features of the dynamics can be
preserved even though quantitative aspects of the dynamics are changed.
Independent of its relevance to biology, this class of networks displays
extraordinarily rich dynamics that are amenable to theoretical analysis, but
are still barely understood.
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