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Abstract

The phase space flow of a dynamical system, leading to the solution of linear programming (LP) problems, is exp
an example of complexity analysis in an analog computation framework. In this framework, computation by physical
and natural systems, evolving in continuous phase space and time (in contrast to the digital computer where these ar
is explored. A Gaussian ensemble of LP problems is studied. The convergence time of a flow to the fixed point rep
the optimal solution, is computed. The cumulative distribution function of the convergence time is calculated in the fra
of random matrix theory (RMT) in the asymptotic limit of large problem size. It is found to be a scaling function, of the
obtained in the theories of critical phenomena and Anderson localization. It demonstrates a correspondence between
of computer science and physics.
 2004 Elsevier B.V. All rights reserved.
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An analog computer is a physical device that p
forms computation, evolving in continuous time a
phase space; its evolution in phase space can be
eled by dynamical systems (DS) [1], the way clas
cal systems such as particles moving in a potentia
electric circuits), are modeled. This description ma
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a large set of analytical tools and physical intuitio
developed for dynamical systems, applicable to
analysis of analog computers. In contrast, the ev
tion of a digital computer is described by a dyna
ical system, discrete both in its phase space an
time. The most relevant examples of analog comp
ers are VLSI devices implementing neural netwo
[2], or neuromorphic systems [3], whose structure
directly motivated by the workings of the brain. Va
ous processes taking place in living cells can be c
.
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sidered as analog computation [4]. Dynamical syste
(described by ordinary differential equations) are a
used to solve computational problems [5–7]. The st
dard theory of computation and computational co
plexity [8] deals with computation in discrete tim
and phase space, and is inadequate for the des
tion of such systems. For the analysis of computa
by analog devices a theory that is valid in continuo
time and phase space is required. Since the system
question are physical systems, the computation t
is the time required for a system to reach the vic
ity of an attractor (a stable fixed point in the pres
work) combined with the time required to verify th
it indeed reached this vicinity. This time is the elaps
time measured by a clock, contrary to standard co
putation theory where it is the number of steps.

In the exploration of physical systems, it is som
times much easier to study statistical ensembles of
tems, estimating their typical behavior using statisti
methods [9–11]. Ensembles of systems modeling
dynamics of populations were studied as well [12,1
The statistical theories describe many general feat
of the problems that are investigated, but specific s
tems require special attention [10,13]. In this Let
a statistical theory is used to calculate the comp
tional complexity of a standard representative pr
lem, namely linear programming (LP), as solved
a DS. A detailed version was published in the co
puter science literature [14].

In two recent papers we have proposed a framew
for computing with DS that converge exponentially
fixed points [15]. For such systems it is natural to co
sider theattracting fixed point as the output. The input
can be modeled in various ways. One possible ch
is the initial condition. This is appropriate when t
aim of the computation is to decide to which attrac
out of many possible ones the system flows [16]. He
as in [15], the parameters on which the system of
depends (e.g., the parameters appearing in the ve
field F in (1)) are the input.

The basic entity of the computational model is
dynamical system [1], that may be defined by a se
ordinary differential equations (ODEs)

(1)
dx

dt
= F(x),

where x is an n-dimensional vector, andF is an
n-dimensional smooth vector field, which converg
-

r

exponentially to a fixed point. Eq. (1) solves a comp
tational problem as follows: Given an instance of
problem, the parameters of the vector fieldF are set,
and it is started from some predetermined initial c
dition. The result of the computation is then deduc
from the fixed point that the system approaches.

In our model we assume we have a physical
plementation of the flow equation (1). Thus, the v
tor field F need not be computed, and the compu
tion time is determined by the convergence time
the attractive fixed point. In other words, the time
flow to the vicinity of the attractor is a good me
sure of complexity, namely the computational effo
for the class of continuous dynamical systems in
duced above [15].

In this Letter we will consider real inputs, as th
ones found in physical experiments, and that are s
ied in the BSS model [17]. For computational mo
els defined on the real numbers, worst case beha
that is traditionally studied in computer science, can
ill defined and lead to infinite computation times,
particular, for some methods for solving LP [17,1
Therefore, we compute the distribution of compu
tion times for a probabilistic model of LP instanc
with Gaussian distribution of the data like in [19,20
Ill-defined instances constitute a set of zero measu
our probability ensemble, and need not be concer
about.

The computational complexity of the method p
sented here isO(n logn), compared toO(n3.5 logn)

found for standard interior point methods [21]. The b
sic reason is that for standard methods (such as int
point methods), the major component of the compl
ity of each iteration isO(n3) due to matrix decompos
tion and inversion of the constraint matrix, while he
because of its analog nature, the system just flows
cording to its equations of motion (which need not
computed).

Since we consider the evolution of avector filed,
our model is inherently parallel. Therefore, to ma
the analog vs. digital comparison entirely fair, w
should compare the complexity of our method
that of the best parallel algorithm. The latter can
duce theO(n3) time needed for matrix decompos
tion/inversion to polylogarithmic time (for well-pose
problems), at the cost ofO(n2.5) processors [22]
while our system of equations (1) uses onlyO(n) vari-
ables.
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Linear programming is a P-complete problem [
i.e., it is representative of all problems that can
solved in polynomial time. Thestandard formof LP
is to find

(2)max
{
cT x: x ∈ R

n, Ax = b, x � 0
}
,

wherec ∈ R
n, b ∈ R

m, A ∈ R
m×n andm � n. The

set generated by the constraints in (2) is a polyhed
If a bounded optimal solution exists, it is obtained
one of its vertices. The vector defining this optim
vertex can be decomposed (in an appropriate ba
in the formx = (xN , xB) wherexN = 0 is ann − m

component vector, whilexB = B−1b � 0 is an m

component vector, andB is them × m matrix whose
columns are the columns ofA with indices identical to
the ones ofxB. Similarly, we decomposeA = (N,B).

A flow of the form (1) converging to the optima
vertex, introduced by Faybusovich [6] will be studi
here. Its vector fieldF is a projection of the gradient o
the cost functioncT x onto the constraint set, relativ
to a Riemannian metric which enforces the positiv
constraintsx � 0 [6]. It is given by

(3)F(x) = [
X − XAT

(
AXAT

)−1
AX

]
c,

whereX is the diagonal matrix Diag(x1 · · ·xn). The
nm + n entries ofA and c, namely, the paramete
of the vector fieldF , constitute the input; as in othe
models of computation, we ignore the time it tak
to “load” the input, since this step does not refle
the complexity of the computation being performe
either in analog or digital computation. It was show
in [23] that the flow equations given by (1) and (3) a
in fact, part of a system of Hamiltonian equations
motion of a completely integrable system of a To
type. Therefore, like the Toda system, it is integra
with the formal solution [6]

(4)

xi(t) = xi(0)exp

(
−∆it +

m∑
j=1

αji log
xj+n−m(t)

xj+n−m(0)

)

(i = 1, . . . , n − m), that describes the time evolutio
of the n − m independent variablesxN (t), in terms
of the variablesxB(t). In (4) xi(0) andxj+n−m(0) are
components of the initial condition,xj+n−m(t) are the
xB components of the solution,αji = −(B−1N)ji is
anm × (n − m) matrix, while

(5)∆i = −ci −
m∑

j=1

cjαji .

For the decompositionx = (xN , xB) used for the
optimal vertex∆i � 0, i = 1, . . . , n − m, andxN (t)

converges to 0, whilexB(t) converges tox∗ = B−1b.
Note that the analytical solution is only aformal one,
and does not provide an answer to the LP instan
since the∆i depend on the partition ofA, and only
relative to a partition corresponding to a maximu
vertex are all the∆i positive.

The second term in (4), when it is positive, is a ki
of “barrier”: ∆it must be larger than the barrier befo
xi can decrease to zero. In the following we igno
the contribution of the initial condition and denote t
value of this term in the infinite time limit by

(6)βi =
m∑

j=1

αji logx∗
j+n−m.

Note that although one of thex∗
j may vanish, in the

probabilistic ensemble studied here such an event
measure zero and therefore should not be conside
In order forx(t) to be close to the maximum verte
we must havexi(t) < ε for i = 1, . . . , n − m for some
small positiveε, namely exp(−∆it + βi) < ε, for
i = 1, . . . , n − m. Therefore we consider

(7)T = max
i

(
βi

∆i

+ | logε|
∆i

)
,

as the computation time. We denote

(8)∆min = min
i

∆i, βmax= max
i

βi .

The ∆i can be arbitrarily small when the inputs a
real numbers, but in the probabilistic model, “ba
instances are rare as is clear from (10).

The ensemble we analyze consists of LP proble
in which the components of(A,b, c) are independen
identically distributed (i.i.d.) random variables tak
from the standard Gaussian distribution with 0 me
and unit variance. With the introduction of a prob
bilistic model of LP instances,∆min, βmax andT be-
come random variables. Since the expression for∆i ,
Eq. (5), is independent ofb, its distribution is in-
dependent ofb. For a given realization ofA and c,
with a partition ofA into (N,B) such that∆i � 0,
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Fig. 1.F(x∆) is plotted against the variablex∆, for n = 2m. There is very good agreement with the analytical results, improving asm increases,
as expected for an asymptotic result.
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there exists a vectorb such that the resulting poly
heder has a bounded optimal solution. Sinceb in our
probabilistic model is independent ofA we obtain:
P(∆min < ∆|∆min > 0, LP instance has a bound
maximum vertex)=P(∆min < ∆|∆min > 0).

We wish to compute the probability distributio
of ∆min for instances with a bounded solution, wh
∆min > 0, denoted byP(∆min > ∆|∆min > 0). It turns
out that it is much easier to analytically calculate
probability distribution of∆min for a given partition
of the matrixA. In the probabilistic model we define
P(∆min > ∆|∆min > 0) is proportional to the proba
bility that ∆min > ∆ for a fixed partition (9). Let the
index 1 stand for the partition whereB is taken from
the lastm columns ofA. In [14] we proved, using the
symmetry resulting from the identity of the Gauss
variables, that

(9)P(∆min > ∆|∆min > 0) = P(∆min1 > ∆)

P(∆min1 > 0)
for ∆ > 0, where∆min1 = min{∆i | ∆i are computed
relative to the partition 1} and P(∆min1 > 0) =
1/2n−m.

Integrating over the Gaussian variables of the
semble, the probabilityP(∆min1 > ∆) was computed
in [14] for a specific partition ofA in the large(n,m)

asymptotic limit, making use of methods of rando
matrix theory. GivenP(∆min1 > ∆), thenP(∆min >

∆|∆min > 0) is obtained with the help of (9). In th
large(n,m) limit the probabilityP(∆min < ∆|∆min >

0) ≡F (n,m)(∆) is of the scaling form

(10)F (n,m)(∆) = 1− ex2
∆ erfc(x∆) ≡ F(x∆)

with the scaling variablex∆(n,m) = 1√
π
( n
m

−1)
√

m∆.

The scaling functionF containsall asymptotic infor-
mation on∆. The distributionF(x∆) is very wide and
does not have a mean. Also the average of 1/x∆ di-
verges.

In order to the demonstrate this result numerica
we generated LP instances where(A,b, c) are random
Gaussian variables and solved for them the LP pr
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Fig. 2.F1/T (xT ) as a function of the variablexT = m logm/t for the same instances as Fig. 1.
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lem with the IMSL C library. We obtained an estima
of F (n,m)(∆) = P(∆min < ∆|∆min > 0), and of the
corresponding cumulative distribution functions of t
barrierβmax andT . In Fig. 1 the numerical results a
compared with the analytical formula (10).

The existence of scaling functions like (10) for t
barrierβmax, that is the maximum of theβi defined by
(6) and forT defined by (7) was verified numerical
(see Fig. 2 forT ). In particular for fixedm/n, we
found that

(11)
P(1/βmax< 1/β) ≡F (n,m)

1/βmax
(1/β) =F1/βmax(xβ)

and

(12)P(1/T < 1/t) ≡F (n,m)
1/T (1/t) =F1/T (xT ).

The scaling variables arexβ ∼ m/β and xT ∼ m ×
logm/t . The scaling functions (10), (11) and (1
imply the asymptotic behavior

(13)
1/∆min ∼ √

m, βmax∼ m, T ∼ m logm

with “high probability” [14].
In this Letter we computed the problem size d
pendence of the distributions of quantities that gov
the convergence of a DS that solves the LP prob
[6]. To the best of our knowledge, this is the first tim
such distributions are computed. In particular, kno
edge of the distribution functions enables to obtain
“high probability” behavior (13), and the moments
these exist). The main result of the present work
that the distribution functions of the convergence ra
∆min, the barrierβmax and the computation timeT
are scaling functions; i.e., in the asymptotic limit
large (n,m), each depends on the problem size o
through a scaling variable. In other words these
not arbitrary functions of the three variables, but e
is a function only of one variable,x∆, xβ or xT . The
distribution function of∆min was calculated analyti
cally, and the result was verified numerically. The sc
ing functions, even if known only numerically, can
useful for the understanding of the behavior for la
values of(n,m) that are beyond the limits of numer
cal simulations.

In this Letter the distribution functions of variou
quantities that characterize the computational co
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i,
plexity, were found to be scaling functions in the lar
(n,m) limit. This is analogous to the situation foun
for the central limit theorem, for critical phenome
[24] and for Anderson localization [25], in spite of th
very different nature of these problems. It is dem
strated here how for the implementation of the
problem on a physical device, methods used in t
oretical physics enable to describe the distribution
computation times in a simple and physically transp
ent form. Based on our experience with certain u
versality properties of rectangular and chiral rand
matrix models [26], we expect some universality
computational problems, that should be explored.
obvious questions are: is the Gaussian nature of
ensemble unimportant in analogy with [26]? Are the
universality classes [24] of analog computation pr
lems, and if they exist, what are they? Are these a
ogous to the classification of [13]? We believe it c
be instructive to explore computation problems us
methodologies of theoretical physics as was dem
strated here for linear programming.
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