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Abstract

The phase space flow of a dynamical system, leading to the solution of linear programming (LP) problems, is explored as
an example of complexity analysis in an analog computation framework. In this framework, computation by physical devices
and natural systems, evolving in continuous phase space and time (in contrast to the digital computer where these are discrete).
is explored. A Gaussian ensemble of LP problems is studied. The convergence time of a flow to the fixed point representing
the optimal solution, is computed. The cumulative distribution function of the convergence time is calculated in the framework
of random matrix theory (RMT) in the asymptotic limit of large problem size. It is found to be a scaling function, of the form
obtained in the theories of critical phenomena and Anderson localization. It demonstrates a correspondence between problems
of computer science and physics.
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An analog computer is a physical device that per- a large set of analytical tools and physical intuition,
forms computation, evolving in continuous time and developed for dynamical systems, applicable to the
phase space; its evolution in phase space can be modanalysis of analog computers. In contrast, the evolu-
eled by dynamical systems (DS) [1], the way classi- tion of a digital computer is described by a dynam-
cal systems such as particles moving in a potential (or ical system, discrete both in its phase space and in
electric circuits), are modeled. This description makes time. The most relevant examples of analog comput-

ers are VLSI devices implementing neural networks
[2], or neuromorphic systems [3], whose structure is
T Corre . directly motivated by the workings of the brain. Vari-
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sidered as analog computation [4]. Dynamical systems exponentially to a fixed point. Eq. (1) solves a compu-
(described by ordinary differential equations) are also tational problem as follows: Given an instance of the
used to solve computational problems [5-7]. The stan- problem, the parameters of the vector fi¢ldare set,
dard theory of computation and computational com- and it is started from some predetermined initial con-
plexity [8] deals with computation in discrete time dition. The result of the computation is then deduced
and phase space, and is inadequate for the descripfrom the fixed point that the system approaches.
tion of such systems. For the analysis of computation  In our model we assume we have a physical im-
by analog devices a theory that is valid in continuous plementation of the flow equation (1). Thus, the vec-
time and phase space is required. Since the systems irtor field F need not be computed, and the computa-
guestion are physical systems, the computation time tion time is determined by the convergence time to
is the time required for a system to reach the vicin- the attractive fixed point. In other words, the time of
ity of an attractor (a stable fixed point in the present flow to the vicinity of the attractor is a good mea-
work) combined with the time required to verify that sure of complexity, namely the computational effort,
it indeed reached this vicinity. This time is the elapsed for the class of continuous dynamical systems intro-
time measured by a clock, contrary to standard com- duced above [15].
putation theory where it is the number of steps. In this Letter we will consider real inputs, as the
In the exploration of physical systems, it is some- ones found in physical experiments, and that are stud-
times much easier to study statistical ensembles of sys-ied in the BSS model [17]. For computational mod-
tems, estimating their typical behavior using statistical els defined on the real numbers, worst case behavior,
methods [9-11]. Ensembles of systems modeling the that is traditionally studied in computer science, can be
dynamics of populations were studied as well [12,13]. ill defined and lead to infinite computation times, in
The statistical theories describe many general featuresparticular, for some methods for solving LP [17,18].
of the problems that are investigated, but specific sys- Therefore, we compute the distribution of computa-
tems require special attention [10,13]. In this Letter tion times for a probabilistic model of LP instances
a statistical theory is used to calculate the computa- with Gaussian distribution of the data like in [19,20].
tional complexity of a standard representative prob- lll-defined instances constitute a set of zero measure in
lem, namely linear programming (LP), as solved by our probability ensemble, and need not be concerned
a DS. A detailed version was published in the com- about.
puter science literature [14]. The computational complexity of the method pre-
In two recent papers we have proposed a framework sented here i€ (n logn), compared ta®(n°logn)
for computing with DS that converge exponentially to  found for standard interior point methods [21]. The ba-
fixed points [15]. For such systems it is natural to con- sic reason is that for standard methods (such as interior
sider theattracting fixed point as the outputhe input point methods), the major component of the complex-
can be modeled in various ways. One possible choice ity of each iteration i) (%) due to matrix decomposi-
is the initial condition. This is appropriate when the tion and inversion of the constraint matrix, while here,
aim of the computation is to decide to which attractor because of its analog nature, the system just flows ac-
out of many possible ones the system flows [16]. Here, cording to its equations of motion (which need not be
as in [15], the parameters on which the system of DS computed).
depends (e.g., the parameters appearing in the vector Since we consider the evolution ofvactor filed
field F in (1)) are the input. our model is inherently parallel. Therefore, to make
The basic entity of the computational model is a the analog vs. digital comparison entirely fair, we
dynamical system [1], that may be defined by a set of should compare the complexity of our method to

ordinary differential equations (ODES) that of the best parallel algorithm. The latter can re-
duce theO(n®) time needed for matrix decomposi-

d_x = F(x), (1) tion/inversion to polylogarithmic time (for well-posed

dt problems), at the cost o®(n?®) processors [22],

where x is an n-dimensional vector, and” is an while our system of equations (1) uses o6lyn) vari-
n-dimensional smooth vector field, which converges ables.
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Linear programming is a P-complete problem [8],
i.e., it is representative of all problems that can be
solved in polynomial time. Thetandard formof LP
is to find

max{ch: xeR", Ax=b, x 20},

)

wherec e R", b e R", A € R"*" andm < n. The
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anm x (n —m) matrix, while

m
A =—ci — E cjji.
j=1

For the decomposition = (xar, xg) used for the
optimal vertexA; >0, i =1,...,n —m, andx (¢)
converges to 0, whilez () converges toc* = B~1b.

©)

set generated by the constraints in (2) is a polyhedron. NOte that the analytical solution is onlyfarmal one,

If a bounded optimal solution exists, it is obtained at
one of its vertices. The vector defining this optimal

and does not provide an answer to the LP instance,
since theA; depend on the partition of, and only

in the formx = (xr, xg) wherexy =0 is ann —m
component vector, whilecg = B™1b > 0 is anm
component vector, anfi is them x m matrix whose
columns are the columns d@f with indices identical to
the ones ofci. Similarly, we decomposa = (N, B).

A flow of the form (1) converging to the optimal
vertex, introduced by Faybusovich [6] will be studied
here. Its vector field is a projection of the gradient of
the cost functiore” x onto the constraint set, relative
to a Riemannian metric which enforces the positivity
constraintsc > 0 [6]. It is given by

F(x)=[X — xAT (AXAT) " AX]e, 3)
where X is the diagonal matrix Dia@s---x,). The
nm + n entries ofA and ¢, namely, the parameters
of the vector fieldF, constitute the input; as in other
models of computation, we ignore the time it takes
to “load” the input, since this step does not reflect
the complexity of the computation being performed,
either in analog or digital computation. It was shown
in [23] that the flow equations given by (1) and (3) are,
in fact, part of a system of Hamiltonian equations of
motion of a completely integrable system of a Toda
type. Therefore, like the Toda system, it is integrable
with the formal solution [6]

% (t) = x; (0) exp(—Ait + Z ajilog
Jj=1

xj-l—n—m([)
xj—&-n—m(o)

(4)
(i=1,...,n —m), that describes the time evolution
of the n — m independent variablesy/(¢), in terms
of the variablesiz(¢). In (4) x;(0) andx ;+,—, (0) are
components of the initial conditiow, ,_, () are the
xp components of the solutiow,;; = —(B*lN)j,- is

vertex are all theA; positive.

The second termin (4), when it is positive, is a kind
of “barrier”: A;t must be larger than the barrier before
x; can decrease to zero. In the following we ignore
the contribution of the initial condition and denote the
value of this term in the infinite time limit by

Bi=> ajilogxt,, . (6)

j=1

Note that although one of thef may vanish, in the
probabilistic ensemble studiec{here such an eventis of
measure zero and therefore should not be considered.
In order forx(¢) to be close to the maximum vertex
we must have;(t) <efori=1,...,n —m for some
small positivee, namely exp—A;t + B;) < €, for
i=1,...,n —m. Therefore we consider

Bi , Ilogel
T=max] —+—), 7
i x(A,‘ + A; (7)
as the computation time. We denote
Amin=min4;, Bmax= maxp;. (8)
14 l

The A; can be arbitrarily small when the inputs are
real numbers, but in the probabilistic model, “bad”
instances are rare as is clear from (10).

The ensemble we analyze consists of LP problems
in which the components @f4, b, ¢) are independent
identically distributed (i.i.d.) random variables taken
from the standard Gaussian distribution with 0 mean
and unit variance. With the introduction of a proba-
bilistic model of LP instancesAmin, BmaxandT be-
come random variables. Since the expressionAgr
Eq. (5), is independent ab, its distribution is in-
dependent ob. For a given realization ofti andc,
with a partition of A into (N, B) such thatA; > 0,
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Fig. 1.F(x») is plotted against the variabley, for n = 2m. There is very good agreement with the analytical results, improvingiasreases,

as expected for an asymptotic result.

there exists a vectas such that the resulting poly-
heder has a bounded optimal solution. Sihde our
probabilistic model is independent of we obtain:
P(Amin < AlAmin > 0, LP instance has a bounded
maximum vertex}= P (Amin < A|Amin > 0).

We wish to compute the probability distribution
of Amin for instances with a bounded solution, when
Amin > 0, denoted byP (Amin > A|Amin > 0). Itturns
out that it is much easier to analytically calculate the
probability distribution ofAnn for a given partition
of the matrixA. In the probabilistic model we defined,
P(Amin > A|lAmin > 0) is proportional to the proba-
bility that Amin > A for a fixed patrtition (9). Let the
index 1 stand for the partition whet is taken from
the lastm columns ofA. In [14] we proved, using the
symmetry resulting from the identity of the Gaussian
variables, that

P(Amin1> A)

P(Amin > Al Amin > 0) P(Amin1 > 0)

©)

for A > 0, whereAmin1 = min{4; | A; are computed
relative to the partition 1 and P(Amin1 > 0) =
1/2"—]’)1.

Integrating over the Gaussian variables of the en-
semble, the probabilitfP(Amin1 > A) was computed
in [14] for a specific partition ofA in the large(n, m)
asymptotic limit, making use of methods of random
matrix theory. GiverP(Amin1 > A), thenP(Amin >
A|Amin > 0) is obtained with the help of (9). In the
large(n, m) limit the probabilityP (Amin < A| Amin >
0) = F™(A) is of the scaling form

Frmay =1 g'xi erfc(xa) = F(xa) (10)

with the scaling variable (n, m) = Ji; L _1)J/mA.
The scaling functionF containsall asymptotic infor-
mation onA. The distributionF (x») is very wide and
does not have a mean. Also the average ofsldi-
verges.

In order to the demonstrate this result numerically,
we generated LP instances whése b, ¢) are random
Gaussian variables and solved for them the LP prob-
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Fig. 2. 71,7 (x7) as a function of the variabler =mlogm/ for the same instances as Fig. 1.

lem with the IMSL C library. We obtained an estimate
of Fm(A) = P(Amin < AlAmin > 0), and of the
corresponding cumulative distribution functions of the
barrier fmax andT. In Fig. 1 the numerical results are
compared with the analytical formula (10).

The existence of scaling functions like (10) for the
barrierBmax, that is the maximum of thg; defined by
(6) and forT defined by (7) was verified numerically
(see Fig. 2 forT). In particular for fixedm/n, we
found that

P/ Bmax< 1/B) = F{ o) (1/B) = F1 prnan(Xp)
(11)

and
PA/T <1/1) = F)7" A/1) = Fayr(xr).

The scaling variables areg ~ m/g andxr ~ m x
logm/t. The scaling functions (10), (11) and (12)
imply the asymptotic behavior

1/Amin ~ \/’;,

(12)

Brmax~ m, T ~mlogm

13)
with “high probability” [14].

In this Letter we computed the problem size de-
pendence of the distributions of quantities that govern
the convergence of a DS that solves the LP problem
[6]. To the best of our knowledge, this is the first time
such distributions are computed. In particular, knowl-
edge of the distribution functions enables to obtain the
“high probability” behavior (13), and the moments (if
these exist). The main result of the present work is
that the distribution functions of the convergence rate,
Amin, the barrierBmax and the computation tim&
are scaling functions; i.e., in the asymptotic limit of
large (n, m), each depends on the problem size only
through a scaling variable. In other words these are
not arbitrary functions of the three variables, but each
is a function only of one variable;s, xg or x7. The
distribution function of Apin was calculated analyti-
cally, and the result was verified numerically. The scal-
ing functions, even if known only numerically, can be
useful for the understanding of the behavior for large
values of(n, m) that are beyond the limits of numeri-
cal simulations.

In this Letter the distribution functions of various
guantities that characterize the computational com-
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plexity, were found to be scaling functions in the large
(n,m) limit. This is analogous to the situation found
for the central limit theorem, for critical phenomena
[24] and for Anderson localization [25], in spite of the
very different nature of these problems. It is demon-
strated here how for the implementation of the LP
problem on a physical device, methods used in the-
oretical physics enable to describe the distribution of
computation times in a simple and physically transpar-
ent form. Based on our experience with certain uni-
versality properties of rectangular and chiral random
matrix models [26], we expect some universality for
computational problems, that should be explored. The

obvious questions are: is the Gaussian nature of the

ensemble unimportant in analogy with [26]? Are there
universality classes [24] of analog computation prob-
lems, and if they exist, what are they? Are these anal-
ogous to the classification of [13]? We believe it can
be instructive to explore computation problems using

methodologies of theoretical physics as was demon-

strated here for linear programming.
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