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Genetic regulatory networks have the complex task of controlling all aspects of life. Using a model
of gene expression by piecewise linear differential equations we show that this process can be
considered as a process of computation. This is demonstrated by showing that this model can
simulate memory bounded Turing machines. The simulation is robust with respect to perturbations
of the system, an important property for both analog computers and biological systems. Robustness
is achieved using a condition that ensures that the model equations, that are generally chaotic, follow
a predictable dynamics. ©2004 American Institute of Physics.@DOI: 10.1063/1.1633371#

Since the 1960s genetic regulatory systems were de-
scribed in computer science terms. The genetic material
is the ‘‘program’’ that guides protein production in a cell;
protein levels determine the evolution of the network at
subsequent times, and thus serve as its ‘‘memory,’’ etc.
This is not only a useful metaphor for describing gene
networks: using a model of gene expression by piecewise
linear differential equations we formulate a digital com-
putational device, thus making precise the analogy be-
tween gene networks and computational models. The
simulation of the digital computational device by a set of
differential equations shown here is robust with respect
to perturbations, an important property for both analog
computers and biological systems.

I. INTRODUCTION

In recent years scientists have been looking for new
paradigms for constructing computational devices. These in-
clude quantum computation,1 DNA computation,2 neural
networks,3 neuromorphic engineering,4 and other analog
VLSI devices. This paper describes a computational para-
digm based on genetic regulatory networks. The concept of a
‘‘genetic network’’ refers to the complex network of interac-
tions between genes and gene products in a cell.5 Since the
1960s genetic regulatory systems are thought of as ‘‘circuits’’
or ‘‘networks’’ of interacting components,6 and were de-
scribed in computer science terms: The genetic material is
the ‘‘program’’ that guides protein production in a cell; pro-
tein levels determine the evolution of the network at subse-
quent times, and thus serve as its ‘‘memory.’’ This analogy
between computing and the process of gene expression was
pointed out in various papers.7,8 Bray suggests that protein
based circuits are the device by which unicellular organisms
react to their environment, instead of a nervous system.7

However, until recently this was only a useful metaphor for
describing gene networks. The papers9,10 describe the suc-
cessful fabrication of synthetic networks, i.e.,programming
of a gene network. In this paper we compare the power of

this computational paradigm with the standard digital model
of computation. In a related series of papers it is shown both
theoretically and experimentally that chemical reactions can
be used to implement Boolean logic and neural networks
~see Ref. 11 and references therein!.

In this paper we aim to show that the dynamics of a
model gene network is complex enough to be equivalent in
its expressive power to the dynamics of a Turing machine,
which is one of many equivalent abstractions of a digital
computer. But first, we must fix a model for gene networks.
There is a large variety of models that are used to describe
gene networks12 ranging from Boolean networks.

However, when discussing dynamics we should keep in
mind that protein concentrations are continuous variables
that evolve continuously in time. Moreover, biological sys-
tems do not have timing devices, so a description in terms of
a map that simultaneously updates the system variables is
inadequate. It is thus reasonable to suggest that differential
equations are perhaps the most expressive way of modeling
their complex dynamics. This modeling choice makes gene
networks analog computers. The particular model of genetic
networks we analyze here assumes switchlike behavior, so
that protein concentrations are described by piecewise linear
equations@see Eq.~1! below#,8,13 but we believe our results
to hold for models that assume sigmoid response~see Dis-
cussion!. These equations were originally proposed as mod-
els of chemical oscillations in biological systems.14 In this
paper we make the analogy between gene networks and com-
putational models complete by formulating an abstract com-
putational device on the basis of these equations, and show-
ing that this analog model can simulate a computation of a
Turing machine.15 The relation between digital models of
computation and analog models is explored in a recent
book,16 mainly from the perspective of neural networks. It is
shown there that analog models are potentially stronger than
digital ones, assuming an ideal noiseless environment. In this
paper on the other hand we consider the possibility of noise
and propose a design principle which makes the model equa-
tions robust. While the equations are in general chaotic,17,18

our design principle makes them nonchaotic. On the subject
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of computation in a noisy environment see also Refs. 19 and
20. We found that the gene network proposed in Ref. 9 fol-
lows this principle, and we quote from that paper their state-
ment that ‘‘theoretical design of complex and practical gene
networks is a realistic and achievable goal.’’

Computation with biological hardware is also the issue
in the field of DNA computation.2 As a particular example,
the guided homologous recombination that takes place dur-
ing gene rearrangement in ciliates was interpreted as a pro-
cess of computation.21 This process, and DNA computation
in general, are symbolic, and describe computation at the
molecular level, whereas gene networks are analog represen-
tations of the macroscopic evolution of protein levels in a
cell.

II. PIECEWISE LINEAR ODES FOR GENE NETWORKS

In this section we present model equations for gene net-
works, and note a few of their dynamical properties.22 The
concentration ofN proteins~or other biochemicals in a more
general context! is given by N non-negative real variables
y1 ,...,yN . Let u1 ,...,uN beN threshold concentrations. The
production rate of each protein is assumed to be constant
until a threshold is crossed, when the production rate as-
sumes a new value. This is expressed by the equations

dyi

dt
52kiyi1L̃ i~Y1 ,...,YN!, ~1!

whereYi is a Boolean variable associated withyi , equal to 1
if yi>u i and 0 otherwise;ki is the degradation rate of protein
i and L̃ i is its production rate when genei is ‘‘on.’’ These
equations are a special case of the model of Mestlet al.13

where each protein can have a number of thresholds, com-
pared with just one threshold here~see also Ref. 23!. When
there is just one threshold it is easy to associate Boolean
values with the continuous variables. For simplicity we take
ki51, and define

xi5yi2u i ,

with the associated Boolean variables

Xi5sgn~xi !,

where sgn(x)51 for x>0 and zero otherwise. Also denote
L i(X1 ,...,XN)5L̃ i(Y1 ,...,YN)2u i . Equation~1! now be-
comes

dxi

dt
52xi1L i~X1 ,...,XN!, ~2!

andL i is called thetruth table. The set inRN which corre-
sponds to a particular value of a Boolean vectorX
5(X1 ,...,XN) is anorthant of RN. By abuse of notation, an
orthant ofRN will be denoted by a Boolean vectorX. The
trajectories in an orthant are straight lines directed to a focal
point L(X)5(L1(X),...,LN(X)), as seen from Eq.~3!. If
the focal pointL(X) at a pointx5(x1 ,...,xN) is in the same
orthant asx, then the dynamics converge to the focal point.
Otherwise it crosses the boundary to another orthant, where
it is redirected to a different focal point~see Fig. 1!. The
sequence of orthantsX(1),X(2),... that correspond to a tra-

jectory x(t) is called thesymbolic dynamicsof the vector
field. In the next sections we will associate the symbolic
dynamics of a model gene network~GN! with a process of
computation.

Dynamics: In an orthant all theL i are constant, and the
equations~2! are easily integrated. Starting from a point
x(0),

xi~ t !5l i1~xi~0!2l i !e
2t, ~3!

wherel i5L i(X1(0),...,XN(0)). By settingxi(t)50 in Eq.
~3! we obtain the timet i at which the hyperplanexi50 is
crossed,

t i5 ln
ul i2xi~0!u

ul i u
.

The switching timets is the time it takes to reach a new
orthant,

ts5min
i

t i .

We will consider networks withL i561 in all orthants.
Thus when the focal point is in a different orthant thanx(0)
we have that

ts< ln 2. ~4!

This gives a criterion for determining whether a GN is con-
verging to a fixed point: if the time from the last switching
time is larger than ln 2, then the system is converging to the
current focal point.

A network as in~2! is a continuous time version of a
discrete network

Zi°sgn~L i~Z!!, ~5!

whereZP$0,1%N is a vector of Boolean variables. This dy-
namic does not necessarily visit the same sequence of
orthants as the corresponding continuous network.

FIG. 1. A piecewise linear flow in two dimensions.
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We want to simulate a discrete dynamical system~Tur-
ing machine! with a continuous time GN. To bridge the gap,
we first construct a discrete gene network of the form~5!,
whose corresponding continuous GN has the same symbolic
dynamics. We will use truth tables with the following prop-
erty.

Definition 1: Two orthants are said to beadjacentif they
differ in exactly one coordinate. A truth tableL will be called
adjacentif L(X) is in the same orthant asX or in an adjacent
orthant toX for all xPRN. A network with an adjacent truth
table will also be called adjacent.

We note that in an adjacent network, all initial conditions
in an orthant lead to the same adjacent orthant. Therefore all
initial conditions of ~2! in the same orthant have the same
symbolic dynamics. An immediate result is the following
lemma.

Lemma 1: Let L be an adjacent truth table, then the
symbolic dynamics of a continuous GN is the same as the
dynamics of its discrete counterpart~5!: X(k)5Z(k), k
50,1,..., whereZ(k) is thekth iterate of~5! andX(k) is the
kth orthant visited by~2!, for every initial condition of~2!
corresponding toZ0 .

In view of the above discussion, the focal points and the
initial condition of an adjacent network can be taken as
points in $21,1%N, and the problem of constructing a con-
tinuous network that simulates a discrete dynamics is re-
duced to the problem of constructing a discrete network that
changes only one variable at each iteration.

When the truth table is not adjacent, a discrete network
may show qualitatively different dynamics than its continu-
ous counterpart: continuous high-dimensional GNs are
‘‘typically’’ chaotic.17,18 However chaos is a dynamical be-
havior that is impossible in dynamical systems with a finite
state space. The lack of sensitivity of the dynamics of an
adjacent GN to the placement of the initial condition, and its
equivalence to a discrete network leads to the following
statement.

Corollary 1: Adjacent networks are not chaotic.
This implies a measure of stability to the dynamics of

adjacent networks. Lack of sensitivity to perturbations of the
system is captured by the following property of adjacent net-
works.

Claim 1: Let L be an adjacent truth table, and letL̃ be a
truth table whose entries areL i(X)1d i(X), where d i(X)
P@2c,c# for some 1.c.0. ThenL̃ is also adjacent, and
the two networks have the same symbolic dynamics.

The robustness of adjacent networks is an important
property for both analog computers and biological systems.
The robustness of biological systems leads us to speculate
that adjacency might be a principle underlying the robust
behavior in the modeled systems. Adjacency can also be
taken as a principle which can be used in the design of robust
networks.

III. PRELIMINARIES

In this section we give the definition of the Turing ma-
chine that will be simulated and provide the relevant con-
cepts from complexity theory.15

Definition 2: A Turing machine is a tuple M
5(K,S,G,d,Q1 ,Qq). K5$Q1 ,...,Qq% is a finite set of
states; Q1 ,QqPK are theinitial/halting states, respectively;
S is theinput alphabet; G5Sø$blank,#% is thetape alpha-
betwhich includes theblank symboland the left end symbol,
#, which marks the end of the tape;d:K3G→K3S
3$L,R% is the transition function, andL/R signify left/right
movement of the read–write head. The transition function is
such that it cannot proceed left of the left-end marker, and
does not erase it, and every tape square is blank until visited
by the read–write head.

At the beginning of a computation an input sequence is
written on the tape starting from the square to the right of the
left-end marker. The head is located at the leftmost symbol
of the input string, and the finite control is initialized at its
start stateQ1 . The computation then proceeds according to
the transition function, until reaching the halting state. With-
out loss of generality we suppose that the input alphabet,S,
is $0, 1%. We say that a Turing machineacceptsan input word
w if the computation on inputw reaches the halting state
with ‘‘1’’ written on the tape square immediately to the right
of the left-end marker. If the machine halts with ‘‘0’’ at the
first tape square, then the input is rejected by the machine.
Other conventions of acceptance are also common. The lan-
guage of a Turing machineM is the setL(M ) of strings
accepted byM .

Languages can be classified by the computational re-
sources required by a Turing machine which accepts them.
The classification can be according totime or space
~memory!. The time complexity of a computation is the num-
ber of steps until halting and its space complexity is the
number of tape squares used in the computation. The com-
plexity classes P and PSPACE are defined to be the classes of
languages that are accepted in polynomial time and polyno-
mial space, respectively. More formally, a languageL is in
PSPACE if there exists a Turing machineM which accepts
L, and there existsc.0 such that on all inputs of lengthn
M accessesO(nc) tape squares. To make a finer division one
defines the class SPACE(s(n)) of languages that are ac-
cepted in spaces(n).

On the feasibility of Turing machine simulation: Turing
machine simulations by differential equations appear in a
number of papers: in Ref. 24 it was shown that an ODE in
four dimensions can simulate a Turing machine, but the ex-
plicit form of the ODE is not provided. Finite automata and
Turing machines are simulated in Ref. 25 by piecewise con-
stant ODEs. Their method is related to the one used here.

A Turing machine has a countably infinite number of
configurations. In order to simulate it by an ODE, an encod-
ing of these configurations is required. These can essentially
be encoded into a continuum in two ways:

~1! In a bounded set, and two configurations can have en-
codings that are arbitrarily close;

~2! in an unbounded set, keeping a minimal distance be-
tween encodings.

In the first possibility, arbitrarily small noise in the initial
condition of the simulating system may lead to erroneous
results, and is therefore unfeasible~this point is discussed in

147Chaos, Vol. 14, No. 1, 2004 Computation in gene networks

Downloaded 09 Aug 2007 to 128.119.40.196. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



Ref. 26 in the context of simulating a Turing machine by a
map in R2). The second option is also unfeasible since a
physical realization must be finite in its extent. Thus simula-
tion of an arbitrary Turing by a realizable analog machine is
not possible, and simulation of resource bounded Turing ma-
chines is required. In this paper we will show a robust simu-
lation of memory bounded Turing machines by adjacent
GNs.

IV. COMPUTING WITH GNS

In this section we formulate GNs as computational ma-
chines. The properties of adjacent networks suggest a natural
interpretation of an orthantX as a representation of a discrete
configuration. The symbolic dynamics of a network, i.e., the
valuesX(t) will be interpreted as a series of configurations
of a discrete computational device.

Next we specify how it receives input and produces an
output. A subset of the variables will contain the input as part
of the initial condition of the network, and the rest of the
variables will be initialized in some uniform way. Since we
are consideringS5$0,1%, the input is encoded into the bi-
nary valuesX(0). To specify a point in the orthantX we
choose21 to correspond to 0 and 1 to correspond to 1. Note
that for adjacent networksany value ofx(0) corresponding
to X(0) leads to the same computation, so this choice is
arbitrary.

In addition to input variables, another subset of the vari-
ables is used as output variables. For the purpose of language
accepting a single output variable is sufficient. There are
various ways of specifying halting. One may use a dynami-
cal property, namely convergence to a fixed point, as a halt-
ing criterion. We noted that convergence to a fixed point is
identified when after a time ln 2 no switching has occurred
@see Eq.~4!#. Nonconverging dynamics correspond to non-
halting computations. While such a definition is natural from
a dynamics point of view, it is not biologically plausible,
since a cell evolves continuously, and convergence to a fixed
point has the meaning of death. Another approach is to set
aside a variable that will signify halting. Let this variable be
XN . It is initially set to 0, and when it changes to 1, the
computation is complete, and the output may be read from
the output variables. In this case nonhalting computations are
trajectories in whichXN never assumes the value 1. AfterXN

has reached the value 1, it may be set to 0, and a new com-
putational cycle may begin. A formal definition of a GN as a
computational machine is as follows.

Definition 3: A genetic network is a tupleG
5(V,I ,O,L,x0 ,XN), whereV is the set of variables indexed
by $1,...,N%; I #V, uI u5n and O#V, uOu5m are the set
of input and output variables, respectively;L:$0,1%N

→$21,1%N is a truth table for a flow~2!; x0P$21,1%N2n is
the initialization of variables inV\I . XN is the halting vari-
able that is initialized to 0. A computation is halted the first
time thatXN51.

A GN G with n input variables andm output variables
computes a partial mapping

f G :$0,1%n→$0,1%m,

which is the value ofXi for i PO when the halting state
XN51 is reached. If on inputw the net does not reach a
halting state thenf G(w) is undefined.

We wish to characterize the languages accepted by GNs.
For this purpose it is enough to consider networks with a
single output variable, and say that a GNG acceptsinput
wP$0,1%* if f G(w)51. A fixed network has a constant num-
ber of input variables. Therefore it can only accept languages
of the form

Ln5Lù$0,1%n, ~6!

where L#$0,1%* . To accept a language which contains
strings of various lengths we consider a family$Gn%n51

` of
networks, and say that such a family accepts a languageL if
for all n, L(Gn)5Ln .

Before we define the complexity classes of GNs we need
to introduce the additional concept ofuniformity. A GN with
N variables is specified by the entries of its truth tableL.
This table contains the 2N focal points of the system. Thus
the encoding of a general GN requires an exponential
amount of information. In principle one can use this expo-
nential amount of information to encodeevery language of
the formLù$0,1%n, and thus a series of networks exists for
every languageL#$0,1%* . Turing machines on the other
hand, accept only the subset ofrecursivelanguages.15 A Tur-
ing machine is finitely specified, essentially by its transition
function, whereas the encoding of an infinite series of net-
works is not necessarily finite. To obtain a series of networks
that is equivalent to a Turing machine it is necessary to im-
pose the constraint that truth tables of the series of networks
should all be created by one finitely encoded machine. The
device which computes the truth table must be simple in
order to demonstrate that the computational power of the
network is not a by-product of the computing machine that
generates its transition function, but of the complexity of its
time evolution. We will use a finite automaton with output,27

which is equivalent to a Turing machine which uses constant
space. The initial condition of the series of networks needs
also to be computable in a uniform way, in the same way as
the truth table, since it can be considered as ‘‘advice,’’ as in
the model of advice Turing machines.15 We now define the
following.

Definition 4: A family of networks $Gn%n51
` is called

uniform if there exist constant memory Turing machines
M1 ,M2 that compute the truth table and initial condition as
follows: on inputXP$0,1% the machineM1 outputs the truth
table,L(X); the machineM2 outputs the initial conditionx0

for networkGn on input 1n.
With the definition of uniformity we can define complex-

ity classes. Given a functions(n), we define the class of
languages which are accepted by networks with less than
s(n) variables~not including the input variables!,

GN~s~n!!5$L#$0,1%* uthere exists a uniform family

of networks $Gn%n51
` , s.t. L~Gn!

5Ln and N<s~n!1n%.
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The class with polynomials(n) will be denoted by PGN.
The classes Adjacent-GN(s(n)) and Adjacent-PGN of adja-
cent networks are similarly defined. Time constrained classes
can also be defined.

V. THE COMPUTATIONAL POWER OF GNS

In this section we outline the equivalence between
memory-bounded Turing machines and networks with adja-
cent truth tables. We begin with the following lemma.

Lemma 2: Adjacent-GN(s(n))#SPACE(s(n)).
Proof: Let LPAdjacent-GN(s(n)). There exists a fam-

ily of adjacent GNs,$Gn%n51
` with truth tablesL (n), such

that L(Gn)5Ln , and constant memory Turing machines
M1 ,M2 that computeL (n) andx0 . SinceL (n) is an adjacent
truth table, and we are only interested in its symbolic dynam-
ics, we can use the corresponding discrete network. The Tur-
ing machineM 8 for L will run M1 to obtain the initial con-
dition, and then runM2 to generate the iterates of the
discrete network.M 8 will halt when the network has reached
a fixed point. The networkGn hass(n) variables on inputs
of length n, therefore the simulation requires at least that
much memory. It is straightforward to verify thatO(s(n))
space is also sufficient. j

The Turing machine simulation in the next section shows
the following.

Lemma 3: Let M be a Turing machine working in space
s(n), then there exists a sequence of uniform networks
$Gn%n51

` with s(n) variables such that L(Gn)
5L(M )ù$0,1%n.

We conclude as follows.
Theorem 1: Ad jacent-GN(s(n))5SPACE(s(n)).
As a result of claim 1 we can state that adjacent net-

works compute robustly. This is unlike the case of dynamical
systems which simulate arbitrary Turing machines, where ar-
bitrarily small perturbations of a computation can corrupt the
result of a computation~see, e.g., Refs. 16, 25, and 28!. The
simulation of memory bounded machines is what makes the
system robust. The above theorem gives only a lower bound
on the computational power of the general class of GNs.

Corollary 2: SPACE(s(n))#GN(s(n)).
One can obtain nonuniform computational classes in two

ways, either by allowing advice to appear as part of the ini-
tial condition, or by using a weaker type of uniformity for
the truth table. This way one can obtain an equivalence with
a class of the type PSPACE/poly.15

VI. TURING SIMULATION BY GNS

Since the discrete and continuous networks associated
with an adjacent truth table have the same symbolic dynam-
ics, it is enough to describe the dynamics of an adjacent
discrete network. We show how to simulate a space bounded
Turing machine by a discrete network whose variables rep-
resent the tape contents, state and head position. An adjacent
map updates a single variable at a time. To simulate a general
Turing machine by such a map each computational step is
broken into a number of operations: updating the tape con-

tents, moving the head, and updating the state; these steps
are in turn broken into steps that can be performed by single
bit updates.

Let M be a Turing machine that on inputs of lengthn
uses spaces. Without loss of generality we suppose that the
alphabet of the Turing machine isS5$0,1%. To encode the
three symbols$0, 1,blank% by binary variables we use a pair
of variables for each symbol. The first variable of the pair is
zero iff the corresponding tape position is blank; ‘‘0’’ is en-
coded as ‘‘10’’ and ‘‘1’’ is encoded as ‘‘11.’’ Note that the left
end marker symbol need not be encoded since the variables
of the network have numbers. We construct a networkG
with variables Y1 ,...,Ys ;B1 ,...,Bs ;P1 ,...,Ps ;Q1 ,...,Qq

and auxiliary variablesB,Y,Q18 ,...,Qq8 ,C1 ,...,C4 . The vari-
ables

Y1 ,...,Ys ;B1 ,...,Bs

store the contents of the tape:Bi indicates whether the square
i of the tape is blank or not andYi is the binary value of a
nonblank square. The input is encoded into the variables
Y1 ,...,Yn ,B1 ,...,Bn . Since the Turing machine signifies ac-
ceptance of an input by the value of its leftmost tape square,
we take the output to be the value ofY1 . The position of the
read–write head is indicated by the variables

P1 ,...,Ps .

If the head is at positioni thenPi51 and the rest are zero.
The state of the machine will be encoded in the variables

Q1 ,...,Qq ,

whereQ1 is the initial state andQq is the halting state of the
machine. Statei will be encoded byQi51 and the rest zero.

As mentioned above, a computation of the Turing ma-
chine is broken into a number of single bit updates. After
updating variables related to the state or the symbol at the
head position, information required to complete the compu-
tation step is altered. Therefore we need the following tem-
porary variables:

Y,B, the current symbol,

Q18 ,...,Qq8 , a copy of the current state variables.

A computation step of the Turing machine is simulated
in four stages:

~1! Update the auxiliary variablesY,B,Q18 ,...,Qq8 with the
information required for the current computation step;

~2! update the tape contents;
~3! move the head;
~4! update the state.

We keep track of the stage at which the simulation is at
with a set of variablesC1 ,...,C4 which evolve on a cycle
which corresponds to the cycle of operations~1!–~4! above.
Each state of the cycle is associated with an update of a
single variable. After a variable is updated the cycle ad-
vances to its next state. However, since a variable update
does not always change the value of a variable, e.g., the
machine does not have to change the symbol at the head
position, and since the GN needs to advance to a nearby
orthant or else it enters into a fixed point each update is of
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the form:

If the variable pointed to by the cycle
subnetwork needs updating—update it

else
advance to the next state of the cycle .

Suppose that the head ofM is at positioni and statej , and
that in the current stepYi is changed to valueYi

1 which is a
nonblank, the state is changed to statek, and the head is
moved to positioni 11. The sequence of variable updates
with the corresponding cycle states is as follows:

cyle state variable update

0000 Y←Yi
0001 B←Bi
0011 Qj8←1
0111 Yi←Yi

1 update variable at head
0110 Bi←1 Yi

1 nonblank
1110 Pi 11←1 new position of head
1111 Pi←0 erase old position of head
1011 Qk←1 new state
1001 Qj←0 erase old state
1000 Qj8←0 prepare for next cycle.

At the end of a cycle a new cycle is initiated.
On input w5w1w2¯wn , wiP$0,1% the system is ini-

tialized as follows:

Yi5wi , i 51,...,s,

Bi51, i 51,...,s,

P151,

Q151,

all other variables 0.

This completes the definition of the network. The computa-
tion of the initial condition is trivial, and computing the truth
table of this network is essentially a bit by bit computation of
the next configuration of the simulated Turing machine,
which can be carried out in constant space. The network we
have defined hasO(s) variables, and each computation step
is simulated by no more than 20 steps of the discrete net-
work. j

Remark 1: It was pointed out that the Hopfield neural
network is related to GNs.29 Theorem 1 can be proved using
complexity results about asymmetric and Hopfield networks
found in Refs. 30 and 31. However, in this case it is harder to
define uniformity, and the direct approach taken here is sim-
pler.

VII. LANGUAGE RECOGNITION VS LANGUAGE
GENERATION

The subclass of GNs with adjacent truth tables has rela-
tively simple dynamics whose attractors are fixed points or
limit cycles. It is still unknown whether nonadjacent GNs are
computationally stronger than adjacent GNs. General GNs
can have chaotic dynamics, which are harder to simulate
with Turing machines. We have considered GNs aslanguage

recognizers: where the input arrives at the beginning of a
computation, and the decision to accept or reject is based on
its state when a halting state is reached. In the context of
language recognition, chaotic dynamics does not add compu-
tational power: given a chaotic system that accepts a lan-
guage, there is a corresponding system that does not have a
chaotic attractor for inputs on which the machine halts; such
a system is obtained, e.g., by defining the halting states as
fixed points. However, one can also consider GNs aslan-
guage generatorsby viewing the symbolic dynamics of
these systems as generating strings of some language. In this
case a single GN can generate strings of arbitrary length. But
even in this case chaos is probably not very ‘‘useful,’’ since
the generative power of structurally stable chaotic systems is
restricted to the simple class of regular languages.32 More
complex behavior can be found in dynamical systems at the
onset of chaos~see Refs. 33 and 34!. Continuously changing
the truth table can lead to a transition to chaotic behavior.35

At the transition point complex symbolic dynamics can be
expected, behavior which is not found in discrete Boolean
networks.

VIII. DISCUSSION

In this paper we formulated a computational interpreta-
tion of the dynamics of a switchlike ODE model of gene
networks. We have shown that families of such ODEs with
an increasing number of variables~‘‘genes’’! can simulate
memory bounded Turing machines. The computer science
analogy can help in understanding the apparent discrepancy
between the number of genes predicted in humans vs lower
eukaryotes such asC. elegans~humans have only twice as
many genes asC. elegans!, and the apparent difference in
complexity between these organisms: more complex regula-
tory networks in the higher eukaryotes allow them to access
a larger fraction of their state space, i.e., make more use of
their available ‘‘memory’’~see Ref. 36!.

Our model of gene regulation considered only transcript
abundance and ignored other possible variables such as post-
translational modifications, transcript half-life, and other
variables that may encode information about the state of
the system. These variables represent additional memory
available to the system, so the overall analogy
remains.

While in many cases a switchlike ODE provides an ad-
equate description, more realistic models assume sigmoidal
response. In the neural network literature it is proved that
sigmoidal networks with a sufficiently steep sigmoid can
simulate the dynamics of switchlike networks.16,37 This sug-
gests that the results presented here carry over to sigmoidal
networks as well.

The property of adjacency was introduced in order to
reduce a continuous gene network to a discrete one. We con-
sider it as more than a trick, but rather as a strategy for fault
tolerant programming of gene networks. In fact, the genetic
toggle switch constructed in Ref. 9 has this property. How-
ever, when it comes to nonsynthetic networks, nature does
not adhere to this principle—some genes affect the transcrip-
tion of a large number of genes.
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