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Abstract

In this paper we show that programming languages
can be translated into recurrent (analog, rational
weighted) neural nets. Implementation of programming
languages in neural nets turns to be not only theoretical
exciting, but has also some practical implications in the
recent efforts to merge symbolic and subsymbolic
computation. To be of some use, it should be carried in a
context of bounded resources. Herein, we show how to
use resource bounds to speed up computations over neural
nets, through suitable data type coding like in the usual
programming languages. We introduce data types and
show how to code and keep them inside the information
flow of neural nets. Data types and control structures are
part of a suitable programming language called NETDEF.
Each NETDEF program has a specific neural net that
computes it. These nets have a strong modular structure
and a synchronization mechanism allowing sequential
or parallel execution of subnets, despite the massive
parallel feature of neural nets. Each instruction denotes
an independent neural net. There are constructors for
assignment, conditional and loop instructions. Besides
the language core, many other features are possible using
the same method. There is also a NETDEF compiler,
available at http://www.di.fc.ul.pt/~jpn/netdef/netdef.htm.

Keywords — Neural Networks, Neural Computation,
Symbolic Processing, NETDEF.

1. Introduction

Analog recurrent neural nets can be formulated as
dynamic systems. We adapt to our case the definition given
in [Sontag 90], that corresponds to the concept of discrete,
complete, time-invariant dynamic system.Adynamic system
is a triple D = (S, U, φ) consisting of: (a) a non-empty set S

called the state space of D, (b) a non-empty set U called the
control-value or input-value space of D, and (c) a total map
φ: S× U→S called the dynamic map. We will consider S and
U as being finite dimensional vector spaces over the reals,
or restrictions to them.

An analog neural net is considered a particular case of
dynamic system, where φ is of the form σ° π, being π:
S× U→S an affine map, and σ: S→S a possibly
discontinuous function. Linearity of π is equivalent to the
existence of linear maps A: S→S and B: U→S such that
φ(x,u) = σ(Ax+Bu). These systems are said to be
autonomous whenever B is the null matrix, otherwise they
are said to be non-autonomous or net systems with
controls. If we assume that there exists one variable with
constant value 1, then we recover, using appropriate
matrices, the model in the form φ(x,u) = σ(Ax+Bu+c), where
c is known as the bias vector.

We will consider two cases for the function σ:

(a) The McCulloch and Pitts neural net model,

(1)

(b) The saturated sigmoid model,

(2)
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notational purposes we write for the new value of the
state, at time (iteration) t+1,

x(t+1) = φ( x(t), u(t) ) (3)

to denote a step of computation, or just

x+ = φ( x, u ) (4)

With dynamical systems in general we have computation
without programmability, i.e., the extra power these systems
exhibit has to do with the decoupling between programming
and computation. Up to the power of Turing machines,
computations are describable by programs that correspond
to the prescription by finite means of some rational
parameters of the system. Beyond Turing power we have
computations that are not describable by finite means:
computation without a program. In this paper we want to
shed some light on the programmability of neural nets.

1.1. Computability

The use of analog recurrent neural networks for
computability analysis is due to Hava Siegelmann. In
[Siegelmann 93, 99] they were used to establish lower
bounds on their computational power. These systems
satisfy the classical constraints of computation theory,
namely, (a) input is discrete (binary) and finite, (b) output
is discrete (binary) and finite, and (c) the system is itself
finite (control is finite). Neurons may hold values within
[0,1] with unbounded precision. To work with such analog
systems, binary input is encoded into a rational number
between 0 and 1 (using fractal coding), and the rational
output is decoded into an output binary sequence.

The input streams uk, for k=1..M, input bits into the
system through time. Input streams are maps uk:n→{0,1},
different from 0 only finitely many times (this is the classical
constraint of input finiteness). (uk)

k=1..M
can also be seen

as the set of control symbols, to adopt the flavour of
Minsky’s description of such systems, that the reader may
find in [Minsky 67]. In the absence of control the systems
are said to be autonomous and the dynamics is given by

xj(t+1) = σ( )(
1

.∑
=

N

i
iji txa + cj ) (5)

We may then identify the set of computable functions
by analog recurrent neural nets, provided that the type of
the weights is given. This research program is
systematically presented in [Siegelmann 99]:

•  The first level of nets is NET[integers], where the type
of the weights is integer. These nets are historically

related with the work of Warren McCulloch and Walter
Pitts. As the weights are integer numbers, each
processor can only compute a linear combination of
integer coefficients applied to zeros and ones. The
activation values are thus always zero or one. Thus in
the case of integer nets the activation function can be
replaced by the Heaviside step function with no
decrease (or increase) of computational power. In this
case the nets ‘degenerate’ into classical devices called
finite automata. It was Kleene who first proved that
McCulloch and Pitts nets are equivalent to finite
automata and therefore these models are able to
recognize all regular languages (see [Minsky 67] for
details).

•  The second relevant class we consider in this paper is
NET[rationals], where the type of the weights is rational.
Rationals are indeed computable numbers in finite time,
and NET[rationals] turn to be equivalent to Turing
machines. Twofold equivalent: rational nets compute
the same functions as Turing machines and, under
appropriate coding of input and output, they are able
to compute the same functions in exactly the same time.

•  The third relevant class is NET[reals], not considered in
this paper, where the type of the weights is real. Reals
are indeed in general not computable. But theories of
physics abound that consider real variables. The
advantage of making a theory of computation on top of
these systems is that nonuniform classes of
computation, namely the classes that arise in complexity
theory using Turing machines with advice, are uniformly
described in NET[reals]. As shown in [Siegelmann 99]
all sets over finite alphabets can be represented as reals
that encode the families of boolean circuits that
recognize them. Under efficient time computation, these
networks compute not only all efficient computations
by Turing machines but also some non-recursive
functions such as (a unary encoding of) the halting
problem of Turing machines. Note that while the
networks can answer questions regarding Turing
machines computation, they still can not answer
questions regarding their own halting and computation.

1.2. Programmability ofAnalog
Neural Nets: Contributions of this Paper

Within the class of NET[rational] we can develop the
implementation of programming languages, providing for
each written command a suitable analog neural net. The
implementation map will be provided in this paper for a
(Turing complete) subset of the Occam® language. A first
concern is the size of the resulting nets. In fact the size of
the nets will increase with the complexity of programs.
However, it is always possible to implement the Occam®
interpreter of Occam®, determining a universal neural net
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for the language interpretation. With this paper (an
extended version of the short conference paper [Neto et al.
97]) we do not aim at theoretical contributions in neural net
computation theory. Proofs of Turing completeness of
neural nets appeared in the beginning of the nineties
(namely, the most well known proof can be found in
[Siegelmann 93]). We aim instead at a strong methodological
contribution, showing how to perform symbolic
computations over neural nets, using a programming
language. As a side-effect, this high-level programming
language is useful for high-level construction of particular
nets that are relevant in the proof of several results in
neurocomputing theory, as in [Siegelmann 99] where a net
descriptor is used to encode analog shift maps into neural
nets.

1.3. Related Work

There is some related work in the literature on symbolic
neural computation. The JaNNeT system (see [Gruau et al.
95] for details), introduces a dialect of Pascal with some
parallel constructs. This algorithmic description is
translated, using several automated steps (first on a tree
like data structure and then on a low level code, named
cellular code), to produce a non homogenous neural
network (with four different neuron types) able to perform
the required computations, a significant difference with
NETDEF which produces homogeneous neural networks.
Another difference to NETDEF is the network dynamics. In
our model, at each instant, all neurons are updated with
their new values. In JaNNeT, every neuron is activated only
when all its synapses have transferred their values. Since
this may not occur at the same instant, the global dynamics
is not synchronous. Special attention is given to design
automation of the final neural network architecture.

Another neural language project is NIL (outlined in
[Siegelmann 93, 96]). The NIL system is also able to perform
symbolic computations by using certain sets of
constructions that are compiled into an appropriate neural
net (NIL and NETDEF use the same homogeneous neural
architecture). It has a complex set of data types, from
boolean and scalar types, to lists, stacks or sets that are
kept inside a single neuron, using fractal coding. Because
of this, NIL uses unbounded precision, while NETDEF

manages type and operator processing with limited
precision. An important difference is that NETDEF has a
modular design, while NIL has some non modular features,
like the synchronization system and the way processes
interact with each other. Also, NIL does not provide essential
mechanisms required for a neural language like a mutual
exclusion scheme for variable access security, temporal
processes for real-time applications, genuine parallel calls
of functions and procedures, blocking communication
primitives for concurrent process interaction, dynamic array

assignment. NETDEF deals with and solves all these subjects
without loosing its modular properties. A proposed goal,
but just delineated in [Siegelmann 96], was to provide
mechanisms for tuning the compiled network, in order to
generalize the initial processed information. However, NIL

was mainly used as a tool to derive specific theoretical
results about neurocomputation, and was not fully
developed into a network compiler application.

2. Neural Software
2.1. Neural Net Model

An analog recurrent neural net is a dynamic system
with initial state

where xi(t) denotes the activity (firing frequency) of neuron
i at time t within a population of N interconnected neurons,
and uk(t) the input bit of input stream k at time t within a set
of M input channels. The application map φ is taken as a
composition of an affine map with a piecewise linear map
of the interval [0,1], known as the saturated sigmoid σ, as in
(2). The dynamic system becomes

xj(t+1) = σ( )(
1

.∑
=

N

i
iji txa + )(

1

.∑
=

M

k
kjk tub + cj ) (6)

where aji, bjk and cj are rational weights, assuring that
a system can be simulated by a Turing machine. Fig. 1
displays the graphical representation of equation (6) used
throughout this paper (when aji, bjk or ajj take value 1,
they are not displayed in the graph).

Fig. 1. Graphical notation for neurons, input channels and their

interconnections.

Our problem will be to find a suitable neural network for
each program written in the chosen programming language.

2.2. The NETDEF Language

We will adopt a syntactic fragment of Occam® for the
programming language. Occam® was designed to express
parallel algorithms on a network of processing computers
(for more information, see [SGS THOMSOM 95]). With this
language a program can be described as a collection of
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processes executing concurrently, and communicating with
each other through channels. Processes and channels are
the main concepts of the Occam® programming paradigm.

Occam® programs are built from processes. The simplest
process is an action. There are three types of action:
assignment of an expression to a variable, input and output.
Input means to receive a value from a channel and assign it
to a variable. Output means to send the value held by a
variable through a channel.

There are two primitive processes: skip and stop. The
skip starts, performs no action and terminates. The stop
starts, performs no action and never terminates. To
construct more complex processes, there are several types
of construction rules. Herein, we present some of them:
while, if, seq and par. The if is a conditional construct that
combines a number of processes, guarded by a Boolean
expression. The while is a loop construct that repeats a
process while an associated Boolean expression is true.
The seq is a block construct combining a number of
processes sequentially. The par is a block construct
combining a number of processes in parallel.

A communication channel provides unbuffered,
unidirectional point-to-point communica-tion of values
between two concurrent processes. The format and type
of values are defined by a certain specified protocol.

Here follows the simplified grammar of NETDEF (Network
Definition), in EBNF:

program ::= ”NETDEF” id “IS” def-var process “.”.

process ::= assignment | skip | stop | if-t-e | while-do |
seq-block | par-block.

Our goal is to show that all NETDEF programs can be
compiled into neural nets. There exists a dynamic system
of the kind (6) that runs any NETDEF program on some given

input. A first account on the concepts beyond the language
NETDEF can be found in [Neto et al. 98].

2.3. Information Coding and Operators

With the guidelines provided in [ Siegelmann 96] , the
seminal work on the implementation of information coding
in neural networks (see [ Gruau et al. 95] for a different
approach), we introduce data types and show how to
encode and keep them inside the information flow of neural
nets. NETDEF has the following type definitions.

type ::= primitive-type | channel-type | composite-type.

primitive-type ::= “BOOLEAN” | “INTEGER” | “REAL”.

channel-type ::= “CHANNEL”.

composite-type ::= “ARRAY” “[“ number “]” “OF”

primitive-type.

2.3.1. Primitive Types

To be of some use, implementation of programming
languages in neural nets should be carried out in a context
of bounded resources. Herein we show how to use resource
bounds to speed up computations over neural nets,
through suitable encoding of suitable data types like in the
usual programming languages.

To take into consideration the lower and upper
saturation limits of the activation function σ, every value x
of a given basic type is encoded into some value of [ 0,1] .
For each type T, there is an injective encoding map
α

T
:T→ [0,1] mapping a value x∈T onto its specific code.

Basic types include: boolean, integer and real.

If resources are bounded, then there exists a limit to the
precision of every value (in fact, even reals are bounded
rationals). Considering a maximum precision of P digits,
the minimum distance between any two values is 10-P. Let
us denote 10P by M.
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2.3.2. Operators

Together with data types, many different operators are
needed to process information.An arbitrary set of operators
(with constants, variables and input data) forms an
expression that after evaluation returns a result of some
type. The net corresponding to each expression starts its
execution when it receives signal IN (for details see section
2.4.1). After evaluation, it returns the final result through
output RES and at the same time outputs signal OUT.

Fig. 2. An expression subnet. Non-labelled arcs default to weight 1.

The next figures show, for each operation, the
computations needed to output the expected values
through RES. Each subnet have an extra structure to receive
the appropriate data and the input signal, and also to
synchronize the result with output signal OUT. We present
an example of it for binary integer sum, that is easily adapted
to all the other operators.

Fig. 3. Net structure for X + Y.

The extra –2 in the bias of the upper neuron stops the flowing of variables x and y activities, until an input signal arrives
(overriding the extra –2 in order to exactly compute the sum).

••••• Boolean Operators. These are the typical McCulloch-Pitts Boolean operators (see [ McCulloch and Pitts 43] ).

Fig. 4. Boolean operators: (a) NOT X, (b) X AND Y, (c) X OR Y.

••••• Integer Operators. There are arithmetical and relational
operators for integers (M, presented in 2.3.1, is the
maximum rational number possible to represent with
the limited resources available).

Fig. 5. Integer operators: (a) –X, (b) X + Y, (c) X – Y, (d) X < Y, (e) X > Y.

IN

x

y
RES ≡ x + y

-2-1/2

OU T

2

(a)

x ¬x

1

–
1

(b)

x

y
x ∧ y

– 1

(c)

x

y
x ∨ y

(a)

x -x

1

–
1

(b)

x

y
x + y

(c)

x

y –1

x – y

(d)

x

y
x < y

(e)

x

y

MM
–1

–1

x > y

–1/2 1/2



63

••••• Real Operators. The encoding α[ a,b] is a scaling of the
interval [ a,b] into [ 0,1] . Binary sum, subtraction and
multiplication by a constant are straightforward.

Fig. 6. Real operators: (a) X + Y, (b) X – Y, (c) cX, (d) X < Y, (e) X > Y.

2.3.3. Channel and Composite Types

Each channel is denoted by two neurons, one to keep
the processed value and another neuron to keep a Boolean
flag (with value one if the channel is empty, or zero
otherwise). To know more about channels see section 2.4.2.
It is also possible to define array variables. Each one of the
data elements is coded by a specific neuron. This means
that a composite type is a finite set of neurons. The array
has the following structure (Fig. 7):

Fig. 7. The basic structure of an array.

The indexing of a position within the array is done
by filtering the actual index value, in order to activate
just the right element on the structure. These are the
most complex neural networks of NETDEF, since they
must perform dynamic indexing on fixed neural nets.

2.4. Synchronization Mechanisms

Neural networks are models of massive parallelism.
In our model, at each instant, all neurons are updated,
possibly with new values. This means that a network
step with n neurons is a parallel execution of n
assignments. Since programs (even parallel programs)
have a sequence of well-defined steps, there must be a
way to control it. This is done by a synchronization
mechanism based on handshaking.

2.4.1. Instruction Blocks

There are two different ways to combine processes, the
sequential block and the parallel block. Each process in a
sequential block must wait until the previous process ends
its computation. In a parallel block all processes start
independently at the same time. The parallel block (which
is itself a process) terminates only when all processes
terminate. This semantics demands synchronization
mechanisms in order to control the intrinsic parallelism of
neural nets.

To provide with these mechanisms, each NETDEF process
has a specific and modular subnet binding its execution
and its synchronization part. Each subnet is activated when
the value 1 is received through a special input validation
line IN. The computation of a subnet terminates when the
validation output neuron OUT writes value 1.

Fig. 8. Block processes: (a) SEQ I
1
, …, I

n
ENDSEQ,

(b) PAR I
1
, …, I

n
ENDPAR. All subnets are denoted by squares.
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2.4.2. Occam® Channels

The language NETDEF assumes the Occam® channel
communication protocol, allowing independent process
synchronization.

We introduce two new processes, SEND and RECEIVE.

send ::= ”SEND” id “INTO” id.

receive ::= ”RECEIVE” id “FROM” id.

The process SEND sends a value through a channel,
blocking if the channel is full, and process RECEIVE receives
a value through the channel, blocking if the channel is
empty, and waiting until some value arrives. To minimise
the blocking nature of channels, see sections 2.7 and 2.8.

Fig. 9. Channel instructions: (a) VAR C : CHANNEL, (b) SEND X INTO C (c) RECEIVE Y FROM C.

Each channel has a limited memory of one slot. Using
several channels in sequence, it is possible to create larger
buffers. E.g.,

S E Q

 RECEIVE X1 FROM C1; SEND X1 INTO C-TEMP;
 RECEIVE X2 FROM C-TEMP; SEND X2 INTO C2;
ENDSEQ;

simulates a buffer with two elements.

2.4.3. Shared Variables

Processes can communicate through global variables
(defined in the initial block). In principle, each neuron could
see every other neuron in the net. The subject of variable
scope is an priori restriction made by the compilation

process. Several methods in the literature, like semaphores
or monitors, are implemented as primitive instructions.
These methods are used to promote mutual exclusion
proprieties to a certain language, helping the programmer
to solve typical concurrency problems. In NETDEF there is
also a mutual exclusion mechanism for blocks, providing
the same type of service.

2.5. Control Structure

The NETDEF program control structure consists of one
block process (SEQ or PAR). This process denotes an
independent neural net as seen before. The implementation
is then recursive, because each process might correspond
to a structure of several processes. The process subnets

are built in a modular way, but they may share information
(via channels or shared variables).

Besides the IN and OUT synchronization mechanism
explained in 2.4.1, there is a special reset input for each
instruction module. This reset is connected to every neuron
of the subnet instruction with weight -1. So, if the signal
one is sent through this channel, all neuron activations
terminate in the next instant. For simplification, we do not
show these connections. Once more, all subnets are
represented by squares and weight 1 is default for non-
labelled arcs.

Fig. 10. Skip and Stop processes: (a) SKIP, (b) STOP.
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Fig. 11. Assignment process: A := EXPR. All subnets
are denoted by squares.

Fig. 12. Conditional process: IF G THEN T ELSE E. All subnets are denoted by squares.

The CASE process can be seen as a parallel block of IF processes. The COND process is a sequential block of IF processes.

Fig. 13. Loop instruction: WHILE G DO P. All subnets are denoted by squares.

2.6. Procedures and Functions

Functions and procedures do not have a specific neural
network for each call. They have complex neural nets to
ensure that just one call is executed at each time, blocking
other calls until the end of execution. This makes effective
lock mechanisms on shared data (e.g., accessing data
through only one procedure). Functions and procedures
have parameters by value (the value of the expression is
duplicated into the procedure/function argument) and
parameters by result (the value of the variable is duplicated
into the argument and when the function/procedure call
terminates, the value of the argument is assigned to the
initial variable).

However, a drawback exists in NETDEF functions and
procedures: there is no recursion. This is a complex problem,
since the number of neurons is fixed by compilation. There
is no easy way to simulate a stack mechanism of function
calls into neural nets.

2.7. Input / Output

To handle input from the environment and output
results, NETDEF uses the channel primitives with two special
set of channels, IN

k
(linked directly with input channel u

k
)

and OUT
k
. The number of in/out channels is defined before

compilation. This subject depends on the context of the

Other loop instructions (like REPEAT-UNTIL) are built in the same way.

Symbolic Processing in
Neural Networks

João Pedro Neto, Hava T. Siegelmann
and J. Félix Costa

OUT

-1

-1

IN OU

T

ExprIN

RES

A

OUTOUT

OUT

-1
2

-1

IN

OU

T

G
ININ

IN

RES

T

E

OUTOUT

OUT

-1
2

-1

IN G
ININ

RES

P



66

application, so we do not define the architecture of these interfaces. In principle, input channels must have a FIFO list in
order to keep the incoming data, and a structure to maintain the IN

k
channels in a coherent state (i.e., update the channel

flag of IN
k
each time u

k
sends a value).

Fig. 14. Input channel uk connects with NETDEF channel INk.

In this way, in/out operations are simple channel calls. An in/out example could be,

S E Q

 RECEIVE a FROM IN1;

 SEND a INTO OUT2;

E N D S E Q ;

Fig. 15. Asynchronous in/out.

E.g., to implement an asynchronous output,

IF ISEMPTY(C)THEN SEND X INTO C

2.8. Timers

In real applications, some processes may create
deadlock situations. The NETDEF communication primitives
(SEND and RECEIVE) are blocking, i.e., they wait until some
premises are satisfied (the channel must be empty for SEND

and full for RECEIVE). If these premises are never satisfied,
then we have a problem: we cannot wait indefinitely for

This process inputs data through the variable ‘a’ from
the first input channel, and sends it through the second
output channel.

To obtain asynchronous in/out, there is a boolean
function ISEMPTY(channel) returning true if the channel is
empty, or false otherwise.

input in real-time applications. To handle this problem,
NETDEF has several timer processes.

The first one is TRY. It guarantees termination, if the
execution of an instruction does not terminate before the
expected time (held by an integer variable).

timed-instruction ::= ”TRY” “(“ variable “)”
instruction.

Fig. 16. Timer constructor: TRY(N) P. All subnets are denoted by squares.
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Neuron X has arcs with weight –M and neuron Y has
arcs with weight –1 to neurons A, B and C.

Two other types of timers exist: delay-timers and cyclic-
timers. Delay timers delay the execution of instructions
during a given time.

delayed-instruction ::= ”DELAY” “(“ variable “)”
instruction.

Fig. 17. Timer constructor: DELAY(N) P. All subnets are denoted by squares.

Cyclic-timers restart the execution of an instruction whenever a
specific time passed. They can be used to simulate interrupts.

cyclic-instruction ::= ”CYCLE” “(“ variable “)” instruction.

Fig. 18. Timer constructor: CYCLE (N) P. All subnets are denoted by squares.

Several timer constructs can be used sequentially. E.g.,
the process

CYCLE (10000) TRY(50) IF flag = 1
THEN SEND X INTO C;

means that on each 10 000 cycles, it will check if an
integer variable ‘flag’ has value 1. If it has, the timer sends
the value of X through channel C. If the variable cannot be
sent in 50 cycles, the timer aborts execution.

2.9. Exceptions

In high-level languages, like Eiffel® [ Interactive 89] or

Ada® [USDD 83], exceptions are unexpected events
occurring during the execution of a system and disrupting
the normal flow of execution (e.g., division by zero or an
operation overflow). Some exceptions are raised by the
system, others by the program itself. The (hypothetical)
neural net hardware is homogenous; there is no system
disruption other than neuron or sinapse failure.

Despite the possibility of system failures, our concern
herein will be only about programmer raised exceptions.
These exceptions add some extra block control. They appear
as part of a SEQ or PAR block. First, an example,
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meth1-failed := FALSE;

S E Q

IF meth1-failed THEN method-1 — with a ‘RAISE excp-1’

ELSE method-2; — with a ‘RAISE excp-2’

job-accomplished := TRUE;

E X C E P T I O N

WHEN excp-1 DO

S E Q

 meth1-failed:= TRUE;

 RETRY;

 ENDSEQ;

WHEN excp-2 DO

S E Q

 job-accomplished := FALSE;

 T E R M I N A T E;

 ENDSEQ;

E N D S E Q ;

Suppose we have two methods to do the same work. In
this sequential block, if the first method fails, it raises an
exception called ‘excp-1’ trapped by the handler feature of
the block. It changes the value of the Boolean variable and
then executes the block again, trying the second method.
If this also fails, then the block terminates with a no job
accomplishment status.

Process RAISE E raises exception E. To each exception
corresponds an associated process (that can be again a
SEQ or PAR block), and some special block handlers. These
block handlers define what to do with the actual block:

• RETRY – reset and execute the block again,

• ABORT – reset and terminate the block,

• PROPAGATE – reset the block and raise the same
exception in the upper block.

Each instruction block with an exception feature has its
net architecture changed.

Fig. 19. The exception handler E of instruction block B.
Block I

E
is the instruction associated with exception E. All subnets are denoted by squares.

Each exception has a specific neuron receiving the block
process signal. With this type of structure, RAISE is defined
as,

P A R

 E:=1;  ≡  RAISE E

 STOP;
E N D P A R ;

There is a cascade effect for no handled exceptions. If
a block raises an exception E but has no handler for it, the
compiler inserts by default the following handler,

WHEN E DO PROPAGATE;

Any process sending this signal is not resumed (unless
one of the upper blocks retries its execution).
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2.10. Space and Time Complexity

The proposed implementation map is able to translate
any given NETDEF program to an analog recurrent (rational)
neural net that performs the same computations. We wonder
what is the space complexity of the implementation, i.e.,
how many neurons are needed to support a given NETDEF

program? We take a close look at each basic process to
evaluate its contribution to the size of the final net. The
assignment inserts 3 neurons plus those that are needed
to compute the expression. The SKIP and STOP need only
one neuron. The IF-THEN-ELSE needs 4, and the WHILE needs
5 neurons. The SEQ statement needs no neurons and the
PAR of n processes needs n+2 neurons. SEND needs 5

neurons and RECEIVE needs 4. Timers also have constant
number of neurons. All other processes exhibit the same
behaviour with respect to the number of neurons. Data
types and operators need a number of neurons linear in the
size of the used information. All expressions can be
evaluated with a number of neurons linear in the number of
neurons needed to hold data. Every process adds a
constant or linear complexity to the final net, the same
result presented in [Siegelmann 93] for neural nets of the
same kind. The spatial complexity of the emulation is linear
on the size of the algorithm. Concerning time complexity,
each subnet executes its respective command with a linear
delay. NETDEF adds a linear time slowdown to the complexity
of the corresponding algorithm.

3. Compiling a Process
For a better understanding, let’s see how process “WHILE

b DO x := x+1” is translated into a neural network using the
NETDEF compiler.

The synapse IN sends value 1 (by some neuron x
IN

) into
x

M1
neuron, thus starting the computation. Module G

(denoted by a square) computes the value of Boolean
variable ‘b’ and sends the 0/1 result through synapse RES.
This result is synchronized with an output of 1 through
synapse OUT. The next two neurons decide between
stopping the process (‘b’ is false) or executing module P
(‘b’ is true), iterating again. The dynamic system is described
by the following equations:

x
M1

(t+1) = σ( x
IN

(t) + x
P2

(t) )

x
M2

(t+1) = σ( x
G2

(t) + x
G3

(t) – 1.0 )

x
M3

(t+1) = σ( 2.x
G2

(t) – x
G3

(t) – 1.0 )

Fig. 21. Modules P and E. All subnets are denoted by squares.
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Module G just accesses the value of ‘b’ and outputs it
through neuron x

G3
. This is achieved because x

G3
bias –1.0

is compensated by value 1 sent by x
G1

, allowing the value
of ‘b’ to be the activation of x

G3
. This module is defined by:

x
G1

(t+1) = σ( x
M1

(t) )

x
G2

(t+1) = σ( x
G1

(t) )

x
G3

(t+1) = σ( x
G1

(t) + b(t) – 1.0 )

Fig. 20. Main module and module G. All subnets are denoted by squares.
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Module P makes an assignment to the real variable ‘x’
with the value computed by module E. Before neuron x
receives the activation value of x

P3
, the module uses the

output signal of E to erase its previous value.

x
P1

(t+1) = σ( x
M2

(t) )

x
P2

(t+1) = σ( x
E3

(t) )

x
P3

(t+1) = σ( x
E2

(t) + x
E3

(t) – 1.0 )

In module E the increment of ‘x’ is computed (using α
[-

c,c]
(1) for the code of real 1, where ‘c’ is a predefined value

set by the compiler). The extra –1/2 bias of neuron x
E2

is
necessary due to the internal coding:

x
E1

(t+1) = σ( x
P1

(t) )

x
E2

(t+1) = σ( 2.x
E1

(t) – x
E4

(t) + x(t) – 5/2 )

x
E3

(t+1) = σ( x
E1

(t) )

x
E4

(t+1) = σ( α
[-c,c]

(1) )

The dynamics of neuron x is given by:

x(t+1) = σ( x(t) + x
P3

(t) – x
E3

(t) )

However, if neuron x is used in other modules, the
compiler will add more synaptic links corresponding to the
new dynamic equation for x

4. Conclusions
We introduced the core of a new language, NETDEF.

NETDEF develops an easy way to build neural nets performing
arbitrarily complex computations. This method is modular,
where each process is mapped in an independent neural
net. Modularity brings great flexibility. For example, if a
certain task is programmed and compiled, the resulting net
is a module that can be used elsewhere.

The use of finite neural networks as deterministic
machines to implement arbitrarily complex algorithms is
now possible by the automation of compilers like NETDEF. If
someday, neural net hardware would be as easy to build as
von Neumann hardware, then the NETDEF approach will
provide a way to insert algorithms into the massive parallel
architecture of artificial neural nets. To test our program,
able to compile and simulate the dynamics of neural nets
described in this paper, go to http://www.di.fc.ul.pt/~jpn/
netdef/netdef.htm.
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