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We present a model of computation with ordinary differential equations (ODEs)
which converge to attractors that are interpreted as the output of a computation.
We introduce a measure of complexity for exponentially convergent ODEs, enabling
an algorithmic analysis of continuous time flows and their comparison with discrete
algorithms. We define polynomial and logarithmic continuous time complexity
classes and show that an ODE which solves the maximum network flow problem
has polynomial time complexity. We also analyze a simple flow that solves the
Maximum problem in logarithmic time. We conjecture that a subclass of the
continuous P is equivalent to the classical P. � 2001 Elsevier Science (USA)
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1. INTRODUCTION

The computation of a digital computer and of its mathematical abstrac-
tion, the Turing machine, can be described by a map on a discrete con-
figuration space. In recent years scientists have developed new approaches
to computation, some of them based on continuous time analog systems.
There is a growing industry of analog VLSI which constructs analog
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devices for signal processing and optimization problems. Many of these
devices are the implementations of neural networks [1�3] so-called
neuromorphic systems [4] which are hardware devices whose structure is
directly motivated by the workings of the brain (applications in vision are
found for example in [5, 6]). In addition there is an increasing number of
theoretical studies of differential equations that solve problems such as
linear programming, singular value decomposition, and finding of eigenvec-
tors (see [7] and the references therein). Despite the interest in computa-
tion with continuous time systems no theory exists for their algorithmic
analysis. The standard theory of computation and computational com-
plexity [8] deals with computation in discrete time and in a discrete con-
figuration space and is inadequate for the description of such systems. This
paper describes an attempt to fill this gap.

Our model of a computer is based on ordinary differential equations
which converge to attractors. This facilitates a natural definition of the
attracting fixed points as the possible outputs of a computation. Con-
vergence to attractors (fixed points, limit cycles, or chaotic attractors) is a
property of the class of dissipative dynamical systems which describe most
small-scale classical physical systems [9].

In this paper we define a measure of computational complexity which
reflects the convergence time of a physical implementation of a given con-
tinuous flow, enabling a comparison of the efficiency of continuous time
algorithms and discrete time algorithms. In addition, our theory allows
the interpretation of various physical and biological phenomena often
described by differential equations as processes of computation.

It is important to distinguish our work from the BSS model of computa-
tion [10] which is a model of computation over the real numbers: the
input is real and operations include comparisons between real numbers at
unit cost. In our model the parameters of an ODE are the input of the
computational machine. In principle, these can be real numbers, but we
consider mainly rational inputs in order to have a model which can be
compared with the Turing model. Our model uses the real numbers since
the evolution of an ODE occurs in a continuum.

In their book about the BSS model [11] the authors quote as motiva-
tion the words of von Neumann who stated the need for ``a detailed, highly
mathematical, and more specifically analytical theory of automata and of
information'' [12]. The framework introduced here is an effort in this
direction; we believe it strengthens the connection between the theory of
computational complexity and the field of continuous dynamical systems.
In fact, we propose a subclass of analytically solvable ODEs as a counter-
part for the classical complexity class P. This suggests a correspondence
between tractability in the realm of dynamical systems and tractability in
the Turing model.
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Most of the work connecting computation and dynamical systems is
aimed at simulating discrete automata. First we note that continuous
low-dimensional maps in R2 can be used to simulate the computation of a
Turing machine. Simulations with piecewise linear systems were shown in [13,
14] and by analytic functions in [15]. ODEs were used to simulate various
discrete time models, thus providing lower bounds on their computational
power. Brockett demonstrated how to simulate finite automata by ODEs
[16]; Branicky generalized this result to simulate Turing machines [17],
thus proving their computational universality. Simulation with piecewise
constant functions was shown in [18]. Such constructions retain the dis-
crete nature of the simulated map, in that they follow its computation step
by step by a continuous equation. In this paper, on the other hand, we
consider continuous systems as they are and interpret their dynamics as a
non-symbolic process of computation.

The interest in the theory of computation in continuous time is not new.
A survey of some of the previous work appears in [19]. A seminal con-
tribution is the work of Shannon [20] and Pour-El [21] on the so-called
general purpose analog computer (GPAC) which was shown to be equiv-
alent in its computational power to a class of differential equations. For a
recent extension of this work see [22]. The output of a GPAC computa-
tion is determined by the state at a time which is the input of the machine,
whereas here output is determined by the asymptotical behavior. The use
of continuous time gives the theoretical possibility of ``squeezing'' even
infinite computations into a finite time span [23], enabling the computa-
tion of non-recursive functions. Moore's theory of recursive functions over
the reals [24] which is an ``analog'' of classical recursive functions also uses
continuous time. Whereas these two approaches are not realizable, we have
in mind a physical realization of a differential equation which makes the
concept of the computation time take on a well-defined meaning.

The view of the process of computation as a flow to an attractor has
been taken by a number of researchers. The Hopfield neural network is a
dynamical system which evolves to attractors which are interpreted as
memories; the network is also used to solve optimization problems [25].
The continuous time Hopfield network was shown to be equivalent in its
computational power to its discrete counterpart in [26]. Brockett intro-
duced a set of ODEs that perform various tasks such as sorting and solving
linear programming problems [27]. Numerous other applications can be
found in [7]. An analytically solvable ODE for the linear programming
problem was proposed by Faybusovich [28]. Our theory is, to some
extent, a continuation of their work, in that it provides a framework for the
complexity analysis of continuous time algorithms.

Analog computation can be utilized to test possible theoretical limita-
tions of the ``physical Church�Turing thesis'' [29]. Some theoretical analog
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models of computation have the capability of computing beyond the
Turing limit [30, 31], but no realizable super-Turing system has been
proposed. We do not suggest the current work as a step toward the iden-
tification of super-Turing natural systems. Rather, we have the goal of
providing an alternative view of computability that has its roots in
continuous mathematics and suggest physical systems as readily available
special purpose analog computers.

1.1. Outline of the Paper

The paper begins with a section providing the required background in
dynamical systems. In the following section the issue of defining time com-
plexity for continuous time systems is addressed. Then we introduce the
computational model and define a measure of complexity for the subclass
of exponentially convergent ODEs. In Section 5 we give the illustrative
example of solving the maximum problem in our framework. The more
involved example of an algorithm for the maximum network flow problem
is given in Section 6. Continuous time complexity classes are defined in
Section 7, and a correspondence between the ``continuous P'' and the classical
P is conjectured. In Section 8 possible generalizations of the model are
suggested. A short version of this paper has appeared in [32].

2. PRELIMINARIES: DYNAMICAL SYSTEMS

In this section we give the relevant background in dynamical systems.
For a detailed introduction the reader is referred to [9, 33, 34]. The flows
we consider in this paper are defined by autonomous systems of first order
ODEs,

dx
dt

=F(x), (2.1)

where x(t) is a d-dimensional vector and F is a d-dimensional vector func-
tion of x with components (F1 , ..., Fd), called a vector field. Throughout
this paper we use boldface type to denote a vector a, and we denote its
components by a1 , ..., ad . We often use the notation x* for the time
derivative of x. We will assume that F satisfies a Lipschitz condition to
guarantee that a unique solution of (2.1) exists. A fixed point, also called
an equilibrium point, of (2.1) is a point x* such that F(x*)=0. The local
stability of x* under the flow (2.1) is determined by the linear ODE

dx
dt

=Mx, (2.2)
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where M is the stability operator DF|x* , which is the derivative of F at a
point x*. An eigenvalue * of M is called attracting, repelling, or neutral
according to whether the real part of * is less than zero, greater than zero,
or equal to zero, respectively. A fixed point x* is called attracting, unstable,
or a saddle if the eigenvalues of M are respectively all attracting, all repel-
ling, or some attracting and others repelling [34]. A fixed point is called
hyperbolic if all eigenvalues are not neutral. The fixed points of the dynami-
cal systems we consider in this paper will be all hyperbolic. The basin of
attraction of an attracting fixed point x* is the set of points that reach x*
in the infinite time limit. The boundary of a basin of attraction is defined
as usual. For a basin B it is B� "B, where B� is the closure of B. A hyperbolic
attracting fixed point x* has the property of exponential convergence: for
every trajectory x(t) in the basin of attraction of x* there exists strictly
positive constants t0 , c, and * such that for all t>t0 , &x(t)&x*&<ce&*t.
This is a result of the solution of Eq. (2.2). In fact, convergence to an
attracting fixed point is exponential if and only if it is hyperbolic.

An important class of dissipative systems is the gradient flows. A gradient
flow is a flow to a local minimum or maximum of a function E(x) and is
defined by the equation

x* =\grad E, (2.3)

where the sign of the right-hand side determines whether the flow is to a
local minimum or a local maximum (negative sign for minimization). For
unconstrained minimization on Rd, grad E is the usual vector of partial
derivatives �E��xi . For the definition of gradient flows on Riemannian
manifolds the reader is referred to [7, 33]. Such a manifold can take into
account, for example, the constraint equations of an optimization problem.

3. COMPUTATIONAL COMPLEXITY FOR CONTINUOUS
TIME SYSTEMS?

We are interested in ODEs as models of physical systems. For such
dynamical systems, the state x(t) represents the state of the corresponding
physical system at time t. The time parameter is then time as measured in
the laboratory and has a well defined meaning. Since it is reasonable to
associate time with complexity, we suggest using it as a measure of the time
complexity of a computation. However, for non-autonomous ODEs
(systems with a time dependent vector field F(x, t)) that are not directly
associated with physical systems, the time parameter seems to be
arbitrary:3 if the time variable t of a non-autonomous vector field is
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replaced by another variable s where t= g(s), and g(s) is strictly
monotonic, we obtain another non-autonomous system

dx
ds

=F(x, g(s)) g$(s). (3.1)

The above system will be called the time transformed version of F. If we
take, for example, t=es, then the transformed system computes exponen-
tially faster. This way arbitrary speed-up can be achieved in principle.
However, the time transformed system is a new system. Only once it is con-
structed does its time parameter take on the role of physical time and is no
longer arbitrary (up to a linear change of the time unit). Therefore, speed-
up is a relevant concept only within the bounds of physical realizability.
We stress the distinction between linear and non-linear transformations of
the time parameter: a linear transformation is merely a change of the units
with which time is measured; a nonlinear transformation effectively changes
the system itself.

This discussion shows the problem in taking the time parameter of non-
autonomous systems as a measure of complexity. We now point out that
the class of exponentially convergent autonomous systems is not closed
under nonlinear transformations of the time parameter, if we further
assume that the vector field is analytic. For autonomous analytic vector
fields convergence to a fixed point is either exponential or polynomial. When
a non-linear speed-up transformation is applied to an exponentially con-
vergent vector field, a non-autonomous system, which converges faster
than exponential, results. If one is successful in making the system into an
autonomous one, keeping the faster than exponential convergence rate,
then it is no longer analytic.

The analyticity property rules out systems such as

dx
dt

=&(x&x*)1�3

and

dx
dt

=&
f (x)

| f (x)|
,

where | } | is the absolute value. These systems converge in constant time to
a fixed point due to the fact that these vector fields are not Lipschitz. These
are known as terminal attractors and were suggested as an efficient model
for associative memory [35].
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4. THE COMPUTATIONAL MODEL

The model we are about to define is based on a set of autonomous
ODEs,

dx
dt

=F(x), (4.1)

where x # Rd and F is a d-dimensional vector field whose dynamics con-
verge exponentially to fixed points. We put special emphasis on gradient
flows since their dynamics is simpler to analyze and they provide a con-
venient problem-solving framework, with many useful examples (see [7]).
The motivation for considering flows which converge exponentially to
attractors is as follows:

v The existence of attractors provides a convenient and natural way
to define the output, as opposed to arbitrary halting regions that arise
when simulating a Turing machine by a continuous dynamical system (see
[14, 15] for example).

v We consider only exponentially convergent systems since non-expo-
nentially convergent systems do not compute efficiently (see Section 4.7).

v Exponentially convergent systems also have tolerance to noise, or
in mathematical terms they are structurally stable; i.e., there exists an =
such that for all perturbations g of norm less than =, f + g and f are
topologically equivalent (there exists a homeomorphism , s.t. f + g=
,&1 b f b ,). In addition, exponential convergence is the typical convergence
scenario in dynamical systems [36].

In the following we describe our interpretation of the dynamics as a pro-
cess of computation. In this paper the input is taken as the parameters that
specify the vector field. It is possible to consider the initial condition as
input, as for example is the case in models of associative memory [1] or
a Turing machine when viewed as a dynamical system. The latter approach
can be problematic and is not taken in this paper; see the discussion in
Section 8. In our framework the initial condition is part of the continuous
algorithm, and its role is to initiate a trajectory in the basin of attraction
of the solution to the problem, and the output of a computation is the
attractor of the dynamics.

We introduce our concept of uniformity using the vector field for the
maximum problem, which is analyzed in Section 5. This flow has the form
Fi (x1 , ..., xn)=(ci&�n

j=1 c jxj) x i , i=1, ..., n. The n parameters ci are the
inputs, and it is seen that a single formula specifies the vector field for all
n. Following this example, we formulate the vector field as a fixed formula
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for inputs of all sizes, and only the length of the various objects in it
(vectors, matrices etc.) will vary with the number of inputs.

Definition 4.1. Let q1 , ..., qk be a fixed finite set of (rational) numeri-
cal constants, and let 6=(?1 , ..., ?n) be the parameters of the vector field.
Let [Mi], [Vi] be finite sets of matrices�vectors respectively with entries
in x1 , ..., xd ; q1 , ..., qk ; ?1 , ..., ?n , each generated by an algorithm in NC.
A simple algebraic formula over x1 , ..., xd ; q1 , ..., qk ; ?1 , ..., ?n ; [Mi], [Vi]
is a vector function F defined by the following operations:

v products (>i) and sums (�i) of scalars whose number is polyno-
mial in n;

v +, &, _ between vectors, matrices, and scalars; and

v matrix inversion and division between scalars.

The operations we introduced here are all computable in NC [8]. There-
fore, since F is a formula of fixed size, it is also computable in NC. In
Section 6 it is shown that with an NC formula as above, one can compute
the solution to the P-complete MAXFLOW problem. This suggests that even
this simple class of vector fields is sufficient to obtain the complexity class
P. This definition can be extended easily to include additional operations
and is provided simply as an example of a class of vector fields to which
our theory is applicable. In principle, this definition can be extended to
include additional operations. In addition, we mention the result of Hoover
[37] that computing the fixed point of an NC contracting map4 is P-com-
plete. This limitation on the vector field ensures that the computational
power of the system is based purely on its structure and does not depend
for example on constants which serve to increase the computational power,
as it is known that neural networks with real weights can compute non-
recursive functions [30].

Given a formula F one can define the formula F$=(>i ?i) F, which is a
system that computes exponentially faster than F. We want to assign the
same complexity to these two systems since they only differ by a multi-
plicative factor. This leads us to narrow our discussion to the following
class of formulas:

Definition 4.2. A simple algebraic formula F is said to be elementary
if F cannot be written as G_H for a scalar formula G which is independent
of x1 , ..., xd and for a vector formula H.

Definition 4.3. A continuous time computer (CTC) is a tuple (F, 6, x0 ,
Stop) where F is an elementary formula for a vector field which converges
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exponentially to fixed points. 6 are the parameters of the vector field which
constitute the input. These are taken to be integer or rational (real inputs
can be considered as well, but minor changes in some definitions are
required). x0 is an NC computable initial condition for the flow. ``Stop'' is a
procedure for checking that a fixed point being approached is an attractor
and that it is computed with enough precision to yield the solution to the
problem. As a shorthand we will denote a CTC by the vector field F.

Remark 4.1. We leave the Stop procedure unspecified. This is a compo-
nent that may vary from system to system. A universally applicable proce-
dure is to halt when a worst case time bound has passed. Halting is
discussed in detail in Subsection 4.3.

Remark 4.2. We did not impose restrictions on the relation between
the number of variables used to solve a problem instance and its size. This
will be done when defining complexity classes. In the example given above
for finding the maximum of n numbers, n variables are used.

Remark 4.3. The size (precision) of the initial condition need not be
restricted since all initial conditions in a basin of attraction are equivalent
in the sense that they produce the same output (possibly with varying com-
putation times), so specifying the initial condition with very high (possibly
infinite) precision gives no computational advantage.

4.1. The Input of a CTC

The motivation for considering the parameters of the vector field as
input is based on optimization problems. In an optimization problem one
is given a cost function defined in some state space and is asked to find a
state which maximizes (or minimizes) this cost function. The problem of
finding a local maximum is solved in our framework with a gradient flow
of a cost function E: x* =grad E. The parameters specify an instance of the
function E, and the problem is solved by following the trajectory of an
initial condition which is in the basin of attraction of the required maxi-
mum. One might also take the initial condition as the input, as is the case
of the Turing machine or in models of associative memory. However, the
computation time for initial conditions near the boundary is unbounded
(see an example in Section 5). We comment further on this in Section 8.

To quantify complexity we need a measure of the size of the input. For
integer or rational inputs we will consider the bit-size measure, denoted by
L, which is the number of bits required to encode the input in binary.
When real inputs are considered the size of the input is the number of real
values.
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4.2. The Output of a CTC

In our framework we postulate the attractor, or a simple function that
is associated with the flow as the output of a computation. In the case of
a gradient flow, for example, the output can be taken to be the state which
optimizes the cost function or the value of the function itself. In Section 5
we analyze a CTC for finding the maximum of n numbers. This problem
can be expressed as a linear programming problem on the simplex: given
n numbers represented by a vector c, find the maximum of cTx subject to
�n

i=1 xi=1 and xi�0. We show a gradient flow whose fixed points are the
vertices of the simplex. These serve as pointers to the possible solutions,
while the value of the cost function at each vertex represents the possible
values of the solution. A gradient flow for the general linear programming
problem whose fixed points are exactly the vertices of the solution polytope
was introduced in [38] (see Section 6).

The evolution of a CTC reaches an attractor only in the infinite time
limit. Therefore, for any finite time we can only compute it to some preci-
sion. A computation will be halted when the attractor is computed with
enough precision to infer a solution to the associated problem by rounding.
When the inputs are integer or rational, the set of fixed points (the possible
solutions) will in general be distributed on a grid of some finite precision
defined as follows.

Definition 4.4. A CTC F is said to require precision =p (L) if, for every
instance 6 of size L, every ball of radius =p (L) around the attractor
associated with input 6 does not contain any other fixed point of F.

Equivalently, a precision =p (L) is required if the attractor associated with
every instance of size L can be written as an irreducible rational number�
vector with denominator(s) less than 1�=p (L).

When the dynamics of a CTC for a problem requiring precision =p (L)
reaches the =p -vicinity of the attractor, the solution is obtained by rounding
the state space variables to the nearest grid point. It is possible to
generalize this to allow for the output to be some function of the attractor.

Remark 4.4. For a problem in P with a CTC it is straightforward to
show that the required precision is polynomial; i.e., for a problem of size
L there exists k>0 such that =p (L)�2&Lk

. In the CTC for the maximum
problem the fixed points are the vertices of the simplex which have integer
coordinates (see Section 5), and therefore its required precision is O(1).

Remark 4.5. When the inputs of a CTC are real numbers, it may
happen that two fixed points are arbitrarily close, and in this case an
additional precision parameter is needed. A discussion of real inputs is found
in Section 5.5.
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4.3. Halting

The phase space evolution of a trajectory may be rather complicated,
and a major problem is to know when a point approached by the trajec-
tory is indeed the attractor of the dynamics and not a saddle point. To
facilitate this decision we define the following.

Definition 4.5. Let F be a CTC with an attracting fixed point x*.
A trapping region of x* is a set U containing x* such that if x(t) # U, then
for all t$>t, x(t$) # U. A trapping region U is said to be attracting if
there exists a norm & }& such that for all t, t$, t$>t and x(t), x(t$) # U we
have that &x(t$)&x*&<&x(t)&x*&.

The attracting region is a region in the phase space in which the distance
from the attractor is monotonically decreasing relative to some norm.

Remark 4.6. An attracting region as defined above exists for every
CTC [33]. When the stability matrix is diagonalizable and has real eigen-
values, e.g., for gradient flows [33], the norm in the definition is the
regular Euclidean norm.

We define the convergence time to an attracting region.

Definition 4.6. Let F be a CTC with an attracting region U; the con-
vergence time to the attracting region, tc (U), is the infimum over all t such
that x(t) # U.

When the computation has reached the attracting region of a fixed point
and is also within =p of it, namely in B(x*, =p), a ball of radius =p around
x*, then we can say that the dynamics is near an attracting fixed point and
that it is computed with a high enough precision. Thus we define the
following.

Definition 4.7. Given a CTC F, let U be an attracting region of an
attracting fixed point x*. Its halting region, H, is

H=U & B(x*, =p). (4.2)

We can now define the computation time.

Definition 4.8. Let F be a CTC with a halting region H. Its computa-
tion time is the convergence time to the halting region, tc (H).

The convergence time to the halting region is given by

tc (H)=max(tc (=p), tc (U)), (4.3)
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where tc (=p) is the convergence time to the =p -vicinity of the attractor and
tc (U) is the convergence time to its attracting region, U.

The attracting region of a CTC F on input 6 is some vicinity of the
attractor x*(6) which is associated with the solution to the problem. Thus
computing the attracting region is not easier than solving the problem. Not
knowing the attracting region, we do not know when to halt the computa-
tion, i.e., when the dynamics has reached H(6). Instead, we specify halting
by a bound on the computation time of all instances of size L,

T(L)= max
|6|=L

tc (H(6)). (4.4)

Thus, on input 6 of size L, the computation can be halted after a time
T(L). Thus a CTC can be used as the tuple (F, 6, x0 , T(L)), where T(L)
takes the role of a halting rule. In practice, one can only obtain a bound
on T(L), and efficiency depends on finding tight bounds. Considering
systems with an analytical solution allows us to find such bounds. (See the
next section for an example.) This halting criterion yields worst case perfor-
mance in all instances. A halting condition which senses proximity to a
fixed point is described in [39].

4.4. Time Complexity

As in classical complexity there is the possibility of linear speed-up of a
computation. Here linear speed-up is obtained by changing the time unit
by a linear transformation t$=at for 0<a<1. This is equivalent to the
transformation F$= 1

aF. The computation time in the system F$ is smaller
than in F, but only because it is measured in different units. We can make
T(L) independent of the chosen time unit by turning it into a dimensionless
number. For that we express the time parameter as a multiple of some time
unit inherent to the system and choose the characteristic time scale that is
defined by the rate of convergence to the fixed point.

Let x*(6) be the attracting fixed point of x* =F(x) on input 6. In the
vicinity of x* the linearization approximation

$x=DF|x* $x, (4.5)

where $x=x&x*, holds. Let *i be the real part of the i th eigenvalue of
DF|x* . We define

*=min
i

|*i |. (4.6)
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* determines the rate of convergence to the attractor, since in its vicinity

|x(t)&x*|te&*t, (4.7)

leading to the definition of the characteristic time

{ch=
1
*

. (4.8)

When the approximation (4.5) holds (the linear regime), in a time {ch ln 2
an additional bit of the attractor is computed. Note that {ch={ch (6).

A dimensionless complexity measure is given by

T $(L)=
T(L)

{ch (60)
, (4.9)

where 60 are the parameters of a fixed instance of the problem, inde-
pendent of L. T $ is invariant under linear transformation of the time
parameter.

Proposition 4.1. Let F, F$ be two CTCs related by F$= 1
aF for some

constant a>0; then they have the same time complexity.

Proof. We denote by primes properties of the system F$. Multiplying
the vector field by 1

a is equivalent to multiplying the time parameter by a.
Therefore the computation times in the two systems are related by
t$c (6)=atc (6) for every input 6. Let M, M$ be the stability operators of
F, F$ on input 6, respectively. Clearly, M$= 1

aM so that {$ch (6)=a{ch (6)
and in particular for 60 . We conclude

tc (H(6))
{ch (60)

=
t$c (H(6))
{$ch(60)

.

This holds when taking the maximum as well. K

Remark 4.7. We now indicate the relation between exponential con-
vergence and efficient computation. We noted that when a system is in the
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linear regime, in time {ch ln 2 a digit of the attractor is computed. Thus
computing L digits requires a time which is O({chL). We compare this with
the case of non-exponential convergence. To get non-exponential con-
vergence at least one eigenvalue of the stability matrix must be zero. Then
there is a direction such that y* t( y& y*);, where ;�2. This yields poly-
nomial convergence, |x(t)&x*|tt&;+1. In order to compute x* with L
significant digits, we need to have |x(t)&x*|<2&L, or t>2L�(;&1) for an
exponential time complexity. Note that requiring the vector field to be
analytic rules out convergence which is faster than exponential.

5. A CTC FOR THE MAXIMUM PROBLEM

We demonstrate our approach with a simple CTC for the MAX
problem, which is the problem of finding the maximum of n numbers.

5.1. Formulation as an Optimization Problem

Let the numbers be c1 , ..., cn , and define the linear cost function

f (x)=cTx. (5.1)

The MAX problem can be phrased as a constrained optimization problem:
Find the maximum of f subject to the constraints

:
n

i=1

xi=1, xi�0. (5.2)

This is recognized as the linear programming problem on the n&1 dimen-
sional simplex

2n&1={x # Rn : xi�0, :
n

i=1

xi=1= . (5.3)

We use the vector field

Fi=\ci& :
n

j=1

xjcj+ xi , (5.4)
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which is the gradient of the function f on 2n&1 relative to a Riemannian
metric which enforces the positivity constraints for points in 2n&1 [7].
This flow is a special case of the Faybusovich vector field [38], which is
analyzed in Section 6.

5.2. Analysis of the Flow

We denote by e1 , ..., en the standard basis of Rn. It is easy to verify that
the only fixed points of F are the n vertices of the simplex e1 , ..., en . We
begin with the case of a unique maximum. For the purpose of analyzing the
flow suppose that c1>c2 and c2�cj , j=3, ..., n. Under this assumption
the flow converges exponentially to e1 , as witnessed by the solution to the
equations x* =F,

xi (t)=
eci txi (0)

�n
j=1 ecj tx j (0)

, (5.5)

where xi (0) are the components of the initial condition. It is important to
note that the analytical solution does not help in determining which of the
fixed points is the attractor of the system: one needs the solution to the
specific instance of the problem for that. Thus the analytical solution is
only a formal one, and one has to follow the dynamics with the vector field
(5.4) to find the maximum.

To avoid the problem of flow near saddle points exemplified in Fig. 1 we
choose an initial condition at the center of the simplex,

e
n

=
1
n

(1, ..., 1)T. (5.6)

This subsection can be summarized by the following interim result.

Lemma 5.1. (F, c, e�n, T(L)) is a CTC for MAX, where T(L) is a bound
on the convergence time to the halting region.

In the following subsection we conclude the analysis of the algorithm
with a derivation of a bound T(L).

5.3. The Computation Time

Because of the constraint �n
i=1 xi=1, the flow has n&1 independent

variables, which we choose as x2 , ..., xn . The asymptotic behavior of the
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FIG. 1. Phase space behavior of the flow generated by (5.4) on the two-dimensional sim-
plex with c1>c2>c3 . A projection onto the plane of the x2 and x3 coordinates is shown. A
number of trajectories which start near the minimum vertex e3 are plotted. Such trajectories
reach the vicinity of the saddle point e2 before flowing in the direction of the maximum which
is projected onto the origin. The trajectory of the interior initial condition e�3= 1

3 (1, 1, 1) is
denoted by diamonds.

solution for the independent variables is xi (t)te(ci&c1) t, i=2, ..., n. There-
fore the time scale of F is

{ch=
1

c1&c2

. (5.7)

This can also be obtained from a linearization of F in the vicinity of e1 .

Lemma 5.2. The problem precision for MAX instances with a unique
solution satisfies =p=1�2 and

tc (=p)�{ch log n.

Proof. The possible solutions (vertices of the simples) are integer and
therefore =p=1�2. From the constraint � xi=1 we have that &x&e1&<1�2
if xj�1�2n for j>1. The time to reach the =p-vicinity of e1 is thus obtained
by solving for t in the equation xj (t)�1�2n. K

Proposition 5.1. Let c # Nn be an instance of MAX with a unique
maximum, then

tc (H(c))�{ch (log {ch+log n+log c2). (5.8)
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Proof. We compute a bound on the convergence time to the attracting
region. The attracting region of the problem is the set in which x* i<0 for
i>1. By the constraint �n

i=1 xi=1, x1 is then guaranteed to increase. The
convergence time to the attracting region is a time t such that for all t$>t,
x* i (t$)<0 for i>1. From the flow equations and the non-negativity of the
xi 's we have that x* i<0 for i>1 iff

:
n

j=1

cjxj>ci , i=2, ..., n. (5.9)

Since by assumption c2�cj for j>2, this is equivalent to

:
n

j=1

cjxj>c2 . (5.10)

Inserting the analytical solution (5.5), specialized to the initial condition
e�n (see (5.6)), we obtain

:
n

j=1

cjecj t>c2 :
n

j=1

ecj t.

This can be obtained also by differentiating the solution with the demand
that x* i<0 for i>1. We rewrite the equation as

(c1&c2) ec1 t> :
j>1

(c2&cj) ecj t.

This inequality holds for tc which satisfies

(c1&c2) ec1 tc>(n&2) c2ec2tc,

from which we obtain

tc (U)<
1

c1&c2

log
(n&2) c2

c1&c2

�{ch (log {ch+log n+log c2), (5.11)

when (n&2) c2>c1&c2 . If this is not the case, the inequalities (5.9) hold
already for the initial condition; i.e., the initial condition itself is in the
attracting region, and x* i (t)<0 for all t�0 and i>1.

The maximum of (5.11) and (5.2) gives the required bound on
tc (H(c)). K
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Remark 5.1. The condition which defines the attracting region equa-
tion (5.10) can be expressed as f (x)> f (e2). When this is satisfied it is
satisfied for all subsequent times, since the cost function of a gradient flow
is increasing along a trajectory. Or, in other words, the set [x # 2n&1 :
f (x)> f (e2)] is a trapping set (positively invariant set in the language of
dynamical systems) of the flow. This condition is appropriate for any gradient
flow. Also, the condition on proximity to the attractor can be substituted
here for proximity of the cost function to its value on the attractor.

5.3.1. Non-unique Maximizer. In the case when the maximum ci is not
unique any combination of the maximal vertices is a maximum of f. Suppose
that the maximum has multiplicity k and that c1=c2= } } } =ck , ck>cj ,
j = k + 1, ..., n; then on the initial condition 1

n (1, ..., 1)T the algorithm
converges to the point 1

k (1, ..., 1, 0, ..., 0)T. Moreover, the dynamics is
restricted to a lower dimensional manifold with the additional constraints
x1=x2= } } } =xk . By a derivation similar to that for (5.11) one obtains in
this case

tc (U)<
1

c1&ck+1

log
(n&k&2) ck+1

k(c1&ck+1)
. (5.12)

Thus the bound (5.11) holds with c2 replaced with ck+1 . In the case of a
non-unique maximizer the required precision is changed from O(1) to
O(1�n), but all this does is to double the bound on tc (=p). Therefore the
bound on the computation time, (5.8), is essentially unchanged.

Remark 5.2. In the extreme case when all the ci 's are equal F=0. This
does not present a problem, since then each ci is maximal. So when one
encounters a system with no dynamics, the computation can be halted
immediately.

To combine the expressions (5.11) and (5.12) we introduce the notation

c(1)=max
i

ci

c(2)={max i [ci : ci<c(1)]
c(1)

not all ci are equal
otherwise

so that the expression (5.7) for {ch is replaced with

{ch=
1

c(1)&c(2)

(5.13)
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and

tc (H)<{ch (log {ch+log 4n+log c(2)). (5.14)

5.4. Complexity of the Algorithm

We now proceed to analyze the problem size dependence of the above
bound on tc (H), Eq. (5.14). This dependence varies according to the set
from which the input is taken through the problem size dependence of the
characteristic time scale. We recall that the bit-size complexity of a problem
instance, L, is the length of the binary encoding of the input. This is
appropriate for models over the integers or rationals. When the inputs are
integers, L=�n

i=1 (1+log(ci+1)). As in the BSS model of computation
over the real numbers [11], for real inputs the size of a problem is the
number of inputs. The complexity for different input sets is summarized in
Table I and is easily derived from expressions (5.13) and (5.14).

We now discuss the results of Table I. The second row of the table con-
siders the case of inputs which are integer or rationals with bounded
denominators (rational numbers which can be specified with fixed preci-
sion). In these two cases we obtain sub-linear (logarithmic) complexity,
which may seem surprising. However, note that the variables of a CTC can
be considered as processing units. Therefore when the number of variables
is an increasing function of the size of the input, as in the CTC we presented
for MAX, the model becomes inherently parallel. There are various models
of parallel computation, and the complexity of MAX is different in each of
them: in the PRAM model its complexity is O(log log n) [40]; in the circuit
model its complexity is constant or logarithmic depending on the fan-in
(unbounded or constant, respectively). It is not clear which model ours is
most closely related to.

TABLE I

Bounds on {ch and T as a Function of the Input Set.

Input space Problem size Bound on {ch T

Bounded integers L=O(n) O(1) log n
or bounded rationals with
bounded denominators

Integers or rationals L O(1) log L
with bounded denominators

Rationals L L L log L
Reals n unbounded poly in condition number

logarithmic in n
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For general rational inputs (third row of the table) the complexity is
again comparable to that obtained by a naive algorithm in the Turing
model: for a problem of size L, the comparison of two numbers requires
O(L) bit operations. This is multiplied by the number of comparisons
required between numbers.

For real inputs there is no bound on {ch and hence on the computation
time. In such cases we consider complexity as a function of a ``condition
number'' defined in the next subsection. Note that in the BSS model the
MAX problem with real inputs can be solved efficiently because com-
parisons between real numbers are allowed.

5.5. Complexity and the Distance from Ill-Posed Problems

In the numerical analysis literature it is common to consider the condi-
tion number of a problem instance as a measure of its difficulty [41]. The
condition number is defined as the norm of the condition operator which
measures the effects of infinitesimal perturbations in the input on the result
of a computation [42]. In many settings the condition number is shown to
be the reciprocal of the distance to the set of ill-posed problems, where a
problem instance is said to be ill-posed if its solution is not unique. Such
results are called ``condition number theorems.'' In combinatorial optimiza-
tion the output does not depend continuously on the input so the condition
operator cannot be defined in this manner. In the context of the linear
programming problem, Renegar [43] postulates the condition number as
the inverse of the distance to the set of ill-posed problems. Such a definition
is motivated by these condition number theorems.

As in combinatorial optimization, the output of a computation of a CTC
is not necessarily a continuous function of the input. Therefore a condition
number cannot be defined in terms of a condition operator as above.
Instead we define {ch as the condition number, which provides a direct rela-
tion between conditioning and complexity. For vector fields which have a
stability matrix with real eigenvalues (e.g., gradient flows) {ch can be
expressed as

{ch=&(DF| x*)&1&, (5.15)

where & }& is the operator norm: &A&=maxx{0 (Ax�&x&). This expression
shows the similarity in the definition of {ch and a condition number, where
the inverse of the stability operator plays the role of condition operator. In
the following we argue the plausibility of a condition number theorem type
of result for {ch .

For simplicity we assume that the fixed point structure of the system is
fixed for a fixed number of parameters, so that the role of the input is to
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determine which of the fixed points is the attractor of the system, as was
the case in the CTC for MAX. Let 6 be the input of an ill-posed instance.
We further suppose that the stability matrix depends continuously on the
input. Therefore in any neighborhood U of 6 there exist x1 {x2 which are
the attractors on inputs in U. Let 61 , 62 # U be inputs with the associated
attractors x1 , x2 respectively. Suppose that x1 and x2 are connected by an
invariant manifold W, which on input 61 is part of the stable manifold of
x1 and on input 62 is part of the unstable manifold of x1 . It is reasonable
to suppose that on input 6 the attractor of the system is either x1 or x2

or that it is some point in W which depends on the initial condition. We
show that for such points the stability matrix is singular on input 6.

First we consider the case that the attractor on input 6 is either x1 or
x2 . The eigenvalues of the stability matrix at x1 on input 61 are all
negative, and on input 62 the stability matrix at x1 has at least one
positive eigenvalue. By the continuity of the stability matrix as a function
of the input, we obtain that on input 6 the stability matrix at x1 has an
eigenvalue zero. The same argument holds if the attractor is at x2 .

FIG. 2. In the vicinity of an ill-posed instance 6 the system has two different attractors:
(a) x1 on input 61 and (b) x2 on input 62 . (c) On input 6 the attractor is either x1 , x2 , or
a point in W.
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Now consider the case that the attractor on input 6 and initial condition
x0 is a point x3 in W. On input 61 the eigenvalues of the stability matrix
at a x3 in directions tangent to W are negative, whereas on input 62 these
eigenvalues are positive. Thus on input 6 the eigenvalues of the stability
matrix at x3 in directions tangent to W are zero.

We thus obtain an inverse relation between the distance to an ill-posed
instance and its condition number: when an instance is close to an ill-posed
instance, the stability matrix is close to singular, with a large {ch .

In the case of the CTC for MAX a condition number theorem, stating
that {ch is the reciprocal of the distance from the set of ill-posed problems,
can be shown. The-set of ill-posed problems of MAX is the set of vectors
whose maximum is not unique,

7n=[c # In : _i, j, i{ j such that ci=cj=c(1)], (5.16)

where In is the set from which the inputs are taken. A problem is ``close''
to ill-posed if c(1)&c(2) is small, leading to long computation times, since
this is the inverse of the characteristic time scale. The distance of an
instance c of MAX to the set of ill posed problems is

d(c, 7n)= min
c$ # 7n

&c&c$&. (5.17)

It is easy to verify the following.

Claim 5.1. Let c be an instance of MAX, then

d(c, 7n)=
1

&(DF| e(1)
)&1&

=
1

{ch
=c(1)&c(2) , (5.18)

where e(1) is the vertex corresponding to c(1) .

The discussion in this subsection sheds light on the complexity results in
Table I. When the inputs are integers, the distance of a problem instance
from the ill-posed set is large, giving highly efficient computation, while for
general rational inputs this distance can be exponentially small. For real
inputs the distance can be arbitrarily small, with unbounded computation
time.

Remark 5.3. In Subsection 5.3.1 we have shown that the CTC for MAX
has the special property that it performs well even for ill-posed instances.
This may seem surprising in view of the above discussion, but it arises
because of the symmetry properties of the vector field: When the stability
operator becomes degenerate, the system converges exponentially to a
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convex combination of the vertices which correspond to c(1) . An ill-posed
instance with multiplicity k of the maximum can be viewed as a non-
degenerate instance in Dn&(k&1) , and its ill-posedness should be measured
in 7n&(k&1) . And, indeed, the bound (5.14) shows that the characteristic
time scale of such a problem is c(1)&c(2) , which is the distance of the
reduced problem from the set 7n&(k&1) . Such behavior is also observed in
the algorithm introduced in the next section.

6. A CTC FOR THE MAXFLOW PROBLEM

In this section we present a CTC for the maximum network flow
problem (MAXFLOW) which is based on a flow for linear programming.
The flow does not yield an algorithm which is efficient in a worst case
analysis for general linear programming instances. However, it turns out to
be efficient for MAXFLOW and other related problems which can be
expressed as linear programming problems. We begin with the definition of
the linear programming problem (LP) and introduce the Faybusovich
vector field [38] for solving it.

The standard form of the linear programming problem is

max[cTx : x # Rn, Ax=b, x�0], (6.1)

where c # Rn, b # Rm, A # Rm_n, and m�n. Assuming that a bounded
optimal solution exists, the constraint set generated by the constraints in
(6.1) is a polyheder, and the maximum is obtained at one of its vertices. Let
B/[1, ..., n], |B|=m, and N=[1, ..., n]"B, and denote by xB the coor-
dinates with indices from B and AB , the m_m matrix whose columns are
the columns of A with indices from B. A vertex of the LP problem is
defined by a set of indices B which is called a basic set if

xB=A&1
B b�0. (6.2)

Its components are xB and xN=0. If a vertex has more than one basic set
that defines it then the polyheder is said to be degenerate.

The Faybusovich vector field is a projection of the gradient of the linear
cost function onto the constraint set. Let f (x)=cTx. We denote this
gradient by grad f. Its explicit form is

grad f (x)=[D(x)&D(x) AT (AD(x) AT)&1 AD(x)] c. (6.3)

It is clearly an elementary formula as in the definition (4.1). A complete
characterization of the dynamics of this vector field is as follows.
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Theorem 6.1 [38]. Let (A, b, c) be the data for a non-degenerate linear
program with a unique bounded solution. Then:

1. The faces of the polyheder are invariant sets of the dynamics
induced by grad f.

2. The set of fixed points of grad f coincides with the vertices of the
polyheder.

3. On an interior initial condition, the dynamics converges exponen-
tially to the maximal vertex of the LP problem.

We define n&m vectors +i # Rn which correspond to the n&m coor-
dinates of a set N such that |N|=n&m. Let en be the standard basis of Rn.
Define

+i=ei+ :
j # B

:ji ej , i # N, (6.4)

where

:ji=&(A&1
B AN) ij . (6.5)

The vectors [+i] i # N are perpendicular to the rows of A and are parallel to
the faces of the polyheder defined by the constraints.

The ODE x* =grad f has an analytical solution which describes the
evolution of n&m independent variables,

xi (t)=xi (0) e&2i t&� j # B :j i ln(xj �xj (0)), i # N, (6.6)

where xi (0) are the components of the initial condition and

2i =&(c, +i) , i # N,
(6.7)

=&ci+ :
j # B

:ji cj .

Remark 6.1. If the basic set B in Eq. (6.6) is chosen to be a basic set
corresponding to a maximum vertex, then all the 2i are positive. Thus it is
evident that the analytical solution is only a formal one and does not
provide an answer to the LP problem.

Remark 6.2. If c is perpendicular to a face of the polyheder then the
maximum vertex of the LP problem is not unique and some of the 2i are
0. In such a case the flow converges to the optimal face of the polyheder,
i.e., to a convex combination of the optimal vertices.
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The computation time of the system is determined by the system size
dependence of the constants 2i and :ij . If, for example, the 2i are small
then long computation times will be required. For general instances of LP
these constants can be exponentially small, for a worst case exponential
computation time. Exponentially small 2i are possible since 2i are defined
by a matrix inverse which can yield exponentially small quantities [44].
In [45] we show that under a probability distribution on LP instances
such ``bad'' instances happen with vanishing probability as n tends to infi-
nity. Many problems in combinatorial optimization are expressible as
linear programming problems which are often simpler to solve than general
linear programming problems. Examples include maximum network flow
(MAXFLOW) and bipartite matching [46, 47]. Thus, to make the
Faybusovich vector field the basis of an algorithm which is efficient even in
the worst case, we apply it to LP formulations of MAXFLOW and other
related problems and show that these have polynomially convergent
Faybusovich flows. Polynomial convergence occurs in these cases since the
constants 2i and :ji are small integers. Integrality of the 2i will be guaran-
teed when the constraint matrix is totally unimodular.

Definition 6.1. An integer matrix A is called totally unimodular (TUM)
if every square nonsingular submatrix B of A satisfies det B=\1, 0.

For a problem defined by a totally unimodular matrix, the solution
polyheder is integral when b is an integer, as can be seen from Eq. (6.2).
The next theorem gives conditions for TUM.

Theorem 6.2 [46, 47]. Let A be a matrix which is either

1. the node edge incidence matrix of a directed graph or

2. the node edge incidence of an undirected bipartite graph;

then A is TUM. This includes the LP formulations of MAXFLOW, maxi-
mum weighted bipartite matching, and shortest path problems.

More general conditions for unimodularity are also known [47, 46].
Total unimodularity yields the following.

Lemma 6.1. Let A be a constraint matrix which is TUM, such that each
column has at the most k nonzero entries, and let B and N be basic and
non-basic sets respectively; then

1. |:ji |= |(A&1
B AN) ji |�k for every i # B, j # N ;

2. 2i is integer for every i # N.

Proof. The first result is true since :ji is a multiplication of two vectors
whose components are [\1, 0], one of which has at most k nonzero
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components. 2i are integer as a scalar product of two vectors with integer
components. K

6.1. Solving MAXFLOW

Definition 6.2. A network N=(s, t, V, E, b) is a directed graph
(V, E) with a source s # V with no incoming edges, a terminal t # V with no
outgoing edges, and an integer nonzero capacity bi for edge i. Each edge
is assigned a variable xi , which is the flow through it. For convenience we
add an additional edge with unlimited capacity from t to s. Let (V, E) be
the resulting graph, denote q=|V|, p=|E|, and assign the variable xp to
the flow on the edge from t to s. An assignment of values x # R p is a valid
flow for a network N if

0�x�b, (6.8)

and it satisfies conservation of flow at each vertex k # V,

:
i # in(k)

xi& :
i # out(k)

xi=0, (6.9)

where in(k)�out(k) are the set incoming�outgoing edges, respectively, of
vertex k. The flow through the network is given by the value of the variable
xp . The objective is to maximize xp subject to the constraints (6.8) and
(6.9).

We now express this problem as an LP problem in standard form. Let
A$ be the node-edge incidence matrix of the directed graph. The matrix A$
has a row for each vertex and a column for each edge and is defined by
A$ij=1 if edge j leaves node i or A$ij=&1 if edge j enters node i, and is zero
otherwise. The MAXFLOW problem is now expressed as the LP problem
(not in standard form)

max xp

subject to: A$x = 0

x̂ � b

x � 0,

where x̂=(x1 , ..., xp&1) (xp has no upper bound). Therefore the vector c
has a single nonzero component cp=1. The above formulation is made
into an LP in standard form by adding the slack variables xp+1 , ..., x2p&1 ,
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with the constraints xi+xi+ p=bi , x i+ p�0, i=1, ..., p&1. The constraint
matrix has now the form

A=\ A$
Ip&1 0p&1_1

0q_p&1

Ip&1 + , (6.10)

where A$ is the q_p node edge incidence matrix of (V, E), Ik is the k_k
identity matrix, and 0k_l is a zero matrix of the appropriate dimensions.
The right-hand side of the constraints is the vector b # Nq+ p&1,

b=(0, ..., 0, b1 , ..., bp&1)T. (6.11)

For integer capacities the bit size of an instance of MAXFLOW is charac-
terized by the number

L= :
p&1

i=1

(log bi+1). (6.12)

The additional slack variable constraints do not affect the total uni-
modularity of the constraint matrix [46]. The matrix A is not full rank since
the flow conservation equations represented by A$ are not independent
(adding the rows of A$ gives 0). To make them so, it is sufficient to remove,
say, the first row [47, 48]. We still denote the resulting matrix, which has
q+ p&2 rows, by A. Anticipating the addition of another variable, we
denote

n=2p, m= p+q&2, (6.13)

and the problem is now in the standard form (6.1). We provide an interior
initial condition by using the big-M method [49, 50]: we add to the
variables (x1 , ..., xn&1) an additional variable xn with cn=&2L+1. A
column An is added to A such that (e, 1)=(1, ..., 1)T # Rn is a feasible point
of the extended problem. The column An is required to satisfy

Ae+An=b, (6.14)

from which we have

An=b&Ae. (6.15)

The resulting constraint matrix (A An) is not TUM. However, we can still
guarantee integer 2i . First we note that it can be assumed that the solution
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polyheder of the MAXFLOW problem is nonempty, because it can be
made so by adding an edge from s to t with unit capacity. Thus the column
corresponding to the variable xn never enters into a basis B which
corresponds to a maximum solution, therefore AB is still TUM, and since
AN is still integer the 2i are integer.

The polyheder defined by the above constraints is in general highly
degenerate [46, 47]. Therefore, in order to apply the Faybusovich vector
field we perturb the right-hand side in order to lift the degeneracy

b� =b+$b, (6.16)

where

$bi=
1
n2 2&i. (6.17)

In the following we use the notation x~ to denote variables of the perturbed
problem. Given a basic set B, the solution relative to B is perturbed by

x~ B=xB+$xB=xB+A&1
B $b. (6.18)

With this perturbation we have

Claim 6.1. For every choice of a basic set B such that n � B, the com-
ponents of $xB from (6.18) satisfy

1
n22m�|$x j |�

1
n2 , (6.19)

and in particular

1
n22m�x~ j . (6.20)

Proof. The assumption that n � B takes into account that AB does not
include the column An . For such B the matrix AB is TUM. The com-
ponents of $xB are of the form

$x=aT $b, (6.21)
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where aT # [&1, 0, 1]m is a row of A&1
B . Using the form of $b,

$x=
1
n2 :

m

i=1

ai

2 i , (6.22)

and it is immediate to verify that |$x|�1�n2. Without loss of generality,
assume that a1=1. Since �m

i=2 2&i<1�2, $x will be smallest if all ai=&1
for i>1, and it is again immediate to verify that |$x|�1�n22m . The validity
of Eq. (6.20) follows from the integrality of the components of xB . K

We note that the matrix A could have been perturbed instead, but such
a perturbation is harder to control.

6.2. Complexity

In this section we derive the complexity of solving the MAXFLOW
problem by using the Faybusovich vector field. We recall from Remark 5.1
that for gradient flows a simple halting criterion can be used. Since we are
considering problems with integer capacities, the maximum flow is integer,
and if

f (x*)& f (x~ )<1�2 (6.23)

where x* is a maximizer of the unperturbed problem, then the computation
can be halted. In the maxflow problem this translates to xp*&x~ p<1�2, and
in view of the small effect of the perturbation it will be enough to obtain

x~ p*&x~ p<1�4, (6.24)

where x~ p* is the asymptotic value of x~ p . From now on we drop the tilde
notation, with the understanding that we are dealing with the perturbed
problem. The complexity of the algorithm is a lower bound on the time
required for the above to hold.

In general the flow will converge to a face of the polyheder and not to
a vertex. A face is defined by a set N$, |N$|<n&m, of indices such that
xN$=0. The next lemma shows that when xN$ are close to zero the com-
putation can be halted. First we recall a few definitions and results regard-
ing network flows. A cut in a network N is a partition of V into two sets
V1 , V2 such that s # V1 and t # V2 . We denote by Vi � Vj for i{ j the set
of edges from Vi to Vj . The capacity of a cut is defined as �i # V1 � V2

bi . It
is well known that the maximum flow equals the capacity of the cut with
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minimum capacity, and that given such a minimum cut V1 , V2 the flow
into t equals the flow across the cut,

xp= :
i # V1 � V2

xi& :
i # V2 � V1

x i . (6.25)

We now state

Lemma 6.2. Let N$ be the maximal set such that xN$ converge to zero;
then if xN$=O(1�n2) then xp*&xp�1�4.

Proof. Let V1 , V2 be a minimum capacity cut in N. In any maximum
flow, the edges from V1 to V2 are saturated (i.e., xi=bi), the corresponding
slack variables xi+ p are zero, and in edges from V2 to V1 the flow is zero.
Using the relation xi+xi+ p=bi we rewrite (6.25) as

xp= :
i # V1 � V2

(bi&xi+ p)& :
i # V2 � V1

xi , (6.26)

and since xp*=�i # V1 � V2
bi we have

xp&xp*=& :
i # V1 � V2

xi+ p& :
i # V2 � V1

x i . (6.27)

All the variables in this equation belong to N$, i.e., they eventually con-
verge to 0, and thus we have

xp*&xp�2p max xN$ . (6.28)

Thus xp*&xp�1�4 if xN$=O(1�n2). K

We are now ready to prove

Theorem 6.3. The CTC for MAXFLOW has complexity T=7(m2+L).

Proof. The complexity of the algorithm is the time required to obtain
xN$�1�n2. Using the analytical solution equation (6.6),

1�n2�exp \&t+ :
j # B

: ji ln xj+ , (6.29)

where B is a basic set of the optimal solution. Here we have used the fact
that the 2i are positive integers. To compute the bound on t we first find
a bound on

;i= } :
j # B

:ji ln x j } . (6.30)
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Using |:ji |�3 we have

;i�3 :
j # B

|ln xj |. (6.31)

We partition the set B into two sets, a set B1 of indices that correspond to
coordinates that converge to ``small'' values (less than 1) and a set B2 of
indices that correspond to coordinates that converge to values larger than
1. For i # B1 we have from (6.20) that |ln xi |�2m. For i # B2 , i{ p, we
have 1�xi�bi ; i.e., �i # B2, i{ p |ln xj |��j ln bj�L. The variable xp is not
bounded; however, by flow conservation it is less than the sum of the other
variables, i.e., ln xp�L. By combining these bounds we obtain

;i�6m2+6L. (6.32)

We now have

1�n2�exp(&t+6(m2+L)) (6.33)

which is satisfied for t�7(m2+L). K

Remark 6.3. The above analysis was carried out specifically for the LP
formulation of the MAXFLOW problem. Similar complexity bounds will
hold for other problems defined by TUM constraint matrices.

Remark 6.4. Parallel algorithms for the MAXFLOW problem are dis-
cussed for example in [51]. The best algorithms described there have time
complexity O( |V|2 log |V| ) and use O(- |E| ) processors. In our notation
this is O(n log n), which is better than our algorithm.

7. COMPLEXITY CLASSES

We have defined time complexity for a class of continuous time systems.5

In the following we compare complexity in our model with the classical
theory, so we consider integer or rational inputs. The operations which
define a formula make it computable in NC. However, for the definition of the
logarithmic time complexity class a stricter form of uniformity is required, e.g.,
allowing only those operations which are computable in AC0 [8].

Definition 7.1. A problem is said to be in CLOG (continuous log) if
it has a CTC with a polynomial number of variables and logarithmic time
complexity.
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This is a counterpart of the classical NC1 [8]. We have shown that
MAX (for integer inputs) is in CLOG. The counterpart of the classical P
is CP:

Definition 7.2. A problem is said to be in CP (continuous P) if it has
a CTC with a polynomial number of variables and polynomial time
complexity.

In Section 6 we have shown a CTC for the maximum network flow
problem which places it in CP. The maximum network flow problem is
P-complete relative to logspace Turing reductions [52]. Relying on this result
we argue that P�CP: If we use the Turing reductions from a P problem
to maximum network flow then all efficient Turing computations can be
performed polynomially in our framework if we allow the pre-processing
required for the reduction. Using Turing reductions which are outside our
model might be considered unsatisfactory, but at the moment we know
how to solve only specific problems in our framework if we do not use a
pre-processing stage. In this context we mention the related result that
approximating the fixed point of an NC contracting mapping is P-complete
[37] and note that contracting maps converge exponentially to fixed
points. This means that an NC vector field is sufficient to obtain the classi-
cal P. The dynamical system used to solve the maximum network flow
problem is a gradient flow, so the subclass of CP which consists of analyti-
cally solvable gradient flows can be considered as computationally power-
ful as P.

As of yet we have no argument for the inclusion CP�P. The analytical
solution is no help in computing the attractor of the system, as exemplified
with the MAX and MAXFLOW problems. However, we believe that a
polynomial time simulation of the ODE with some numerical integration
scheme should be possible for the class of vector fields considered in this
paper.

8. DISCUSSION

In the following we suggest possible generalizations and variations of the
model presented here. With no knowledge on bounds on the time to reach
the trapping region we can resort to probabilistic verification of an attrac-
tor: when it is suspected that a fixed point is approached, a number of tra-
jectories are initiated in an =-ball around the trajectory. If this ball shrinks
then with high probability the fixed point is an attractor. If the ball has
expanded in some direction, then the fixed point is a saddle point. This
yields a Co-RP type of complexity class which is applicable to gradient
flows, for example [39]. Here we still need to know some initial condition
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which leads to the desired attractor. When even this information is not
known, one can nondeterministically choose an initial condition in the
appropriate basin of attraction.

In this paper only fixed point attractors were considered. In another
paper [39] computation of chaotic attractors is discussed. Such attractors
are found to be computable efficiently by means of nondeterminism (in a
different sense than the one mentioned above). The inherent difference
between fixed points and chaotic attractors has lead to the conjecture that
for the dynamical systems complexity classes CP{CNP [39]. This may
shed light on the P vs NP question in standard complexity theory.

In this paper we defined the input to be the parameters of the CTC,
while the vector field with an initial condition constitutes the continuous
algorithm. Another input convention can be considered, namely treating
the initial condition as input. Such an approach is motivated by classifica-
tion problems and attractor models of associative memory [1]. This is also
how a Turing machine works: the inputs (with the initial state) are the
initial configuration for a Turing machine, and the computation converges
to a fixed point which corresponds to the decision accept�reject. Treating
the initial condition as input in our framework has the problem that the
computation time for inputs near the basin boundary is arbitrarily long.
Boundaries present problems of decidability in other models as well: for
example, in Ko's framework [53] an algorithm is allowed to err for a set
of small measure in the vicinity of the boundary. In this framework there
exist boundary sets (Julia sets) of computable functions that are not recur-
sively approximable [54]. Even in a model of computation over the real
numbers, such as the BSS model [11], there are boundary sets that are not
recursive. Extensions of our continuous time computer and related models
are currently under consideration.
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