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We analyze a class of ordinary differential equations representing a simplified model of a genetic
network. In this network, the model genes control the production rates of other genes by a logical
function. The dynamics in these equations are represented by a directed graph-dimamsional
hypercube §-cube in which each edge is directed in a unique orientation. The vertices of the
n-cube correspond to orthants of state space, and the edges correspond to boundaries between
adjacent orthants. The dynamics in these equations can be represented symbolically. Starting from
a point on the boundary between neighboring orthants, the equation is integrated until the boundary
is crossed for a second time. Each different cycle, corresponding to a different sequence of orthants
that are traversed during the integration of the equation always starting on a boundary and ending
the first time that same boundary is reached, generates a different letter of the alphabet. A word
consists of a sequence of letters corresponding to a possible sequence of orthants that arise from
integration of the equation starting and ending on the same boundary. The union of the words
defines the language. Letters and words correspond to analytically computable Paiaparef the
equation. This formalism allows us to define bifurcations of chaotic dynamics of the differential
equation that correspond to changes in the associated language. Qualitative knowledge about the
dynamics found by integrating the equation can be used to help solve the inverse problem of
determining the underlying network generating the dynamics. This work places the study of
dynamics in genetic networks in a context comprising both nonlinear dynamics and the theory of
computation. ©2001 American Institute of Physic§DOI: 10.1063/1.1336498

Networks of genes underlie the normal development and guages. Further, based on observation of qualitative
function of organisms. Information about the structure of  properties of the dynamics, represented by the levels of
the genome of humans and other organisms is increasing activities of genes and whether their products are in-
exponentially. However, the ways in which the genes creasing or decreasing, it is possible to devise methods to
regulate and control behavior are still not well under-  carry out the inverse problem—i.e., to determine the un-
stood. A simple mathematical model is discussed in which derlying logical network generating the observed dynam-
outputs from a gene act to control and regulate the activ-  ics. This work places the study of dynamics in gene net-
ity of other genes in the network. The interactions can be Works in a computational perspective and may lead to
represented as simple logical rules. However, the result- new methods to study the functional properties in gene
ing dynamics can be quite complex, even in simple net- Nnetworks.

works composed of only four model genes. Therefore, it is
useful to adopt symbolic methods to describe the dynam-
ics. The symbolic methods represent complicated dynam-
ics by strings of symbols, and a correspondence can be Recent years have witnessed exponential increases in
established with logical automata that generate similar our knowledge about the sequences of nucleotides in the
symbolic strings. Changes in parameters in the simple genomes of living organisms. In addition, gene expression
model can elicit changes in the symbolic sequences, cor- chips now enable scientists to monitor activity levels of thou-
responding to bifurcations between different patterns of sands of genes simultaneou$fy. These experimental ad-
chaotic dynamics. Thus, the gene networks can be vances are leading us into a new era in which the overriding
thought of as computational devices that generate lan- questions will involve understanding the mechanisms that
regulate gene expression, and lead to the coordinated func-
tion of multiple genes. The current work is based on the

I. INTRODUCTION
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the interactions among genes may suffice to understand thwl model. The logical structure of E(L) can be captured by
functioning of gene networksiii ) a simplified mathematical a differential equatiof>®®To a continuous variablg,(t),
framework may be suitable to capture a variety of qualitativewe associate a discrete variatdgt),

features of genetic networks that are relevant to their func- P . . B

tional and computational abilities; an@v) symbolic dy- Xi()=0 if x;(1)<0;  otherwise, X;(t)=1. @
namic approaches to dynamical systdfhand analysis of For any logical network, we define an analogous differential
languages in the theory of computafiohform a natural equation,

bridge to consider the dynamical and computational proper-

ties of differential equations modeling genetic networks. h —Xi N X (DX (D) - X (3),

This work is rooted in early studies by McCulloch and dt ! z K
Pitts, who proposed that binary switching devices operating i=1 . N 3)
in discrete time could be used to model neural netwBrks. e
They showed that while networks composed of a finite numwhereX;(X; (j).Xi,(j), - . . X; (j)) is a scalar whose sign
ber of such neurons are computationally equivalent to finitds negative(positive if the corresponding logical variable
state machines, a countable number of these neurons had(X;(j), Xi2(j), - . . X (j)) is 0(2).

potentially the power of a Turing machine. Largely inspired  For each variable, the temporal evolution is governed by
by the original McCulloch and Pitts model of the neuron,a first order piecewise linear differential equation. Let
Kauffman proposed that genetic networks could be modelegtl,tz, ... b, denote theswitch timesvhen any variable of
by random Boolean networks in which time is discrete antthe network crosses 0. The solution of E8). for each vari-

each element computes a Boolean function based on the vaplex; for t<t<tj;q, is
ues of inputs to that elemehtln contrast to the work on (-t
neural networks, in which emphasis was placed on the com-  Xi(D)=Xi(tj) & 7
putational propertie® ! in Kauffman’s analysis of genetic FNOG (D)X () X (j)(1—e 1)
. . I Il 1 I2 L K .
networks, emphasis was placed on dynamic aspects. Steady
states and cycles in the logical network were equated with (4

differentiated cell types in the organism and a variety Ofrpis equation has the following property. Al trajectories in a

- 3
extensions have been exploréd: o _ given orthant in state space are directed towards a focal
Since gene networks do not act in discrete time and genfoint. I the focal point lies in a different orthant from the

product concentrations are continuous variables, we believg,iio| condition, then, in general, eventually a threshold hy-

that the discrete networks above, or even asynchronous VeSerplane will be crossed. When the threshold hyperplane is

sions of them, are less suitable to model gene networks thatgssed. a new focal point may be selected based on the
ordinary differential equations in which gene interactions ar§ nderlying equations of motion.

incorporated as logical functiori$-22 Differential equations Even though Eq(3) is more realistic than Eq1) as a
and logical networks have been proposed to model a variefy,,qe for biological systems, this equation still is a highly

: . —27
of different specific gene networl%%_. _oversimplified model for real systems. Yet this equation has
In this paper we analyze genetic network models both ing 4k aple mathematical properties that facilitate theoretical

terms of computational capabilities and in terms of dynami-ynayysis. Moreover, there is an expectation, demonstrated in

cal properties. This combination should provide an interestggme simple examples, that the qualitative dynamics in the

ing bridge between computer science and dynamical Sy§yode| system will be preserved in more realistic versions,
tems. for example, when the discontinuous step functions are re-
placed by continuous sigmoidal functiotfs.
IIl. A DIFFERENTIAL EQUATION In the differential equation, in general only one variable
In this section we briefly present a mathematical modeWill cross its threshold at a given time. Therefore, the dy-
of gene networks. Since many aspects of the model haveamics in the differential equation can be mapped on an
recently been reviewett;?? we refer the reader to these ear- N-cube where directed edges represent allowed transition be-

lier publications for further mathematical details. tween logical states. The allowed transitions are also equiva-
A Boolean switching network wittN elements is repre- lent to the allowed transitions in an asynchronous switching
sented network with the same logical structute!®18
. . . . Further, for networks in which there is no self-input,
Xi(J+ D= Ai(Xi, (1. Xi,(1), - X, (1)), each edge of thél-cube representation will have a unique
i—1....N, 1) orientation'®*8 If the network has self-input, there may oc-

cur black walls or white wall$? threshold hyperplanes for

where A;(X; (j).Xi,(i), - - - X (1)) €{0,1} and K is the  which nearby trajectories approach or retr@aspectively
number of inputs. This is a discrete time and discrete statéom both sides. These can be represented orNthabe by
space system. Therefore, it must eventually reach a fixed pair of arrows pointing inward from each end of the edge,
point or cycle under iteration. or outward, respectively. Self-input may in some cases be an

Since biological systems are not believed to have clockappropriate description of autocatalysis, wherein a gene’s
ing devices that simultaneously update the network, a differprotein product either represses or activates its own synthe-
ential equation would be a more suitable class of mathematsis, as in the case of viral gen@d and crg in bacteriophage
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TABLE I. Truth table for a four-variable Boolean network. This defines the 0110 1110
mapping for a discrete-time network as well as the signs of the interaction
terms in the differential equations for continuous-time netwdiksthis
casew, ., etc., should be interpreted rather as the signdaf/@t) +w].

(XYt Wit (W2);  Xisa (WXt Vira (xy): Ziy1
(00 0 (00 1 (00 1 (00 1 0100 1100
(01 1 (01 0 (01 0 (01 1
(10 1 (10 0 (10 0 (10 0
(11 0 (11) 1 (11) 0 (11 1

0111

111

lambda®*2® We will primarily be concerned here with net-
works with no self-input, though this is by no means essen- o ot
tial. We define two networks to belong to the sastreictural 0010
equivalence class their directedN-cube representations are S oort
identical under a symmetry operation of tNecube. How- 1011
ever, since changes in the location of the focal po{atg, oot
can lead to bifurcations in the dynamics even though the 1001
directed graph representation is unchanged, the structure
equivalence class is not necessarily sufficient to specify the
dynamics.

In some cases, thid-cube mapping gives precise infor- FIG. 1. 4-cube representation of a switching network. An associated differ-
mation about the qualitative dynamics of its associated dif_ential equation, Eq(5), displays chaotic dynamics. Tht_a bold lines corre-

. . . spond to the two cyclegl and B that occur on the chaotic attractor. Based

ferential equation. A vertex on thi-cube with only edges g, kg 1 in Mestlet al. (Ref. 20.
directed towards it corresponds to a stable steady state in the
differential equation. A cycle on thE-cube is attracting if
for each vertex on the cycle, each of tNe- 2 adjacent ver- The directed graph on tH¥-cube is generated by draw-
tices not on the cycle are directed towards it. An attractingng arrows from each vertex in the left-hand column to all
cycle on theN-cube will be associated with either a stable adjacent verticegi.e., vertices that lie on a Hamming dis-
limit cycle or a stable focus in the ordinary differential tance of 1 away from the vertex in the left-hand colyriimat
equations? Chaotic dynamics arises in systems with mul- lie on a shortest route from that vertex to the vertex in the
tiple cycles passing through individual vertices on theright-hand column. The number of directed edges emanating
N-cube but no firm results allow us to identify which differ- from a given vertex is equal to the Hamming distance be-
ential equations admit chaos based onftheube mapping. tween that state in the truth table at tirtt® and the target

We illustrate these ideas with a four-dimensional net-state at time t(+1). For example, there are three edges di-
work that displays chaotic dynami€$The network structure rected out from 0000 towards 0001, 0010, and 0100. The
is defined by the truth tables for each variable in Table I.N-cube representation for this network is shown in Fig. 1.

1010

0000 1000

This is equivalent to the single truth table in Table II. The four-dimensional differential equation,
B X+ XX
—= —C—Xq,
TABLE II. The combined truth table for the Boolean network in Table I. dt (XaXq 2Xa) L
Some of the associated differential equations with this sign structure give q
haotic d ics. X _
chaotic dymamies d_t2 = 2(Xy Xy + X, Xy) — 1.3762- X5,
(wxy2), (WXYD)141 5
dx
(0000 0111 78 _
(000 0011 at 2X1X5,—0.8024- X3,
(0010 1111
(0011 1011 dx, ——
(0100 1100 HZZ(X1X3+ X3)—1.2682- X4,
(0101 1000
Egﬂ% gégi whereX=1-X, andc is a constant to be selected is consis-
(1000 0001 tent with the transition diagram in Fig. 1, when=1.2546
100 0101 this equation displays chad%.We return to this example
(1001
(1010 1001 after developing some additional terminology.
(1011 1101
(1100 1000
(1102 1100 I1l. SYMBOLIC DYNAMICS OF GENETIC NETWORKS
111 0001 . . .
5111?) 0101 Symbolic methods have provided powerful techniques

for analysis of dynamical systemsSince symbolic methods
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are discrete, they are also amenable to analysis using the We assume that all transients have passed and select an
theory of computatioh and in particular the theory of edgee, that is traversed during the dynamics. Then we inte-
automata. Several works have explored the interface be-grate Eq.(3) until the edge is traversed agaifiar the first
tween symbolic dynamic representations of nonlinear dyiime The sequence of edges of the graph that were traversed
namical systems and computatibh?®*°Here we choose a define a cycle, that we associate with a symbol. Each differ-
particular definition of symbolic dynamics based on theent cycle, that starts and ends efpwhen that edge is first
Poincaresection, and show how this symbolic dynamics pro-encountered, generates a new symbol. The set of symbols so
vides a link between the qualitative dynamics of E2).and  generated defines the output alphabet. The set of all strings
the theory of computation, thus enabling computational intepresenting paths starting at initial conditions fregde-
terpretation of this dynamical system. fines the languagé€(ey). These definitions generate an inti-
We consider Eq(3) for the situation in which the dy- mate connection between languages and dynamics. Edges on
namics do not approach a stable fixed point. Therefore, ththe N-cube correspond to boundaries between orthants of
dynamics are either periodic, quasiperiodic, or chaaotic. phase space, so a cycle of edges corresponds to a return map
For any particular equation of the form of E), we  on an orthant boundary. The letters constituting the output
associate a generative finite state machine and a formal lamdphabet thus correspond t@nalytically or numerically
guage. Since there are various definitions of these terms, wamputablg return maps and the words correspond to com-
concisely describe our notation. positions of these return maps.
The hypercube dynamics do not describe completely the
underlying dynamical system. The hypercubes seem nonde-
A finite state machinés a tuple M=(Q,qg,%;,2¢,E) terministic (because there can be more than one outgoing
where: edge from a nodewhile the underlying dynamics are deter-
(1) Qs a finite set of states having one designated stgte: ministic, ar_1d the choice of outgoing _edge depgnds on the
exact location in phase space of a trajectory as it crosses the

Is the initial state; orthant boundary corresponding to a given edge. For an ex-
(2) 3; andX, are two sets of letters called the input alphabet y P 9 9 ge.

and the output alphabet, respectively; and act formulation as a language, the hypercube needs an input
(3) E is the partial transitior’\ functioE:Q—,>Q. Each edge alphabet in addition to the output alphabet. The input alpha-

. . , . bet is the real value that represents the exact position in
is associated with a set of letters frain and a string of ) .

phase space of the system on the incoming orthant boundary.
(0 or more letters from,,.

We think of this input alphabet as a hidden input, but must

The finite state machine can be represented as a graph fRmember it is there for the deterministic compgtation.
which each state is a node and the directed edges between W€ Now cgon&der.an example. In E@) for c=1.2546
nodes represent the partial transition function. Each traverd@ere is chaos. Starting on th? Edge_between 0011 and
of the automaton along the directed edges generatesré 1011, we encounter the following vertices in defining two
which is the concatenation of the strings of output alphabefYCles:

associated with the traversed edges. In this definition of a A:1011-1111-1101—1100- 1000— 0000— 0010
traverse, it has no designated end, and hence it can be

A. Definitions and notation

stopped or continue forever. The associated words can thus —0110-0111—0011-1011,

be finite and infinite. The set of such words for all the vari-

ous inputs constitutes thi@rmal languageassociated with B:1011-1001-1101-1100-1000-0000-0010
the (generativg state machine. In the theory of computation, —.0110-0111—0011—1011.

the sets of alphabet letters are finite and typically consist of
two letters only. In the model of computation over the real  The vertex in bold is the only vertex that differs between
numbers, the input alphabet is the infinite set of real valuesthe two cycles. From numerical integration we find that the
R, and the output alphabet is finite. Here, we allow for bothsymbol A can appear any number of times in sequence, but
sets to be of any size. the symbolB only appears singly. Then the language for this
Languages associated with finite state machines havingquation is8“(.A " B)*, wherek is either 0 or 1 and we take
finite alphabet sets are calleglgular. We follow the notation ~ B°=e. The first term arises because the first symbol gener-
of Ref. 5, p.28: le® be an alphabet, and,L;,L, be sets of ated may be5.
words on 3. LiL,={xy| xel;,yel,}, L°={¢}, L This language has been called th@den mean shifby
=LL"1 for i=1, L*=U{ L, L*=Uj_ ;L. The empty Lind and Marcug. This language can also be generated by
set having no word } and the singleton set including only the finite deterministic automaton diagrammed in Fig. 2
the empty word €} are both regular languages.Lif andL, called thegolden mean machiniey Crutchfield?®
are regular languages, so areJL,, L,L,, LT, andL; . In this case the alphabet is finitevo symbols. How-
ever, had we started on the edge between 1011 and 1001 the
language generated by the network would have been differ-
There are various ways to associate languages with thent. Now each cycle could loop an arbitrary number of times
dynamics of Eq(3). We first propose a conceptually simple around the4 loop defined above before returning to the edge
method that offers a clear connection between the dynamidsetween 1011 and 1001. Thus, the alphabet here is now in-
and formal languages. finite. This observation underscores both a weakness and a

B. Associating a language with Eq.  (3)
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FIG. 2. The finite state machine generating the language associated witt
chaotic dynamics in Eq5) with parametecc=1.2546.

strength of our formulation. Although it seems artificial to
generate different alphabets depending on the initial edgé;G. 3. Sketch of a trapping region in the 0,4, +) boundary, for the

: : : twork of Eq.(5) with c=1.2546, projected onto a plane orthogonal to
we propose that different languages associated with exaCtIS{:ctorFm, an unstable fixed point of cycld. This and the following two

the same attractor in the differential equati@ be consid-  figres are distorted to make the relevant regions visible. Based on(Bjg. 4
ered “in agreement.” in Mestl et al. (Ref. 20.

Although the association of the alphabet with return
maps to a hyperplane has a natural dynamical interpretation,
other conventions for associating languages with dynamicg/. SYMBOLIC DYNAMICS AND BIFURCATIONS
can also be adopted. OF CHAOTIC DYNAMICS

For example, in the example considered above we might . ) ) )
define languages based on sequences of vertices traversed ON€ of the central questions in the field of nonlinear
during the dynamics. Starting at vertex 1011 we can define gynamics is to determine the changes in qualitative dynamics

language with three letters: (i.e.,_the number, type, and stability (_)f invariant $etsdy-
namical systems as the parameters in those systems change.
A:1011-1111-1101, The symbolic representation of dynamics in E). provides
B:1011-1001-1101, a new method to represent qualita’give aspects of the dynam-
ics. Under changes of the focal points, there can be changes
C:1101—1100-1000-0000-0010-0110-0111 in the associated language.

We illustrate these ideas by returning to E§) and
—0011-1011. consider the dynamics that are observedcas changed.
The language is nowBC)X((AC)"BC)*, wherek=0,1.  Most of the values ofc given below can in principle be
The structure of the automaton is as beffay. 2) but the calculated exactly, using exact calculations of the return
edges that were associated withand B are now associated maps and their fixed poins*! with the parametec left
with AC andBC, respectively. Breaking up the cycles in this unspecified, and then solving ferunder the desired condi-
way can eliminate the possibility of infinite alphabets. tion. In practice, it is easier to do exact calculations with
The N-cube representation of a differential equation pro-particular values ot and locate a bifurcation point by trying
vides a way to classify networks in structural equivalencedifferent values ofc on either side. We denote the return
classes based on the symmetries of Mreube. Symbolic maps for thed and 5 cycles on the (0O;,+,+) boundary
dynamics provides a basis for discussing additional types dfy M 4, and Mz, respectively. Composite mappings we de-
equivalence for Eq(3) based on qualitative features of the note by, for exampleM g 4(X) =M 4(M5(X)). Whenx is on
dynamics. Two networks are in the sahgnamical equiva- the boundary between thé and 5 domains, the two map-
lence clasdf the languages associated with each network’spings are equivalent so in this case we sometimes use
attractors are identical, except for perhaps a fixed number d¥1 (x) =M 4(X) =M z(X).
initial letters. This latter exception allows one to concentrate ~ When c=1.2546, there is a trapping region in the (O,
on the long-term dynamics without much emphasis on the-,+,+) orthant boundary® shown schematically in Fig. 3.
initial state. For example, consider a differential equation ofF 33 is an unstable fixed point of th8 cycle. F 43 is an
the form of Eq.(3) (in any dimensiolh whose only attractor unstable fixed point of thel cycle. The stable and unstable
is a stable limit cycle in which each edge associated with thenanifolds of these points are indicated by the arrows. In the
limit cycle is traversed only once. Then, independent of theigure, everything is projected onto a plane orthogonal to the
chosen initial state, the language associated with the differay throughF 43, but some license has been taken in distort-
ential equation will bed* (after possibly a few initial let- ing the figure to make the regions clearer. It can be shown
terg. Thus, all dynamical systems of the form of E§) that  that the fractional linear maps associated with trajectories in
converge to a simple globally attracting limit cycle, are in thethese networks take straight lines to straight liffesnd this
same dynamical equivalence class using this definition. Notegpplies also to projections onto a plane. The line thro88h
however, that a network may have multiple attractors. and S2 is the separating boundary between the domains of
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definition (also called returning congf the A and B TABLE lll. Relative frequencies of occurrence gf and B in numerically
cycles We will denote this boundary tiy The dotted— generated sequences on trajectories of &g. for several values of the

. . . . ? i parameter.
dashed lines in Fig. 3 indicate the domains of definition of.

these two cycles as well as two othefsand D, to be intro- c Pr(A) Pr(B)
duced below. The large letters show which cycle applies in 12546 0.68 032
which region.S; is the intersection of the stable manifold, 1.2577 0.68 0.32
W3, of F 53 and the separating boundaby(S,=W3Nb). S, 1.2678 0.63 0.37
is the intersection of the unstable manifoltly, of F 5 and 1.2809 0.61 0.39

b (S,=W3Nb). S; is the intersection 0¥V and the inverse
image undeM , of W5, [ S;=W5NM 1 (W5)]. The triangle
with verticesF z3, S;, andS; is mapped into the two shaded
regions(images of thed and B domain parts of the triangle At c~1.2996, the chaotic dynamics are lost altogether as
under their respective mappingdhus, this large triangle is a stable cycle appears, consisting of 56 transitions, repre-
invariant, as is the smaller triangle composed of the twasented by the sequence of simple cycld€3C A BD. This
shaded regions. cycle becomes stable when the fixed point of the return map
This picture changes as the bifurcation parameteis  lying on the dominant eigenvector of the map’s matrix enters
changed. All of the key points and lines defining the regionghe returning cone for the cyclsee Ref. 2L
shift. Furthermore, the domains of definition of each cycle  The symbolic representation allows us to introduce a
also shift. These domains can be calculated from the cyclaovel type of bifurcation in chaotic dynamics—a change in
maps as can all of the manifolds and their imadesdetails, parameter that leads to a new language. Although the alpha-
see Ref. 2L As shown in Fig. 3, when=1.2546, the vertex bet does not change untd~1.2810, the language does
F 53 lies in the interior of the returning cone f@& and the change. At the original value of the bifurcation parameter,
verticesS; andS, lie on the boundary, of course, but away c=1.2546, the symbolic sequenB# never occurs. This is a
from the vertices of théprojected returning conesS; liesin ~ consequence of the fact that the attractor does not enter the
the interior of the returning cone foA. part of the shaded trapping region in tBedomain that is in
If we now increase the bifurcation parametgrywhen it  the image of the3 domain. However, when reaches about
reaches about 1.2703 the pofitleaves the returning cones 1.2577, the attractor moves into this region, and the symbolic
for both cycles—in fact, it leaves the-(,+,+) orthant al- sequence&33 begins to occur in trajectories on the attractor.
together. Thus, the full trapping region is disrupted. How-Thus, the language is no longBf(.A " B)*. After the bifur-
ever, since the shaded triangle of Fig. 3 is also a trappingation, the sequendB55 is still not possible as the acces-
region, and sinces,; is not part of it, this smaller trapping sible part of the53 domain maps entirely into thd domain.
region persistsS; falls out of the returning cone farl at  The exact determination of this bifurcation value and the
c~1.2762, butS; is also not in the smaller trapping region. way in which B5 begins to appear in the attractor are ex-
At c~1.2763,F 53 falls out of the returning cone faB, as  plained in the Appendix.
does the other vertex of the shaded trapping redibn(Ss;). The frequencies of occurrence of the letters may change
At this point the smaller trapping region is also disrupted.continuously even between the language-bifurcation points.
However, the images of this trapping region under the mapFor example, the relative frequenci€approximate prob-
pings continue to shrink, and the attractor itself stays awaybilities) of A’s andB's in numerically generated sequences
from the boundary of the shaded region betwé&g and for a few values ot are listed in Table IlI.
M 4(S3). There is, in other words, a still smaller trapping Another way to look at these changes is in terms of the
region as yet unaffected by the fact that these points have lefelative frequency of various lengths of strings of consecu-
the returning cone foB. This is demonstrated in the appen- tive A’s following a given5. We list here the approximate
dix. probabilities of the string3B3, and of 1,2 or 34’'s between
The dynamical behavior changes significantly when successivés's for a few parameter values, based on numeri-
~1.2810 at which poin§, also leaves the returning cone for cal integrationgTable V).
B (and.A), and moves onto the boundary between the return-  The probability of a3 following a 5 increases with the
ing cones for two other cycles, and D, respectively, parameter, and the probabilities of strings.4% generally
decreases. As a result, the expected value of the length of a
C:1011-1111-1101-1100- 1000— 00000010

—0011—-1011,
TABLE IV. Relative frequencies of occurrence B8 and.A?, A2, and.A*
between consecutivB's in trajectories of Eq(5), for several values of the

D:1011-1001-1101—1100—1000— 00000010

parameter.
—0011-1011. c PIBB)  PAY) P4} PrA?)
For ¢ near this value, the attractor passes clos§tand so 1.2546 0.00 0.51 0.21 0.13
trajectories on the attractor fall outside the returning cones of L.2577 0.001 0.48 0.24 0.13
. 1.2678 0.12 0.46 0.24 0.09
A andB and into those of andD. Thus, the alphabet of the | 5599 017 0.47 0.20 0.08

attractor increases to the set of four lettérs 5, C, D}.
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string of A’s following a B decreases from about 2.1 when TABLE V. Partial truth table reconstructed from a trajectory on the chaotic
ttractor.
c=1.2546 to about 1.5 whec= 1.2809. attractor

The languages corresponding to the chaotic dynamics (wxy2), (WXYD) s
can be complicated, especially where the alphabet consists of 0000 o111
four letters, and it can be rather difficult to determine the (000
precise language for a given parameter value. Just before the (0010 1111
bifurcation where chaos is lost, however, the language ap- (0011 1011
pears to be fairly simple. Long numerical integrations sug- (0100
gest that atc=1.2995, the language consists entirely of Egﬂg 0101
words made up of the subsequenceS3CABD and (011 0001
ABAABD. At ¢=1.2986 ABD may be repeated several (1000 0001
times following an occurrence ofAB.A and for slightly (1001 0101
smaller values ot the language appears to be even more (1010
complex. (1019 1101

(1100 1000

(1109 1100
V. THE INVERSE PROBLEM (1110

(1119 0101

A practical issue is to determine the network based
solely on the observed dynamics. We call this theerse
problem This means determining the inputs and the assOCly, 4, table are associated with the five states that are not part

ated logical functions for each of the genes of the network.Of the chaotic attractofbold lines in Fig. 1.

We believe that the issue of determining the quantitative Since we have assumed that no gene has self-input, we

values of parameters is a more difficult and less compellin : . . .
- . : an continue solving the inverse problem by assuming that
problem than determining the underlying logical structure o . ; ;
each gene is a logical function of the other three, eng.,

the network. Given the current possibility of assaying thedepends orx.y,z. Consequently, we can rewrite the single

expression of thousands of genes smultgneously, it W'.” b"Jfruth table above, as four separate truth tables, one for each
necessary to develop methods to determine functional inter-

actions between genes based on the observed dynamics ,Elf— the genegTable V). The blanks are associated with val-
9 Y | "ues that are not determined by the entries in the truth Table

though the difficulty of carrying out this procedure in a reaI—V’ that is, edges on thil-cube with neither vertex on the

istic setting cannot be underestimated, several workers have[ ; .
. . . ..._attractor(see Fig. 1 Notice that only three values are not
tried to work out the genetic networks underlying specific

307 . : determined. Potentially, these entries could be filled in with
systems- Earlier proposals of general theoretical meth- . . . .
. : . eithe a 1 or 0,leading to a total of eight different networks
ods for carrying out the inverse problem were given by Glas? ; : . X : .
15 hat are consistent with the information given. However, if
and Young®® Liang and colleagué$ and Akutsu and ) . .
334 . - we further assume that each gene in the network is a function
colleagues®3* Here we illustrate how the inverse problem ) o
. of only two of the other genes in the netwdthkis is the rule
can be solved based on the example that shows chaotic dy- . - . .
. . . éovernmg the construction of E¢5)], then the information
namics that we discussed in Sec. Ill. ] .
. is adequate to reconstruct Table I. For example, consider the
We assume that we know the following: .
control of genex. From the observation that statesyz
(1) No gene has self-input. This means that the logical func=010 andwyz=011 are associated with different values of
tion controlling a given gene does not depend on thex;, 1, we know thatx must be a function of. Similarly, since
logical state of that gene. wyz=011 andwyz=111 are associated with different val-
(2) The sequence of logical states observed during chaotiges ofx;, 1, we know thatx must be a function ofv. Thus,x
dynamics. This implies that we are able to measure thés a function ofw andz and the information is adequate to
levels of the four variables over time and classify themdetermine the complete truth table forin a similar fashion,
into two levels, high(1) and low (0), by applying a we can determine that is a function ofxy, and we can
threshold operation. Thus, we assume that we know theeconstruct the truth tables in Table I. We emphasize that the
logical sequences associated with the two cyclic se-
qlﬁenquA’fh fch f h of th iables f TABLE VI. Partial truth tables for each variable reconstructed from a tra-
(3) The sign of the rate of change of each of the variables 0]'ectory on the chaotic attractor, assuming no self-input.
each of the states. By E(p), the rates of change of each
variable only depends on the orthant in phase space. Furtxy2: W (Wy2de  Xeer (WXDy Yeen (WXY)e  Zsg
ther, the sign of the rate of change of each variable is g 0 (000 1 (000 1 (000 1

immediately determined from the truth table in Table II. (o001 0 (001 (001 1 (00D 1

For example, from the first line in Table Il, we know that (010 1 (010 1 (010 0 (010

if all the variables are low, then variable will be de- (011 1 (011) 0 (011) 0 (012) 1

creasing, whereas variablesy,z will be increasing. 88(1); 1 218% 2 883 8 88% i
. . (110 0 (110 (110 0 (110 0

Thus, following a trajectory on the attractor, we can par- ;15 0 111) 1 (111) 0 (111) 1

tially fill in the truth table as in Table V. The blanks in the
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ambiguity in three values before invoking the 2-input rule is
a result of this particular network’s attractor. Other nets with
attractors that cover more of phase space may have no am
biguity even without the 2-input rule.

Although, this is an artificial example, it does give a
method that can be used to reconstruct qualitative informa-
tion about the interactions in a complex network based on
limited information about the dynamics in the network.

VI. CONCLUSIONS

In this paper, we have shown how symbolic methods
that arise in the study of computation theory can be applied ' ' o
to represent qualitative dynamics in models of gene netflG. 4. Sketch of a smaller trapping region than the one in Figc3 (

works. Thouah application of svmbolic methods to non“near= 1.2546). Note that the triangular region in tifedomain with vertex
’ g pPp y M z.45(S,) is also in the image of th& domain[the triangle with vertices

dynamics has a long history, the current work emphasizeg (s,), M4(S,), andF ] and therefore trajectories passing through this
the computational aspects of dynamical systems and masggion contain symbolic subsequendgis.

lead to novel ways to develop dynamical implementations of

automata. The notion of associating bifurcations in dynamics o ] . ) ]
in chaotic systems with changes in the associated |angua§\é<pre55|on in organisms is carried out by functions called

may be particularly useful. ‘canalizing” in which one or more of the input .variables
The extent to which the methods here are applicable t6°rces the output to a fixed vald&.The effects of incorpo-
real genetic systems is not known. The current equations aféting canalizing functions in model gene control networks
not realistic for many reasoné) control of gene expression N€eds further analysis. Although, genetic networks may not
is not on or off but is gradedii) there may be time delays operatg in chaotic regimes, the curre_nt _work stresse_s the
associated with synthesis or degradation of gene products ngfalysis of these networks from a qualitative, computational
accounted for here(ii) decay rates of different gene prod- Perspective that may be represented symbolically. Finally,
ucts are different(iv) although a single gene product might ven if the current formalism ca_nr_mt. ca_ptu.re the quahta‘uv_e
control expression of many different genes, the threshol@SPects of real gene networks, it is mtngtgng that synthetic
levels for activation and/or inhibition may be different for N€tworks built out of genetic componetfts® have qualita- .
different targets. However, all these represent quantitativélVe dynamic properties that are well represented by the dif-
changes in the equations, and the extent to which thedérential equations here.
changes influence the qualitative properties of the equations
is still largely unknown. Further, it is intriguing that a recent ACKNOWLEDGMENTS
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gene control can be approximated by a logical function base[:,Jonversations. This research has been supported by grants
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In organisms, development and function usually appear,

L . APPENDIX

to be orderly, and it is reasonable to question the relevance
of chaotic dynamics to gene control mechanisms. The num- We wish to locate the bifurcation point where the lan-
ber of genes in humans is not known, but is likely of theguage associated with the dynamics on the attractor changes
order of 100 000 genes. The mechanisms of control of indito allow the substrind33, and to understand its appearance.
vidual genes are now being worked out. It now appears The trapping region discussed by Mestlal?° (Fig. 3),
likely that the expression of individual genes will be con- contains a part of the intersection of tifedomain and the
trolled by multiple inputqe.g., the regulatory circuit worked image of the3 domain[ M z maps the triangle with vertices
out for a sea urchin gene had seven target sites for DN/, , S, andF 43 into the triangle with verticeM (S,), M(S;)
binding protein¥’). Theoretical models of high dimensional andF z;]. Trajectories passing through this intersection con-
randomly constructed model gene netwofksy., using the tain the symbolic subsequen#, so we will call it theBB
notation in Sec. I, witiN>50 andK>7), showed that the domain. But this trapping region is by no means minimal.
usual circumstance is that the dynamics in such networks afgnder iterations of the mappings, it maps into itself, of
chaotic®® Based on these observations, it might be reasoneourse, and these images shrink. With the original parameter
able to expect that gene networks in organisms could operatalue, c=1.2546, two more iterations from the shaded re-
in chaotic regimes. However, the theoretical work assumegion of Fig. 3 lead to a trapping regidshaded region in Fig.
random networks with randomly constructed truth tables4) that still overlaps with thé38 domain. The way in which
and such assumptions probably do not hold in real organthese two mappings occur can be traced by means of the
isms. It seems reasonable to assume that the truth tables fiabeled points in the sketch. Every time a region crosses the
control of gene expression in organisms are not random. Faeparating boundary, between thed and 3 domains(the
example, Kauffman has hypothesized that regulation of gendotted—dashed line throud®, andS,) it folds on the next
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VeAs2) The shaded region in Fig. 5 is a trapping region. This
can be shown by considering it as the union of five polygonal
pieces defined by the following sets of vertices:
T.: Z,R1,M(Sy),Ry,
Toa: M 4(Z),M 4(R1),R4,R3,
Top: R3,Ry,M54(Ss), M 4(R2),
Tsa: Re,Rs,R2,M(Rs),
Tap: M _44(Z2) M 4u(R1), M 4(R2), M 54(S4) ,Rs, Re.
Clearly, M 4(T)=T,,UTyy.
> MS2) Also, M 4(T,,) CT3,UTap, sinceM 4(Z),M 4(R;), and
R3; map toM ,4(Z2),M 44(R;), andM(R3), while R, lies on
, the line segment betwed®; andRg so thatM (R,) lies on
sz the line segment betweekl(R3;) and M(Rg)=R,. By a
i ) : _ similar argumentM (R3) lies betweerM (S,) andR,.
Zgaghiit‘egz ffzgjél)” smaller trapping region that does not intersect the- M 4(T ) CT,. We have shown thal (Rs) an_d M (R4)
lie on the segment fronM (S,) to R,. A calculation is re-
quired to show thaM ;z4(S;) and M 4(R,) map underM z
into T, whenc=1.2546.
iteration since part of it is subject td 4 and the other part to M 4(T3a) CT3UT3p. UnderM 4, R, maps toM 4(R,)
Mz. The fold always first occurs on the image of the sepaand M(R;) maps to the line segment fromil z4(S,) to
rating boundaryM (b), the segment fronM(S,) to M(S,). M 4(R5). Rg maps toR, and Rs maps to the line segment

Consider first the part of the lowest shaded strip in Fig. 4rom M(R3) to R,. Note that the unstable fixed poiri, 43,
that lies in thes domain(with lower edge fronFz; t0 S,).  for the mapM 4 lies in Ty,

Under iteration oM 3, all points in this piece will eventually M (T3p) CT,. As shown aboveRs and Rg map to the

be mapped out into thd domain due to expansion aloild;  segment fromM(S;) to R,. M 44(Z) and M 44(R;) map
(the lower edgg with the exception of points along the underMpg to Z and R, respectively. And finally, as men-
stable manifold ofFz; [the segment fromM 4gg(S;) to  tioned aboveMz4(S,;) andM 4(R,) map undeM z into T,

F 53]. No other part of the shaded region is mapped back intavhenc=1.2546.

this piece, so we may clip it off and still have a trapping The crucial point is that thel. AB map has positive ei-
region. However, further iteration of this clipped trapping genvalues so that points on one side of the stable manifold at
region never entirely avoids thBB domain. Note that the Z (the line throughZ and R;) stay on the same side under
small triangle with tip aM 3 45(S,) also extends into thB5 iteration ofM 4 45. Points in the returning cone of.AB on
domain. Points on thés side of this part of the trapping the T, side stay on this side und@ 4,5z and move away
region follow the sequence of mappings4A5 and under from the stable manifold, while points on the other side also
iteration of this combined mapping either come back into themove away from the stable manifold, eventually crossing
same region or are ejected acrbsato the.A domain. How- into the B domain, and in particular, into the part of tle
ever, some points on the other side are sent back atrossdomain where3B occurs. Thus, it is essential to stay on the
again undeM 4 45. To demonstrate that points in this region T, side of the stable manifold &. This can be ensured as
must be on transients and not on the attractor, we look morkng asM 45(R,) lies on theT, side[ M z45(S,) lies on the
closely for a yet smaller trapping region. T, side if M 45(R,) doed.

Consider the shaded region shown in Fig. 5. The point Intuitively, the reason why trajectories must eventually
marked with a triangle and labeled is an unstable fixed leave the part of the trapping region of Fig. 4 that lies in the
point of the composite mapd 4 45. Thus, it and its images, BB domain is that even though they may return atset3
M 4(Z) and M 44(Z) (also marked by trianglgsform a  ejects them andd.AB sends them back, every iteration of
period-3 cycle of the full return maj; is the point at which  BAB maps part of this region across the stable manifold of
the stable manifold of thel.AB map atZ intersects the line 448 atZ, so that eventually all trajectories escape and enter
from M(S,;) to Mz45(S,), as shown.R, is the point at the trapping region of Fig. %except a set of measure zero,
which the unstable manifold of thd. A5 map atZ intersects  the part of the stable manifold of the unstable fixed point of
the fold line M(b). We note that althougR, is not in the  BAB that lies in the region
domain of definition(returning congfor the mapM 4 453, it Now we are ready to consider changionggain. First, if
lies in the image of this domain. In fact, the part of thewe decrease do ~1.2537 thenM z45(S,) lies in the A
unstable manifold aZ that lies on the line segment frofto ~ domain, while the rest of the picture remains qualitatively
R, but in the returning cone foM 4,5 is mapped to the unchanged so there is no possibility 86 occurring, even
entire line segment frodto R,. R, R4, Rs, andRg are the  based on the trapping region of Fig. 4. For larger values of
intersection points of the edges of two strips of the shadedve need the trapping region of Fig. 5, and this remains a
region with the separating boundary, Note thatM(Rg) trapping region untilc~1.2577 at which pointM 45(R,)
=R, sinceRg lies on the image unded.A of the unstable crosses over the stable manifoldotnd leaved ;. It is not
manifold of Z as well as orb, so underM z it maps to the easy to prove that this is sufficient to ensure th&toccurs
unstable manifold oZ and toM (b). on the attractoffit would require showing that trajectories

Map(S2) /7 -
o B
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