
Contributed article

Nine switch-affine neurons suffice for Turing universality

H.T. Siegelmanna,* , M. Margensternb

aFaculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa 32000, Israel
bInstitut Universitaire de Technologie de Metz, Universite´ de Metz, L.R.I.M. (Laboratoire de Recherches en Informatique de Metz),

57045 Metz Cedex 01, France

Received 25 November 1996; received in revised form 9 February 1999; accepted 9 February 1999

Abstract

In a previous work Pollack showed that a particular type of heterogeneous processor network is Turing universal. Siegelmann and Sontag
(1991) showed the universality of homogeneous networks of first-order neurons having piecewise-linear activation functions. Their result
was generalized by Kilian and Siegelmann (1996) to include various sigmoidal activation functions. Here we focus on a type of high-order
neurons called switch-affine neurons, with piecewise-linear activation functions, and prove that nine such neurons suffice for simulating
universal Turing machines.q 1999 Elsevier Science Ltd. All rights reserved.

Keywords:Recurrent neural networks; Turing machine; Universal computation; Tag systems

1. Introduction

The current notion of universal computation is based on
the model of Turing and the thesis by Church. Analog neural
networks are frequently viewed as abstract functional
devices able to perform computations. It is thus natural to
consider analog networks in terms of their computational
power in accordance with the classical discrete Turing
model.

In this work our model is an analog recurrent (asym-
metric) network of neurons. Each neuronxi computes a
polynomial Pi of its inputs with rational coefficients; the
resulting scalar passes through a simple piecewise nonli-
nearity. The update of a neuron can be written as

xi :� s�Pi�x��; �1�
wherePi is a polynomial ands is the saturated-linear func-
tion described by

s�x� :�
0 if x , 0

x if 0 # x # 1

1 if x . 1

:

8>><>>: �2�

Although the description of each neuron is simple and finite,
it may compute with unbounded precision. This assumption
of a continuous range of values in the neurons does not have

to describe reality; the network should rather be considered
a mathematical formulation of neurons having many pos-
sible activation values. We note that, except for the certain
type of “weak robustness” described by Siegelmann and
Sontag (1994) the network is not immune against noise,
and typically, in a noisy environment, it will not be compu-
tationally stronger than finite automata (Casey, 1996; Maass
& Orponen, 1998), or even definite language recognizers
(Maass & Sontag, 1999).

Our high-order neurons are constrained intoswitch-affine
ones. In such a neuron, the functionPi (from Eq. (1)) is a
sum of terms; each is a monomial of neuron and input vari-
ables adhering to the following constraint: a variable
appears with degree 1 in the term, and at most one variable
in each term takes a value in (0,1), whereas all the others are
in {0,1}. The latter neurons can be considered Boolean or
switch variables, and hence the nameswitch-affine.

As a result of the finiteness in the description of the model
and its constrained set of operations, these networks are
computationally bounded from above by the Turing
model. This bound is reached: it is known that such analog
networks are Turing universal even when the polynomial is
a linear function (Siegelmann & Sontag, 1991; Sun, Chen,
Lee, & Giles, 1991). The number of the neurons required for
universality with first-order neurons was estimated at 886
(Siegelmann and Sontag, 1995), and in later papers was
reduced to 96 (Koiran, Cosnard, & Garzon, 1994) and
down to 25 (Indyk, 1995). (The work of Pollack (1987) on
the universality of “neuring machines” should be recalled

Neural Networks 12 (1999) 593–600PERGAMON

Neural
Networks

0893-6080/99/$ - see front matterq 1999 Elsevier Science Ltd. All rights reserved.
PII: S0893-6080(99)00025-8

* Corresponding author. Tel:1 972-4-8294425.
E-mail address:iehava@ie.technion.ac.il (H.T. Siegelmann)

for its originality, although it consists of two different types
of neurons and uses discontinuous activation functions.
Thus Pollack’s model is heterogeneous and not an analog.
An intermediate model between Pollack’s and the current
one appears in Gavalda` and Siegelmann (1999). Also worth
mentioning is the pioneering work by Moore (1990) which
demonstrates another, though related, finite dimensional
construction of universal analog systems.)

Our main theorem states that:

Theorem 1. There is a universal neural network with nine
switch-affine neurons which is Turing universal.

The proof is constructive and an example network
appears in Fig. 2.

The article is organized as follows. We first recall thetag-
systemsmodel—a universal machine which is the basis of
our proof (Section 2), and then we construct a universal
neural network with nine switch-affine neurons which simu-
lates a tag system (Section 3).

2. Tag systems

In the late fifties and early sixties much work was
conducted to find small Turing machines that are still
universal. Shannon (1956) proved the existence of universal
Turing machines with only two states or with only two
letters. Minsky suggested a machine with 4 symbols and 7
states (Minsky, 1967), which was the world record until
1982. Then, Yuri Rogozhin (Rogozhin, 1982, 1996) estab-
lished small universal Turing machines with a number of
symbols and states of (2,18), (3,10), (4,6), (5,5), (7,4),
(10,3), (18,2).

All the above results by Minsky and Rogozhin were
obtained by simulating tag-systems, which are a computa-
tional model due to Post (1965). As proved by Coke–
Minsky (Minsky, 1967), tag-systems can simulate a univer-
sal Turing machine, although with a significant computa-
tional slow-down, and thus have universal computational
power. We take advantage of this same model to find a
very small universal neural network.

We take here the definitions and illustrations of (Margen-
stern, 1995). Ap-tag-system, withp a fixed positive integer,
is a calculus which is associated with a mapping from alpha-
betA into A*, the set of finite-length words onA. The image
of a [A is its production. One step in the computation
consists of performing the following three operations,
illustrated below forp � 2.

• ai , the first letter of thetaggedword submitted to the tag-
system, is memorized;

• the firstp letters of the word are erased;
• Pi , the production associated withai is appended at the

end of what remains from the tagged word.

This process is repeated on the word thus obtained until
either the tagged word has fewer thanp letters or the first
letter of the tagged word is ahalting letter. Halting letters
are, by definition, distinguished letters ofA for which the
computation halts. A single halting letter is enough, which
will be assumed in the sequel.

The Coke–Minsky theorem (see, for instance, Minsky
(1967) states that any deterministic Turing machine can
be simulated by a 2-tag-system. On the contrary, Wang
proved that the halting problem is decidable for any 1-tag-
system (Wang, 1963). It is worth noticing that tag-systems
yielded by Coke–Minsky theorem happen to halt only by
meeting the halting letter on data encoding a Turing config-
uration. In particular, this means that the tagged word has
always at least three letters. This will be assumed in our
proof. From now on, say simplytag-systemfor 2-tag-
system.

Here is an example of a tag-system with a tag-system
computation:

�3�

Universal tag-systems can be obtained either by directly
simulating the computation of a universal Turing machine
on the alphabet {0,1} as in Coke–Minsky (Minsky, 1967),
or by directly simulating a two-register machine computa-
tion. As they do not directly concern our purpose, details are
omitted here. We only note that tag systems suffer a signifi-
cant slow-down relative to the standard Turing machines,
and thus our result proves only Turing universality and
should not be interpreted complexity-wise as a Turing
equivalent (Fig. 1).

3. Turing machine simulation with nine neurons

Denote byv thetag word of the input, bytag its encod-
ing (to be specified in Section 3.1), by l the number of bits of
the encoding, and bytable the encoding of the internal
productions of the tag system. Our universal network
consists of six Boolean neurons (with value always in
{0,1}) and three continuous neurons. The continuous valued

H.T. Siegelmann, M. Margenstern / Neural Networks 12 (1999) 593–600594

Fig. 1. Tag system.

neurons areW, L and K: W encodes the tagged word,L
corresponds to the lengthl of the encoding tag inW (it
actually stores the value of 42l), andK holds table , an
encoding of the production rules. We next describe the role
of the Boolean neurons.C1 andC2 are twocontrol neurons;
their value indicates which of the four stages in the simula-
tion (to be discussed in Section 3.3) is being processed.
During the network operation strings of digits are read
and popped out ofW andK. EW, EK andEr assist in recog-
nizing the state of the popped sequence.EW signifies that the
last stream of consecutive digits read out fromW is soon to
form a code of a letter (from A).EK andEr relate toK in a
similar manner;EK signifies that the network is to finish
reading an encoded letter from a production rule, whileEr

signifies that the stream will soon form an encoding of a
whole production rule.H is the Halting neuron.

The network uses four binary input channels:Iv , Iv, Ib, Ie.
Channel Iv transfers the binary tagged wordv as a
sequence of bits and it defaults to 0 when it does not trans-
mit. ChannelIv (‘v’ is for validation) is set to 1 whenIv
starts sending its input and remains set to 1 until the last

input digit of the tagged word has reached the network;
afterwards,Iv turns to 0 and remains forever with that
value. ChannelsIb and Ie are in the form of impulse-
response:Ib (‘b’ for beginning of input) is 1 only with the
first 1 bit of Iv, andIe (‘e’ for end of input) is 1 only at the
time whenIv turns from 1 to 0. BothIb andIe are in 0 in all
other times.

For the sake of readability we first describe the encoding
we use forW, L andK (Section 3.1) and only then go to the
details of the simulation.

3.1. Encodings

Let us encode the letters of the tag-system alphabet, let it
beA� { a1;…;aN}, whereN is the number of letters inA, in
the following way:ai is encoded as cod�ai� � 1i3, where the
symbol “3” has the role of aright delimiter in order to
distinguish the letters ofA. Recall that we have only one
halting letter, this will beaN, the last one in the alphabet.

More generally, the words in the alphabetA are encoded
in the following way. Letm� b1…bk be a word onA with

H.T. Siegelmann, M. Margenstern / Neural Networks 12 (1999) 593–600 595

Fig. 2. The universal neural network.

bj � aij , then m is encoded as cod�m� �
cod�ai1�…cod�aik� � 1i13…1ik3: The encoding of the
productions is similar to that of the tagged word. Let
P1;…;PN21 be the productions of the considered tag-system
in which PN is the single halting production that can be

considered as empty, then this set is encoded by
135cod�P1�5…cod�PN21�55:

However, as the neurons are not able to store sequences
but rather numbers, the neuronW will keep a base-4 repre-
sentation of the encoding of the tagged word, andK will
constitute a base-6 representation of the encoded produc-
tions.W stores the encoding of a tagged wordm as the real
numberw�m� defined by

Xk
j�1

1

4�Su,j uiuu11�
Xui j u
u�1

1
4u

0@ 1A 1
3

4ui j u11

0@ 1A;
whereui ju denotes the number of bits in the encoding ofaij .
The constanttable is defined similarly but in base 6. Notice
that similar Cantor-like encoding was introduced for exam-
ple in Siegelmann and Sontag (1994) and its advantage will
become clear later in this proof.

3.2. The read-in stage

The initial configuration of our neural network is 0 in all
neurons. The network is then activated by the input signals.
The process of reading in the input and initiating the
network is called theread-in stage. This stage occurs
when the control neurons have the values (C1, C2) � (0,0).
It updates by the following equations:

W :� �2IW 1 1 1 W� 1v

4
;

L :� Ib

4
1

Iv

4
L;

K :� Ie·table ;

C1 :� Ie:

The first update equation describes the on-line accumula-
tion of cod(v) in neuronW. At the same time the lengthl,
stored inL, is incremented by 1 each step for as long as
Iv � 1. When this process is completed,Iv becomes 0, and
simultaneouslyIe is set to 1. This yields the loading of
table to K and neuronC1 is set to 1 as a preparation for
the next stage, i.e. the first stage of a computation cycle. The
content of the neurons at this moment is as follows:

W L K C1 C2 EW EK Er H

tag 42` table 1 0 0 0 0 0

We are now ready to describe our nine-neuron network
and prove that it simulates a tag-system and thus is univer-
sal. The update equations of the neurons are presented in
Fig. 2. For clarity, Fig. 3 demonstrates the switch-affine
update equation of neuronW in terms of an ‘if-then-else’
statement with an affine update. The neural update equations

H.T. Siegelmann, M. Margenstern / Neural Networks 12 (1999) 593–600596

Fig. 3. Update of neuron.

Fig. 4. The control neurons (C1, C2).

are discussed in more detail throughout the rest of this
section.

3.3. Computational cycles

Each step of the tag-system computation will be simu-
lated by a cycle. Each cycle is further split into threestages
corresponding to the three operations in one step of the tag-
system. Cycles are characterized bystarting configurations,
to be described later, and our proof boils down to establish-
ing that starting from any such configuration, a sequence of
consecutive applications of our neural network leads to the
correct next starting configuration.

The Boolean neuronsC1 andC2 are devoted to marking
these stages. (C1,C2) � (0,0) was used only once to indicate
the initialization read-in stage leading to the first starting

configuration. During a computation cycle, stages occur in
the order: (1,0), (0,1), (1,1). As can be seen from Fig. 4 the
network turns from stage (1,0) to stage (0,1) by simulta-
neous changes inEW and Er from 0 to 1. It then turns
from stage (0,1) to (1,1) asEr turns from 0 to 1. The network
turns back to stage (1,0) for the next cycle asEW turns from
0 to 1.

In what follows we first shortly describe the operations of
the different neurons during the different stages and then
continue with detailed demonstrations. Let us start with
W. In stage (1,0), the network erases the first encoded letter
from W and preparesK to start with the prediction rule
associated with the letter removed. In stage (0,1), the letters
of the rule associated with the letter just removed are
appended toW. In stage (1,1), the network removes the
second letter ofW.

H.T. Siegelmann, M. Margenstern / Neural Networks 12 (1999) 593–600 597

Fig. 5. Update rules during stage (1,0).

We next consider the operation of the remaining Boolean
neurons:EW, EK , Er and H. The Boolean neuronEW

depends on the first two letters inW : W1W2. Let us call
the tests (16W 2 6) thepotential valueof EW. It is equiva-
lent to the symbolic check of whetherW1W2 $ 134: EW

takes the value 1 when its potential value is 1 except for
when stage (1,1) turns to stage (1,0) or when stage (1,0)
turns to stage (0,1).Ek and Er depend on the first letters
of K. Define thepotential valuesof EK andEr to be, respec-
tively, s (36K 2 8) and (s216K2 57). These correspond to
the symbolic checksK1K2 $ 136 andK1K2K3 $ 1356. The
Boolean neuronsEK and Er take the value 1 only if their
potential value is 1 and when this potential value is 1, the
signal is actually 1 only if both previous values ofEK andEr

were 0. The neuronH takes the value 1 when the first digit in
K is 5 and when this happens in stage (0,1).H serves as the
halting neuron, as will be described towards the end of the
proof. We now turn to describe the individual stages with
demonstrations.

During state (1,0) the network erases the first letter in the
encoding string ofW, and locates in the encoding string of
table the production corresponding to that letter ofW.
The logical structure of the update operations in stage
(1,0) is indicated in Fig. 5. Note the correspondence to the
update equations in Fig. 2. There, in each sum, the Boolean-
valued control neuronsC1 andC2 select the update values
appropriate to the given stage.

Let us indicate several intermediary configurations which
will allow us to prove that stage (1,0) leads from configura-
tion (I), where �Pi denotescod�Pi�:

(I) W L K C1 C2 EW EK Er H

1n3x 42` 135�P1…5 �Pnz 1 0 0 0 0 0

to the configuration:

(II) W L K C1 C2 EW EK Er H

x 42`1n �Pnz 0 1 0 0 0 0

Indeed, a straightforward application of the network equa-
tions allows one to prove the following configuration transi-
tions in accordance with the different cases:

(1) W L K C1 C2 EW EK Er H

11x 42` 135y 1 0 0 0 0 0
11x 421 35y 1 0 0 1 1 0
1x 42111 y 1 0 0 0 0 0

(2a) W L K C1 C2 EW EK Er H

13x 42` 111y 1 0 0 0 0 0
13x 42` 11y 1 0 1 0 0 0
13x 42` 1y 1 0 1 0 0 0

(2b) W L K C1 C2 EW EK Er H

13x 42` 131y 1 0 0 0 0 0
13x 42` 31y 1 0 1 1 0 0
13x 42` 1y 1 0 1 0 0 0

(2c) W L K C1 C2 EW EK Er H

13x 42` 135y 1 0 [0 0 0
13x 42` 35y 1 0 1 1 1 0
x 42`12 y 0 1 0 0 0 0

with, here, [� 0 or 1.

(3a) W L K C1 C2 EW EK Er H

11x 42` 113y 1 0 0 0 0 0
11x 42` 13y 1 0 0 0 0 0

(3b) W L K C1 C2 EW EK Er H

11x 42` 113y 1 0 0 0 0 0
11x 42` 31y 1 0 0 1 0 0
11x 42` 1y 1 0 0 0 0 0

It is now possible to prove that applying the network
equations starting from configuration (I), the network
arrives at configuration (II) which is the starting configura-
tion of stage (0,1). The proof goes by induction onn. Case
n � 1 is proved by subtable 2c. Casen � 2 is proved by
applying first subtable (1) to which subtables 2a to 2c
successively apply, subtables 2a and 2b show that the letters
of �P1 are all erased during stage (1,0). The proof of the
induction step immediately ensues from subtables 3a, 3b
and 2c.

3.3.1. Stage (0,1)
During stage (0,1) the network appends toW the first

production occurring intable , and progressively erases
the production each time a letter is transferred toW. The
lengthL of W is updated accordingly.

The following transition tables indicate the evolution of
the neuron states during this stage.

(1) W L K C1 C2 EW EK Er H

x 42` 11y 0 1 [0 0 0
x1 42`21 1y 0 1 [0 0 0

(2a) W L K C1 C2 EW EK Er H

x 42` 131y 0 1 [0 0 0
x1 42`21 31y 0 1 [1 0 0
x13 42`22 1y 0 1 [0 0 0

H.T. Siegelmann, M. Margenstern / Neural Networks 12 (1999) 593–600598

(2b) W L K C1 C2 EW EK Er H

x 42` 135y 0 1 [0 0 0
x1 42`21 35y 0 1 [1 1 0
x13 42`22 y 1 1 0 0 0 0

Notice that the equalityEW � 0 in the last configuration
occurring in (2b) is given by the term2 16ErC1(1-C2) of the
network equation definingEW.

Hence, by induction on the number of letters in the
production to be replicated, and for each letter on the
number of 1’s contained in its encoding, it is easy to
prove that during stage (0,1), the network evolves from
configuration

(II) W L K C1 C2 EW EK Er H

x 42` �Pnz 0 1 [0 0 0

to configuration:

(III) W L K C1 C2 EW EK Er H

x �Pn 42l2ln z 1 1 [0 0 0

where`n is the length of�Pn.

3.3.2. Stage (1,1)
During stage (1,1), the network erases the second letter of

Wand at each step updates the value ofL. Thus a new cycle
may start again as soon as the appropriate value forC1 and
C2 are reached.

The following transition tables describe the evolution
during this stage:

(1a) W L K C1 C2 EW EK Er H

11x 42` y 1 1 0 0 0 0
1x 42`11 0 1 1 0 [1 [2 0

Value 1 forEK is possible: this happens ify begins with 13;
if y begins with 135 the value 1 is also reached byEr , but
this has no consequence in further transitions as seen in the
next subtables.

(1b) W L K C1 C2 EW EK Er H

11x 42` 0 1 1 0 [1 [2 0
1x 42`11 0 1 1 0 0 0 0

(2) W L K C1 C2 EW EK Er H

13x 42` y 1 1 0 0 0 0
3x 42`11 0 1 1 1 [1 [2 0
x 42`12 table 1 0 0 0 0 0

Hence, by induction on the number of 1s contained in the
first letter ofW (to be erased), it is easy to prove that during
stage (1,1), the network evolves from configuration

(III) W L K C1 C2 EW EK Er H

1k3x 42` y 1 1 0 0 0 0

H.T. Siegelmann, M. Margenstern / Neural Networks 12 (1999) 593–600 599

Fig. 6. Neural values of system (3).

to the configuration:

(IV) W L K C1 C2 EW EK Er H

x 42`1k table 1 0 0 0 0 0

which is the starting configuration of a new simulating
cycle, i.e. the first configuration of stage (1,0) in the next
cycle.

To complete the proof, we have to indicate how the
network halts. Recall that stage (1,0) leads to the configura-
tion of table which starts with the production correspond-
ing to the letter removed from the tag word inW. When the
first letter of W is the halting letter (we assumed a single
one), by construction of our encoding, the located produc-
tion is empty (by assumption on the halting production)
which is indicated by the fact thattable is then simply
.5 in base 6. The update equation of neuronH indicates that
this situation is detected at the starting step of stage (0,1).
Q.E.D.

We close this section by demonstrating the simulation of
the tag-system labeled (3) in Section 2. According to the
above considerations, the set of productions of this system is
encoded as 1351135113111355 and, correspondingly, the
value of the constanttable is 0.1351135113111355 in
basis 6. If as in Section 2 we take as initial tagged word
bbb, the value of W after the read-in step will be
0.113113113 in basis 4. The simulating computation of
the first cycle appears in Fig. 6.

Acknowledgements

This work was funded by Metz University, Institute of
Technology, and partially supported by The Binational US/
Israel Foundation, The Fund for Promotion of Research at
the Technion, and The VPR Fund at the Technion.

References

Casey, M. (1996). The dynamics of discrete-time computation with
application to recurrent neural networks and finite state machine extrac-
tion. Neural Computation, 8 (6), 1135–1178.

Gavaldà, R., & Siegelmann, H. T. (1999). Discontinuities in recurrent
neural networks.Neural Computation, 11 (3), 715–745.

Indyk, P. (1995). Optimal simulation of automata by neural nets. In E. W.
Mayr & C. Puech,Lecture Notes in Computer Science: Proceedings of
the Twelfth Annual Symposium on Theoretical Aspects of Computer
Science(pp. 337). Munich: Springer.

Kilian, J., & Siegelmann, H. T. (1996). The dynamic universality of
sigmoidal neural networks.Information and Computation, 128 (1),
48–56.

Koiran, P., Cosnard, M., & Garzon, M. (1994). Computability with low-
dimensional dynamical systems.Theoretical Computer Science, 132,
113–128.

Maass, W., & Orponen, P. (1998). On the effect of analog noise in discrete-
time analog computations.Neural Computation, 10, 1071–1095.

Maass, W., & Sontag, E. D. (1999). Analog neural nets with Gaussian or
other common noise distributions cannot recognize arbitrary regular
languages.Neural Computation, 11 (3), 771–782.

Margenstern, M. (1995). Non-erasing Turing machines: a new frontier
between a decidable halting problem and universality.Lecture Notes
in Computer Science, 911, 386–397.

Minsky, M. L. (1967).Computation: Finite and Infinite Machines. Engle-
wood Cliffs, NJ: Prentice Hall.

Moore, C. (1990). Unpredictability and undecidability in dynamical
systems.Physical Review Letters, 64, 2354–2357.

Pollack, J.B. (1987). On connectionist models of natural language proces-
sing. PhD thesis, Computer Science Dept., University of Illinois,
Urbana.

Post, E. L. (1965). Absolutely unsolvable problems and relatively undecid-
able propositions—account of an anticipation. In M. Davis,The unde-
cidable(pp. 317). New York: Raven Press.

Rogozhin, Y. V. (1982). Sem’ universal’nykh mashin Tjuringa.Matema-
ticheskie Issledovanija, 69, 76–90 in Russian.

Rogozhin, Yu. V. (1996). Small universal Turing machines.Theoretical
Computer Science, 168 (2), 215–240.

Shannon, C. E. (1956). A universal Turing machine with two internal states.
In J. McCarthy & C. Shannon (Eds.),Automata Studies, (pp. 156).
Princeton University Press, NJ: Princeton University.

Siegelmann, H. T., & Sontag, E. D. (1991). Turing computability with
neural nets.Applied Mathematics Letters, 4 (6), 77–80.

Siegelmann, H. T., & Sontag, E. D. (1994). Analog computation via neural
networks.Theoretical Computer Science, 131, 331–360.

Siegelmann, H. T., & Sontag, E. D. (1995). On the computational
power of neural nets.Journal of Computers and System Science,
50 (1), 132–150.

Sun, G. Z., Chen, H. H., Lee, Y. C., Giles, C. L. (1991). Turing equivalence
of neural networks with second order connection weights, Proceedings
of the IEEE INNS International Joint Conference on Neural
Networks—Seattle, IEEE Press, Piscataway, NJ, 2 1991357-362.

Wang, H. (1963). Tag systems and lag systems.Mat. Annalen, 152,
65–74.

H.T. Siegelmann, M. Margenstern / Neural Networks 12 (1999) 593–600600

