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A b s t r a c t  

Physical systems exhibit various levels of complexity: their long term dynamics may converge to fixed points or exhibit 
complex chaotic behavior. This paper presents a theory that enables to interpret natural processes as special purpose analog 
computers. Since physical systems are naturally described in continuous time, a definition of computational complexity for 
continuous time systems is required. In analogy with the classical discrete theory we develop fundamentals of computational 
complexity for dynamical systems, discrete or continuous in time, on the basis of an intrinsic time scale of the system. Dissi- 
pative dynamical systems are classified into the computational complexity classes Pd, Co-RPd, NPd and EXP,t, corresponding 
to their standard counterparts, according to the complexity of their long term behavior. The complexity of chaotic attractors 
relative to regular ones leads to the conjecture Pa :fi NPj. Continuous time flows have been proven useful in solving various 
practical problems. Our theory provides the tools for an algorithmic analysis of such flows. As an example we analyze the 
continuous Hopfield network. © 1998 Elsevier Science B.V. All rights reserved. 
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1. I n t r o d u c t i o n  

Digital computers can be viewed as dynamical sys- 
tems. A dynamical system is defined by a set of equa- 
tions that describe the evolution of a vector of variables 
called the state of the system [1-6]. It is a map of a 
phase space onto itself. Considering the configuration 
of a Turing machine (the mathematical abstraction of 
a digital computer) [7] as a state in some space, the up- 
date rules describing the behavior of  the machine con- 
stitute a dynamical system. The input for the machine 
is the initial condition for the dynamical system. The 
series of consecutive configurations during the compu- 
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tation process define a trajectory in the space of  Turing 
machine configurations. This trajectory may converge 
to a halting configuration from which the output can 
be read. The behavior of physical systems can also be 
modeled by dynamical systems. A physical system is 
prepared in some initial state from which it evolves in 
its phase space according to some equations of  motion. 
Many physical systems are dissipative and hence con- 
verge to attractors; the attractor may be a simple fixed 
point, a limit cycle or it may be chaotic with a fractal 
dimension. This correspondence between computers 
and physical systems, through the common description 
by dynamical systems prompts us to view the evolu- 
tion of physical systems as a process of  computation. 
Analyzing this process and its complexity can con- 
tribute to the understanding of computation in nature. 
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In the theory of computation problems are classified 
by the growth of the computation time as a function 
of the size of the input (number of bits) [7]. In parti- 
cular, if the time is polynomial in the size of the input 
the problem is said to belong to the class P, while if 
it is exponential, it belongs to the class EXE There 
is also the class NP of nondeterministic polynomial 
problems, where if the answer is guessed, it can be 
verified in polynomial time. The complexity of the dy- 
namics of dissipative systems is characterized by the 
properties of their attractors. The convergence to the 
attractors is usually exponential. The complexity of an 
attractor is quantified by its Kolmogorov-Sinai (KS) 
entropy and its Lyapunov exponents [1,5,6]. These es- 
sentially measure the sensitivity to changes in initial 
conditions, and therefore can be viewed as a mea- 
sure of the degree of chaos. For stable fixed points 
and limit cycles the largest Lyapunov exponent (and 
the KS entropy) are non-positive, while they are pos- 
itive for chaotic attractors. This is a manifestation of 
the fact that chaotic attractors exhibit a much higher 
degree of complexity. In analogy with the standard 
computational complexity classes (E NP, EXP, etc.) 
we define computational complexity classes (Pal, NPa, 
EXPd, etc.) that are relevant for physical dynamical 
systems. In computer science it is an open question 
whether P = N P .  For the corresponding classes Pd 
and NPd it is here conjectured that Pd # NPj. 

In this work we have a more ambitious aim than 
developing a fundamental philosophical view of the 
physical world as performing processes of computa- 
tion. We develop a theory of computation for alter- 
native nondigital hardware. Whereas the state space 
of digital computers is discrete,  physical systems are 
described by differential equations or maps in a con-  
t inuous  phase space, and are thus analog computers. 
There seems to be an algorithmic advantage in us- 
ing analog computers for specific problems. Many of 
the discrete problems stated in classical computer sci- 
ence are solved by imposing a combinatorial structure 
on the problem. This search for a solution may be 
highly time-consuming. A prime example is the lin- 
ear programming problem, with its polyheder struc- 
ture of solutions [8]. A search in this space via the 
simplex algorithm has exponential worst case behav- 
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ior. On the other hand, interior point algorithms such 
as Karmarkar's polynomial time algorithm approach 
the solution from the inside of the continuous poly- 
der. This exemplifies the power of this approach of 
using a continuous rather than discrete phase space. 
Using our theory, it is claimed that some flow based on 
the principle of the Karmarkar algorithm have optimal 
performance [9]. This paper is aimed to provide the 
theoretical background for an algorithmic and com- 
plexity analysis of computation in continuous phase 
space and continuous time. 

We focus on dissipative classical dynamical sys- 
tems [ 1,5,6]. This helps in making our theory become 
realizable by classical (as opposed to quantum) small- 
scale physical systems (since there dissipation is usu- 
ally not negligible). Such systems contract phase space 
volume, and are thus characterized by flow to attrac- 
tors. We interpret the attractor to which a system flows 
as the output, the initial condition plays the role of 
the input, and the flow is the process of computation. 
What determines the output is the location of the initial 
condition relative to the basin boundaries of the vari- 
ous attractors. These boundaries may be fractal even 
if the attractors are regular [10-12]. Generally, there 
is no way to predict analytically the basins and their 
boundaries, and thus the general evolution is unpre- 
dictable and can be very complicated. 

A similar view of the process of computation as 
a flow from an initial condition to an attractor has 
been taken by a number of researchers. Brockett in- 
troduced a set of ODEs that perform various tasks 
such as sorting and solving linear programming prob- 
lems [13]. In the comprehensive book of Helmke 
and Moore [14] one can find numerous other appli- 
cations and references, among them, the state of the 
art in dynamical systems for linear programming. 
The Hopfield neural network is of particular interest 
because it is related to NP-complete problems, and 
because it provides a natural interface between dis- 
crete and continuous computation [ 15,16]. Our theory 
is, to some extent, a continuation of their work, in that 
it provides a natural framework for the complexity 
analysis of continuous time algorithms. Furthermore, 
we allow for attractors which are not fixed points or 
limit cycles. 
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We distinguish our work from the following three 
related lines of work. First, in an eflbrt to bound 
the computational power of continuous systems, one 
line of work concentrated on performing step by step 
simulations of discrete computational models (see 
Section 2.3 and e.g. [17]). Whereas this line does 
not express the inherent computational capabilities 
of continuous systems, we take continuous systems 
as is, and interpret their evolution as a process of 
computation. 

The second line of work uses attractor systems to 
model neurodynamics, and in particular associative 
memory (see Section 2.4). Our theory can be used to 
analyze some of these models in terms of computa- 
tional complexity. Attractor models of awareness, feel- 
ing and related activities of the brain (see [18]) are 
beyond the scope of this paper. 

Third, analog computation can be utilized to 
test possible theoretical limitations of the "physical 
Church-Turing thesis" [19] that states that the com- 
putational capabilities of any physical device cannot 
exceed (in idealization) that of a Turing machine [20]. 
If a device that computes problems that cannot be 
computed by the Turing machine (and therefore digi- 
tal computers) is found, it will challenge the "physical 
Church-Turing thesis" and will therefore be of great 
interest. Some theoretical analog models of compu- 
tation have the capability of computing beyond the 
Turing limit [21,22], but no realizable super-Turing 
system has been noted. We do not suggest the current 
work as providing a step towards the identification of 
super-Turing natural systems. We rather concentrate 
on perceiving physical systems as readily available 
special purpose computers. Various other related work 
is discussed in Section 2. 

The outline of the paper is as follows: In Section 2 
we characterize analog computation; there we also dis- 
cuss previous related work and its relation to this pa- 
per. Section 3 presents the continuous systems which 
are studied in the framework of our model. We in- 
terpret the dynamics of these systems as computing 
an output from an input, and postulate their charac- 
teristic time scale as the basis for a measure of time 
complexity. We argue that this notion of complexity is 
well-defined. Section 4 compares continuous systems 

with their time discretization. The notion of time com- 
plexity introduced in this paper is compared with the 
classical definition for discrete time maps. The two fol- 
lowing sections build on the foundations of Section 3 
and interpret different scenarios of dynamical evolu- 
tion as complexity classes. We define there the com- 
putational complexity classes Pd, Co-RPd, NPc/, and 
EXPd according to the attractor approached. Section 5 
focuses on regular attractors; it provides two different 
methodologies for verifying the attractor, a determin- 
istic one and a probabilistic one, with the associated 
classes Pd and Co-RP#. Section 5.2 demonstrates our 
theory in an analysis of systems having a Lyapunov 
functional, concentrating on gradient flows and the 
continuous time Hopfield neural network. Section 6 
considers chaotic attractors: These are typically iso- 
lated but may also be intermingled or exhibit a cri- 
sis. Identifying points in the basin of attraction of 
an isolated chaotic attractor is shown to be in NPa; 
the other two cases are harder, and can only be dealt 
with probabilistically. We close with Section 7 where 
we summarize our results and present a list of open 
questions. 

2. Analog computation 

Our theory belongs to the field of analog com- 
putation, and in particular it is related to models of 
analog neurodynamics. The main property that dif- 
ferentiates analog from digital computation models 
is the use of a continuous state space. It is worth 
noting that analog computation may be considered 
a coarse grained theory for digital computation, the 
way hydrodynamics is a continuum theory for atomic 
systems. There is no formal list of characteristics of 
analog models of computation which is agreed upon. 
In what follows we propose one possible formal- 
ization of the concept of an analog computer, moti- 
vated by the view of physical systems as performing 
computation. 

(i) Real  constants:  Analog systems can be charac- 
terized by the existence of real constants that 
influence the macroscopic behavior of the system. 
For example, planetary motion is used to measure 
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time with very high precision although we know 
the gravitational constant G only to a few digits. 
The planets, of  course, evolve according to the 
exact value of  G, irrespective of  its measurement 
by humans. In contrast, in digital computation all 
constants are in principle accessible to the pro- 
grammer. Other physical constants that may have 
real values are Planck's constant, the charge of 
the electron, various wavelengths, masses of  par- 
ticles, and so forth. 

(ii) Continuity in the dynamics: The motion gener- 
ated by the system is locally continuous. Compu- 
tationally, we say that exact comparisons of the 
form "if x > 0 compute one thing and if x < 0 
continue in another computation path" or "tests 
for 0" are not allowed. 

(iii) Continuous time update: Classical physical sys- 
tems are described by differential equations. 
Therefore we focus on systems with contin- 
uous time update. We do not view this as 
a basic requirement from a model of analog 
computation. 

(iv) Discrete input-outputs: Classical complexity 
theory measures computational resources as a 
function of  the length of the input. In order to 
create an approach which can be related to the 
classical one, it is advised that the input and 
output be discrete. Discreteness of the output of 
physical systems is dictated by the limited preci- 
sion of the measurement tools used to probe the 
continuous phase space. 

The theory we present has the above features and 
the additional simplifying requirement of a finite 
dimensionality (unlike analog cellular automata for 
example, which evolve in an infinite-dimensional 
space, see Section 2.1). Thus we focus on ODEs and 
not on PDEs, since for the former more results are 
available. 

In what follows we summarize previous work in the 
field of analog computation and point out the novelty 
of  our work. We begin with discrete-time models, go 
through hybrid continuous-discrete models, and reach 
continuous time computation. We close this section 
with a mention of relevant work in the field of  analog 
neurodynamics. 

2.1. Discrete time models 

Two well-known analog computation models are the 
BSS model of  computation over the real numbers [23] 
and the SiSo analog recurrent neural network [21,24]. 
Smale was the first to insist on a computational model 
in which the operations are done on the values irre- 
spective of their radix two representation. Together 
with Blum and Shub they introduced a mathemati- 
cal model (the BSS model) of computation that in- 
cludes real state values and real constants; this model 
does not have the continuity feature. Siegelmann and 
Sontag suggested another model that is based on neu- 
ral networks. Unlike the BSS model, their model has 
continuous dynamics, and it has a finite number of  
registers (neurons). Both models allow computational 
capabilities which are richer than those of the clas- 
sical standard digital computer (super-Turing). Some 
work was done on comparing these models and on in- 
terleaving them [25-27]. 

The generalized shift map (GS) was discussed by 
Moore [28]. He shows it to be computationally uni- 
versal, and claims that this model is physically real- 
izable. This is in contrast to his model [29], which 
he views as unphysical, and the dynamical recogniz- 
ers [30]. An extension of the GS to include real con- 
stants was suggested in [22]. This analog version of  
the GS has super-Turing computational power as well. 

Cellular automata (CAs) are a computational model 
which is an infinite lattice of  discrete variables with a 
local homogeneous transition rule. CAs contain Turing 
machines as a special case, and are thus computation- 
ally universal [31]. When the variables are reals the 
machine is sometimes called an analog cellular au- 
tomaton, or a coupled map lattice (CML) [32]. It can 
be thought of as a generalization of both the BSS and 
SiSo models. The BSS model is equivalent to a Tur- 
ing machine with real valued cells, and hence is easily 
simulated by a CML. A SiSo network can be simu- 
lated by a CML, where every cell computes as a neu- 
ron and the neighborhood structure is big enough to 
include the finite size of the simulated network. As a 
result even a finite coupled map lattice is computation- 
ally stronger than a universal Turing machine. CAs 
and coupled map lattices are used in modeling a broad 
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class of physical phenomena [33]. Coupled map lat- 
tices can be considered time and space discretizations 
of PDEs, which are thus computationally universal as 
well [34]. 

2.2. Hybrid models 

Motivation for some of the work on hybrid 
computation is derived from the realization that the 
functionality of controllers is not fully described in 
terms of discrete dynamics. Hybrid systems combine 
discrete and continuous dynamics, usually represented 
by ODEs that are governed by finite automata. Among 
famous hybrid models are the works by Tavernini 
[35], Back et al. [36], Nerode and Kohn [37], Brock- 
ett [38-40], and Branicky [41,42]; more can be found 
in [43-45]. The main interest in hybrid systems stems 
from their practicality - such as in "stepper motor" 
and in transmission [40] as well as their stabilizing 
properties [46]. 

2.3. Continuous time models 

A fundamental question is the computability with 
differential equations. ODEs were used to simulate 
various discrete time models, thus providing lower 
bounds on their computational power. Brockett [40] 
demonstrated bow to simulate finite automata by 
ODEs; Branicky [17] generalized this result to sim- 
ulate Turing machines, thus proving their computa- 
tional universality. These systems retain the discrete 
nature of the simulated system, in that they follow 
the computation of a given discrete map step by step 
via a continuous equation. In the present paper, on 
the other hand, we characterize the computation of 
realizable continuous systems rather than simulating 
discrete maps with differential equations, in an at- 
tempt to investigate the power of continuous phase 
space systems. This philosophy can be applied to 
solve concrete problems in an efficient manner. In [9] 
we analyze the dynamical system for linear program- 
ming introduced by Faybusovich [47] and compare 
it with optimal algorithms. This system is related 
to Brockett's "bracket flows" [13]. Numerous other 

problems solvable by dynamical systems are shown 
in the book of Helmke and Moore [14]. 

Another line of work regarded that the so-called 
"general purpose analog computer" was dominated by 
Shannon [48], Pour-El [49] and Rubel [50-52]. De- 
spite the similar title, that "analog computer" is very 
different from our approach. It describes a mathe- 
matical abstraction that consists of a finite number 
of boxes with plenty of feedback. The boxes are of 
five types: one produces the running time, one pro- 
duces z:ny real constant, one is an adder, one is a mul- 
tiplier and the last and crucial one is an integrator. 
Although it was originally suggested as a general com- 
putational machine to handle computational physics, it 
was found too weak to solve even some very standard 
problems there (such as solving the Dirichlect pro- 
blem and generating Euler's gamma function); their 
general purpose analog computer produces only solu- 
tions of initial-value problems for algebraic ordinary 
differential equations [52]. The book [53] describes 
a particular interesting view of computability in ana- 
lysis, differential equations, and Banach spaces. The 
questions raised in these seminal works inspired many 
researchers, including us, to focus on continuous dif- 
ferential equations as a computational device. 

2.4. Analog neurodvnamics 

In the area of neural networks, intelligence is ex- 
plored from the viewpoint of dynamical systems. 
These describe the evolution of neural activations 
with time. The neural activity is described by a tra- 
jectory in the state space of a large dimension, say 
~N where N is the number of neurons. As in our 
theory, the trajectory can be thought of as describing 
a computation, or equivalently solving a computa- 
tional problem. The initial state is equivalent to the 
input of a computational problem, the evolution along 
the trajectory is the computation process, and the 
attractor describes the solution. Consequently, the 
computational capabilities of dynamical systems that 
are relevant to neurodynamics - nonlinear dissipative 
systems - are of a great interest. 

Content addressable memory allows to recall a 
stored word without referring to its physical location; 
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associative memory allows for recal based on par- 
tial or partially erroneous information. Both types 
of memory are typically modeled by dissipative dy- 
namical systems for which an energy (Lyapunov) 
functional is defined and patterns reside in the loca- 
tion of local minima of the energy. The most popular 
model is probably the Hopfield network [16,54,55]. 
Other related models are contained in the works by 
Amari, Anderson, Kohonen, Nakano, Willshaw, Lit- 
tle, Atiya and Abu-Mostafa, and Morita [56-66]. 
The meaningful attractors of  these networks - where 
information is stored - are all simple: either stable 
fixed points or limit cycles. There are various models 
of neural activity that suggest the role of chaos. Yet, 
they do not consider the resulting chaotic systems in 
computational terms. 

Here we present a computational view of dissi- 
pative dynamical systems. The attractors can be of  
any kind, and hence the richness of this theory. Our 
interface is motivated to some extent by the under- 
standing and interpretation of  computation in neural 
networks, and thus includes the previous works as 
special cases. 

3. Our  model:  Computat ion  in dynamical  systems 

We consider autonomous dynamical systems de- 
fined by a set of  ODEs 

dx 
- -  = F(x(t)),  (3.1) 
dt 

where x(t) is a d-dimensional vector and F is a d- 
dimensional vector function of  x. We concentrate on 
ODE's but the concepts we propose can be applied to 
maps as well. Discrete time maps 

xn+l = T(xn) (3.2) 

can be associated with ODEs in various ways such 
as the Poincar6 map [1] or by the stroboscopic map 
(see Section 4). Our point of  departure is dissipative 
dynamical systems of classical physics. In dissipative 
dynamical systems all points found in a given volume 
in phase space at one time move in such a way that 
at a later time they occupy a smaller volume. As a 

consequence dissipative systems are characterized by 
attractors. 

For simplicity, we consider only dissipative dynam- 
ical systems with the additional feature that 

( .)  Convergence to attractors is exponentially fast. 

This requirement does not limit the range of applica- 
bility of our theory much because such systems are 
abundant in nature. 

To make statements regarding to what is "likely" 
or "typical" scenario, one has to define a measure on 
the space of dynamical systems, which is of  infinite 
dimension. In order to explore such a situation Hunt 
et al. [67,68] introduced the term "prevalent" that is a 
generalization of "almost everywhere" to infinite di- 
mensional spaces. The term corresponding to "mea- 
sure zero" is "shy". It is known that for almost every 
differentiable map all the fixed points (and periodic 
orbits) are hyperbolic (namely, none of  the stability 
exponents is of  unit modulus). This assures that a sit- 
uation - where a Lyapunov exponent at a fixed point 
vanishes (stability exponent of unit magnitude) and 
consequently the convergence is not exponential - is 
"shy" corresponding to vanishing probability measure. 
A similar theorem was proved for continuous flows 
[67]. Here we assume exponentially fast convergence 
to chaotic attractors as well (as is the prevalent case 
for fixed points). We base it on the conjecture that usu- 
ally (in the sense of  prevalence) the sets of points on 
the attractor for which the Lyapunov exponent is non- 
negative in directions transverse to the attractor, is of  
measure zero [69]. (For the discussion of  transverse 
Lyapunov exponents see e.g. [70].) As for the type of  
attractors, it is believed that systems with chaotic at- 
tractors are neither prevalent nor shy, but we are not 
aware of any decisive relevant rigorous result; our the- 
ory allows for all types of attractors. 

A computing device maps an input into an output; 
the internal evolution, or its trace by observers, is re- 
garded as the computation. For dissipative dynamical 
systems the initial condition corresponds to the input 
and the system evolves until approaching an attrac- 
tor which represents the output. Because the actual 
convergence to an attractor takes an infinite time, we 
do not require complete convergence but rather agree 
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that the computation is complete when an ~-vicinity of 
the attractor is approached and the system is confined 
there. The time it takes to converge to an ~-vicinity of 
the attractor increases with decreasing E. 

Comment. Deciding to stop the computation in an ~- 
vicinity of  an attractor may sound obscure because the 
~-vicinity may contain several attractors that can be 
resolved only for smaller values of ~. This is actually 
not a problem but rather a manifestation of the richness 
of the corresponding computation. As the resolution 
is increased, new and more refined results are found. 

The precision parameter E also serves to maintain 
the input and output in a finite form, enabling com- 
parison with the classical computation theory. The 
finiteness/discreteness of the input and output is a cru- 
cial requirement in the theory of computing, assuring 
that the power of models is based purely on the internal 
structure rather than on higher input/output precision. 
This has to be emphasized in the case of dynamical 
systems where the phase space is continuous. 

We are now ready to define computation in 
dissipative dynamical systems. The input is the initial 
condition specified with precision ~. The output is a 
description of  the attractor with ~ precision. The con- 
vergence time t~ is the time so that for all t > tc the 
distance from the attractor is less than ~. For classi- 
cal computers the convergence time is the time until 
halting, and is identified with the computation time. 
This is not the case for dynamical systems, where 
the attractor has to be verified and distinguished from 
saddle points for example. The total computation 
time, tt, is thus the sum of the convergence time tc 
and the verification time tv: 

tt = tc + tv. (3.3) 

We want to define the complexity of the computa- 
tional process in terms of  the total computation time tt. 
Because complexity is measured in numbers without 
units, we must express tt as a multiple of some time 
unit inherent to the system. In discrete time computa- 
tional models, the total computation time is quantified 
by the number of steps until halting. Discretization of 
a continuous process, e.g. by the Poincar6 map, does 
not give a faithful estimate of the time complexity of 

the continuous process. A similar disadvantage occurs 
for a measure which is based on counting the number 
of grid cells traversed by the trajectory. Our sugges- 
tion is to introduce the concept of a characteristic time 
scale that is defined by the rate of convergence of the 
underlying physical system. 

We next define the characteristic time scale for our 
class of exponentially converging dissipative systems. 
For simplicity we assume first that the stable nonwan- 
dering set is a fixed point x*. Around this point one 
can linearize the system 

dx 
- -  = F(x(t)) 
dt 

to obtain 

3x = M3x (3.4) 

where 3x = x - x*, and M is the stability matrix 
defined by 

Mij = ~F~ . (3.5) 
OXj x=x* 

The eigenvalues of the stability matrix are called the 
Lyapunov exponents. Let us denote the eigenvalues of  
M by )`i and their real parts by Re(),/) (the fixed point 
is assumed to be stable, hence all Re(),/) are negative). 
Let ),j be the eigenvalue with negative real part which 
is smallest in absolute value, and let ), = IRe(),l)]. 
The rate of convergence is determined by ),. In the 
vicinity of  the fixed point 

Ix(t) - x*l ~ e -~t, (3.6) 

leading to the definition of the characteristic time 
rch ---- 1/),. During the time rch log2 an additional 
bit of  the attractor is computed. Therefore rch is the 
characteristic time scale for the convergence in the 
linear regime. (If the matrix cannot be diagonalized 
but can only be transformed to a Jordan form, the 
leading exponential behavior is similar.) 

Later we justify our choice of  rch as the charac- 
teristic time for the whole computation tt. The result- 
ing complexity measure has the following invariance 
property: if the vector field F is multiplied by a con- 
stant a the computation time tt changes, whereas the 
complexity of the process should remain unchanged. 
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And indeed, this multiplication scales rch by the same 
amount, a, leaving the complexity unaffected. 2 A 
time scale such as rch exists for all types of  attractors 
(fixed point, limit cycle or chaotic) as long as expo- 
nential convergence is assured, as is the case for the 
dynamical systems we consider in our model. 

We have defined the convergence time tc as the du- 
ration required to flow from the initial condition to the 
e-vicinity of the attractor. In general, tc is the sum of 
three contributions: 

tc = t~ + tB + tf, (3.7) 

where t, is the time of flow in the linear regime, close 
to the attractor; tB is the time required to leave the 
vicinity of  the basin boundary (due to the placement of  
the initial condition); and tf is the time of flow outside 
the linear regime and the vicinity of the boundary. By 
(3.6), the time it takes to flow in the linear regime from 
a distance ~ from the fixed point to its e-vicinity is 

1 l o g  e t~ = ~ ~ . (3.8) 

We next regard flow near the boundary. Assume 
the initial point is in a narrow region of width 0 in 
the vicinity of  the basin boundary. A corresponding 
trajectory may flow for some time along the boundary 
and is repelled in a time of  the order 

1 
tB ~ = l log01 .  (3.9) 

)v 

Here 2 is obtained from a linearization in a specific 
boundary area: ~, = min Re(~,i) where the minimiza- 
tion is over the eigenvalues with positive real part (cor- 
responding to repelling directions). The above holds 
for a specific saddle point. A general bound for t13 is 
obtained by choosing 1/2 as the minimum among all 
saddle points. For a fixed initial condition and asymp- 
totically small 6, t, dominates over tB. However, for 
initial conditions where e is not significantly smaller 

2 For functions F that are sufficiently smooth, in every neigh- 
borhood (in function space) of the trivial vector field F(x) = 0, 
there are flows X(t) that are chaotic, see [71,72]. Multiplying 
F by a constant a indeed does not affect the complexity of the 
function, but the limit a --+ 0 should not be taken since in this 
limit the system is clearly regular. 

than ~/this is not necessarily the case. Here tB cannot 
be ignored and we have to take into account the char- 
acteristic time for flow near the boundary 1/~. We do 
not know how to deal with such initial conditions, but 
note that these constitute a very small subset of the 
space of possible initial conditions: The volume within 
a distance r/ from the boundary is ~ r/a-db where d 
is the dimension of  the phase space and db is the di- 
mension of the boundary (that may be fractal). 

The value of tf is fixed for an initial condition, 
and hence is asymptotically dominated by t~. (In Sec- 
tion 5.2 we calculate tf for a particular class of sys- 
tems.) Therefore for initial conditions which are not 
close to the boundary we can approximate 

tc ~ t~ = O(I loge l ) ,  (3.10) 

and choose r~h as the time scale for the complete con- 
vergence process. 

3.1. Computational complexity.for continuous 
systems ? 

An objection may be raised to the notion of  com- 
putational complexity for continuous time systems. 3 
One argument is that the computation time is arbitrary 
since the time variable t can be replaced by another 
variable s where t = g(s), such that the derivative 

ds 
=-- f ( t )  > 0. (3.11) 

dt 

Substituting (3.1 1) into (3.1) we can find that 

dx F(x)  
- -  - -  = Fs(x,  s). (3.12) 

ds f ( g ( s ) )  

For example, if  d s / d t  = e t then the exponential con- 
vergence to the attractor is lost. We do not believe 
this is a valid objection to the definition of computa- 
tion time for continuous time systems for the follow- 
ing reason. Physical time of  a given laboratory system 
has a meaning that is well-defined (relative to other 
physical systems), irrespective of our definition of the 
parameter s. A similar change of  the time variable can 
be defined also for discrete time computers. That is, 

3 We are grateful to C. Moore and J. Crutchfield for pointing 
out to us. 
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one can speed up the computation by defining a new 
discrete time step of computation that allows for f ( t )  
operations rather than one only. We also note that in 
such cases the system (3.12) is nonautonomous and 
hence is outside of our scope. 

Another possible objection can be raised: for a given 
system with exponential convergence to a fixed point 
one can find a system with faster convergence. For 
example in the linear regime, the equation 

dx 
--  ~.x, (3.13) 

dt 

with ,k > 0, has the same fixed point and can be 
replaced by 

d x  x 
--  ,k ~-~, (3.14) 

dt 

that reduces to 

d l x l  
- ;v,  ( 3 . 1 5 )  

dt 

which converges to the origin in finite time. Our re- 
sponse is that such a replacement requires the exact 
full knowledge of  the fixed points and the ability to 
design the analog system (3.14) according to the ex- 
act knowledge. If  for a given initial condition the fixed 
point is known beforehand, there is no need for per- 
forming the computation. 

3.2. Nonexponentially convergent systems 

The dynamical systems that are at the focus of this 
paper converge exponentially to attractors. The notion 
of characteristic time is not assured to exist for other 
dynamical systems. Assume one of the eigenvalues 
of the stability matrix (3.5) vanishes for the attractor. 
Along the direction of  the associated eigenvector (us- 
ing the Taylor expansion) the deviation from the fixed 
point satisfies 

~: : flym, (3.16) 

where m > 2 is the order of the first nonvanishing 
derivative at the fixed point in this direction. The so- 
lution is 

yl-m : --fl(m -- 1)t + const. (3.17) 

leading to a power law time dependence of the distance 
from the fixed point. 

In particular, let Yl and Y2 be the values at time tl 
and t2 = tl + At, respectively. For large tl and t2, the 
ratio is 

VI (t~2)l/(l--m) ( mt~ ./(m-l) 
" = = 1 + - -  , ( 3 . 1 8 )  
Y2 tl ! 

that depends explicitly on tl and there is no fixed rate 
of convergence for the fixed point and hence no charac- 
teristic time scale for computation. Note the difference 
between this power law and exponential convergence 
of  the form ~x = 6xoe -z t  where the ratio 

Yl = e;~At (3.19) 
Y2 
depends only on the time difference At (and not on 
tl ) and ~. is the convergence rate. 

4. M a p s  versus  c o n t i n u o u s  t ime  sy s t ems  

position of  the 
at intervals of 
where n is an 
the map: 

Continuous time systems are natural for the de- 
scription of the dynamics of physical objects, but 
there are situations where the dynamics is modeled 
by maps [1,3,4,6]. Therefore, the scope of the theory 
should be extended to include maps. Furthermore, 
the inclusion of  maps facilitates a relatively easy 
comparison with the concepts of standard digital 
computation. Maps and systems that evolve con- 
tinuously in time exhibit many similar dynamical 
properties, in particular attractors of  similar nature. 
Moreover, each continuous system (3.1) can be asso- 
ciated with the discrete stroboscopic map. There the 

system in phase space is monitored 
length r, namely at times t = nr ,  
integer. This discretization results in 

(n+ l ) r  

T(xn) = X n +  / F(x( t ) )d t .  (4.1) 
J 

n T  

For an autonomous system the value of  x(t) in the 
integral depends only on the last Xn, and therefore the 
integral depends only on Xn. For small r, the map T 
can be approximated by Taylor expanding F around 
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F(xn),  and integrating the resulting expansion term 
by term with respect to time leading to: 

Ti(xn)  = (Xn) i -]- F/(Xn)Z" 
OFi(xn)  z 2 + 2_, O---~j F j ( x , ) ~  + . . .  (4.2) 

J 

If the series is convergent, the map (4.2) is identical 
to the underlying continuous system. If only a finite 
number of terms is taken it constitutes an approxi- 
mation to the continuous system, that improves as r 
decreases. Although for sufficiently small T the map 
is a good approximation of  the continuous system, 
in the course of  the dynamics these two systems will 
usually flow apart due to the accumulation of  dif- 
ferences. The limit of T --+ 0 and the infinite time 
limit do not necessarily commute and one should 
study specifically which dynamical  invariants ( such 
as attractors) of  the stroboscopic map, where a finite 
number of terms in (4.2) is taken, approach the ones 
of the continuous system in the limit r --+ 0. 

For chaotic systems, the qualitative nature of  the 
attractors is sensitive to infinitesimal changes of  para- 
meters. Since r can be treated as a parameter, even in 
the limit z --+ 0, the attractors for z ¢ 0 may be dif- 
ferent from these at r = 0. This is the situation even 
for the logistic map [1,73] where arbitrarily small per- 
turbations may lead to the replacement of  the chaotic 
attractor by a periodic orbit. Consequently one cannot 
be assured that a map of the form (4.2) taken to any 
arbitrary order and for arbitrary small r will converge 
to the same attractor as the corresponding continuous 
system. Therefore the results of  the computation may 
be different for the two systems. 

Hyperbolic attractors, on the other hand [2], remain 
stable under small perturbations and therefore the map 
(4.2) and the corresponding continuous systems lead 
to the same computations, provided the initial condi- 
tions are sufficiently far from the basin boundary. This 
requirement is necessary since the basin boundaries 
do not necessarily approach each other in the limit 
T - + 0 .  

In Section 5.2 it is stated that the computation in 
both systems is equivalent if a Lyapunov functional 
exists. 

The case of  convergence to a stable fixed point can 
be studied in detail. For sufficiently small r ,  stable 
fixed points of  the continuous flow remain stable un- 
der time discretization. For small r ,  Eq. (4.2) can be 
approximated as 

xn+I = xn + rF(xn) ,  (4.3) 

which can be recognized as the Euler approximation. 
The lowest nontrivial order of  (4.2) was taken to obtain 
this map. The fixed points of  (4.3) and the original 
continuous flow are identical, since at the fixed points 
of the continuous system F(x*) = 0. (It is not clear, 
however, that the basins of  attraction of  the fixed points 
in the two systems are similar or even approach each 
other in the limit r ---> 0.) 

We next compare the convergence time of the con- 
tinuous time equation with its Euler approximation. 
The tangent map (the map of  the small deviations 6Xn 
from the fixed point) is 

~Xn+l : ~Xn + r M ~ x n  

or equivalently 

~Xn+l = M T  8Xn, 

where 

MT : 1 + r M (4.4) 

and M is given by (3.5). The eigenvalues of  MT are 

A i  : 1 + rXi, (4.5) 

where ~.i are the eigenvalues of M. Similarly to the 
continuous case, the convergence rate is determined 
by the largest eigenvalue A = 1 - rX where X > 0. 
The distance from the fixed point decreases with the 
number of  iterations n as A n = (1 - r~)  n and in 
the limit r --+ 0 it approaches the result found for 
the continuous system e -~rn. The convergence to the 
fixed point is faster for the map than for the continuous 
system since l log(1 - r)~)l > T~. for ~.r < 1. For 
an unstable fixed point, on the other hand, the escape 
rate is faster for the continuous system than for the 
corresponding map. Note that stable fixed points of the 
continuous system remain stable for the corresponding 
map (4.3) for values of  t such that rIRe(Xi)] < 2. 
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Maps have two different measures of time complex- 
ity. One corresponds to the notion of the characteristic 
time of convergence, introduced for continuous time 
systems as rch = 1/)~. This is the characteristic num- 
ber of  steps n c h =  1/I log AI, where A is the largest 
eigenvalue (that is smaller than unity) and the rate of  
convergence is l log AI. For maps which are obtained 
as a discretization of continuous flows, rch and nch are 
related by 

rch = nchr. (4.6) 

Note that rich does not have to be an integer. The 
second (classical) complexity measure is the number 
of steps, and thus the classical characteristic time is 
unity. 

We next calculate the time required for reaching an 
E-vicinity of  an attractor for general maps. In analogy 
with the definition of  the time t~ from Section 3, we 
define n, as the corresponding number of steps. Thus 
we have that 

~ ~e n~/nch (4.7) 

for e and 3 (s < 3) in the linear regime. This yields 

n ~ I n c h  l og~  ] .  (4.8) 

As in the case of continuous computation, rich is a 
property of the system, while n,  depends on the re- 
quired precision. 

5. Computing regular attractors 

In the following two sections we discuss the com- 
plexity of  computation with exponentially convergent 
dissipative dynamical systems. In this section we con- 
sider systems which flow to either fixed points or 
limit cycles, and in Section 6 systems with chaotic at- 
tractors are discussed. We recall that the computation 
time is the sum of the time required for convergence 
and the verification time. Since we consider systems 
with exponential convergence, the convergence time 
is O(I log~[) for all types of  attractors. What makes 
the difference is the verification procedure. It char- 
acterizes the type of  computation (e.g. deterministic, 
probabilistic or nondeterministic) and its efficiency. 
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For simple attractors we propose two types of ver- 
ification procedures. One requires an external device 
computing linear equations; this defines the determin- 
istic efficient class Pj. The second computes purely 
with the dynamical system, with no external tools. 
Under such setup a probabilistic process enables ef- 
ficient computation, giving rise to the class Co-RPd. 
The following section describes the two verification 
procedures which define the corresponding complex- 
ity classes Pd and Co-RPd. Section 5.2 illustrates our 
theory with an analysis of  systems with a Lyapunov 
functional, and considers in particular gradient flows 
and the Hopfield network. 

5.1. Verifying a regular attractor: P j  and Co-RPd 

Assume first an attracting fixed point. When the 
phase space velocity d x / d t  is found to be smaller 
than ~ (in appropriate units) for some time, it is likely 
that the system has reached the e-vicinity of  a fixed 
point. Then we want to verify that this point is indeed 
an attractor and is not an unstable hyperbolic point. 

5.1.1. Preliminaries: P and Co-RP 
In the field of computational complexity problems 

are partitioned into complexity classes according to 
the difficulty of  solving them. The standard model of 
computation is the Turing machine, and the difficulty 
of solving a problem is quantified by the resources 
required to solve it on a Turing machine. The class 
P consists of all problems/functions/languages which 
can be computed using polynomial (in the size of the 
input represented in binary) time resource. Co-RP is a 
class of decision problems defined relative to a mod- 
ified version of the Turing machine. (In a decision 
problem, a computation is a decision to accept or re- 
ject the input.) 

Definition 1 ([74], volume I). A probabilistic Turing 
machine is a machine that computes as.follows: 

(i) Every step of the computation can be desig- 
nated in two possible ways, with probability p 
to choose one computation path and probability 
1 - p to choose the alternative. 
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(ii) The number of steps in each computation is ex- 
actly the same. 

(iii) Every computation ends with reject or accept. 
The error probabili~ of a probabilistic Turing ma- 
chine A// is the real value e M ( w )  defined by the ra- 
tio of computations on input w resulting in the wrong 
answer to the total number of  computations on w. 

BPP is defined as the class of decision problems 
computed by polynomial  time probabilistic Turing ma- 
chines whose error probabilities are bounded above by 
some positive constant c < ½. RP is a subset of BPP, 
where the error can occur on positive instances only. 
Co-RP is another subset of BPP, defined as the class 
of  problems where the bounded error may occur on 
negative instances only. It is an open question in com- 
puter science whether any of these three probabilistic 
classes are strictly stronger than E Their relation with 
the class NP (to be defined in the next section) is also 
unknown. 

We next describe the two paradigms for verification. 

5.1.2. Probabilistic verification 
We want to verify convergence of  a trajectory x(t) .  

We start the verification at a point ~ on the trajectory, 
a point that is in the ~ vicinity of  a suspected fixed 
point x*. We create k new points ~1 . . . . .  xk by adding 
to ~, independent noise of  amplitude up to E. Now the 
system is called repetitively on each of these points; 
each time it is stopped after time tv to be specified 
later. Consequently a cluster of initial conditions in a 
sphere of  radius E around the fixed point is generated. 
If the fixed point is stable, the sphere shrinks, while 
if it is a saddle point, it gets stretched in the unstable 
direction at the rate e Re~) t ,  where ,kl is the domi- 
nating Lyapunov exponent. After a time of  the order 
t~ = (1/Re()~l))l 1og(~/8)4 it reaches a distance of  or- 
der 8 > E from the fixed point. (It is assumed here 
that both 6 and 8 are in the linear regime; 8 can be 
taken as 1000~.) For a hyperbolic saddle point, there 
is a finite probability p(t],) to find one of the k trajec- 
tories at a distance of  order 8 from the fixed point (say 
between 8/2 and 8). If one of  the trajectories is found 
at such a distance we conclude that the fixed point is 
unstable and continue the computation from ~ until it 

runs away to another fixed point. The probabili ty that 
none of  the trajectories reaches the distance of order 
6 from an unstable fixed point is (1 - p)k, that is ex- 
ponentially small in k. Note that tv = O(logEI) and 
therefore the verification time tv is polynomial.  

We next demonstrate that in many cases this prob- 
lem can be indeed associated with the class Co-RE 
This occurs when stable fixed points are verified with 
no error in polynomial  time. For unstable fixed points 
the above procedure may give the erroneous result that 
the fixed point is stable. This can occur with a prob- 
ability bounded by (1 - p)k. There is still the case 
that the initial point is on the stable manifold of an 
unstable hyperbolic point. Such a point should be ver- 
ified positively as the output. However, our verifica- 
tion algorithm will give a negative result regarding the 
convergence with probability 1 - (1 - p)k, which in- 
creases with k, and cannot be bounded from above by 
a number smaller than 1/2. Noticing that such initial 
conditions are of  measure zero, it is reasonable to ig- 
nore the latter case, resulting in a Co-RP computation. 
There are specific situations where this probabilistic 
verification will not work. The classification of these 
is under exploration. 4 

5.1.3. Deterministic verification 
This deterministic method has the disadvantage of 

requiring an external tool for computing linear equa- 
tions and the eigenvalues of  the stability matrix. 

In the linear regime, the point x ~n) in the phase- 
space depends linearly on the previous point of the 
trajectory. That is, 

x (nl = Ax (n-l) .  

(If the dynamical  system is defined by differential 
equations we will consider its corresponding strobo- 
scopic map (4.1).) The matrix A is of dimension d × d, 
where d is the dimension of the phase space. It has 
to be calculated from the values of x ~n) in the linear 
regime. Thus, d 2 equations are required. It is not suffi- 
cient to trace the same one trajectory at different points 
because the equations resulting in this case would be 
linearly dependent. To obtain other equations, we thus 

4 We thank Amir Katz for alerting us to this possibility. 
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add to x (') perturbations with ~-amplitude, as was 
done in the probabilistic verification. Repeating this 
process d times we obtain d linearly independent tra- 
jectories which supply us the required equations. Us- 
ing the external tool we then calculate the elements 
of the matrix. We repeat the same calculation a few 
times using a similar algorithm to assure that we find 
the same elements within a given precision, thus ver- 
ifying that the motion is indeed in a linear regime. 

Having calculated the matrix A, one is able to com- 
pute its eigenvalues and decide whether the appropri- 
ate fixed point is attracting or repelling. In the case of  
an attracting fixed point the computation is regarded 
as completed. 

If we want the entries of A within ~ precision, the 
x 's  are to be taken within ~l precision so that 

c (A)61  < ~, 

where c(A) is the condition number of the matrix A 
[75]. Conservatively, the computation takes then not 
more than O ((d 4 + ½ (d 4 - 1 )d 2) log 2 ~:1 ) steps, which 
is polynomial in log~. The resulting computational 
class is Pd. 

5.1.4. Verifying limit cycles 
So far it was assumed that the simple attractor in 

question is a fixed point. If  it is a limit cycle, the 
degree of computational difficulty should be similar 
to the one of the fixed point, since in both cases the 
Kolmogorov-Sinai entropy vanishes [3,6]. The details 
of  the calculation may be different. One way to detect 
a limit cycle is to measure the frequency of the motion 
and to check that the system approaches some constant 
frequency. Then one should verify that the system re- 
turns to some E-vicinity, with a period corresponding 
to this frequency. The details of  such a calculation are 
left for further study. 

5.2. Computation for systems with a Lyapunov 
(energy) functional 

We next calculate explicit bounds on the compu- 
tation time for simple systems for which a global 
Lyapunov or energy functional exists. It is a differen- 
tiable functional E(x) satisfying 
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dE(x(t))  
< O, (5.1) 

dt 

along every trajectory x(t), except points x~ where 
this derivative vanishes. If the x~s are isolated then 
by the Lyapunov theorem [2,76] these fixed points are 
the attractors of  the system, if there is a neighborhood 
of x;  where E is larger than E(x; ) .  In this case basin 
boundaries are smooth. Discretiziug with small r 

1 
- [E(x , ,+ l )  - E(xn)] 
T 

1 
= - [ E ( x ( ( n  + 1)r)) - E(x(nr ) ) ]  + O(r)  (5.2) 

T 

by the Taylor expansion, leads to E(xn+l ) -- E(x,~) < 
0. The fixed points of  the continuous systems and of 
the corresponding discrete maps are identical, since 
these are the zeros of F. Furthermore, in the limit 
r -~ 0, the basins of attraction of  all fixed points of 
the two systems approach each other. Hence, so do the 
results of the computation. (It is worthwhile to note 
that although the result of the computation is identical 
for these two types of systems, the trajectories leading 
from the initial to the final points may be different due 
to accumulation of differences.) 

For these systems we can compute explicit bounds 
on tf. Since at the fixed point dE/d t  vanishes, there 
is a region around the fixed point where it is smaller 
than in the rest of the basin of  attraction (except near 
the boundary). Therefore there exists a ~ so that when 
the distance from the fixed point is larger than 6, 

d~_ > v~, (5.3) 

where v~ is a positive number, bounding the rate of 
change of energy at a point x~ in the linear regime. 
Consequently if A E  is the difference between the 
maximal and minimal (at the fixed point) values of E, 
the time of flow tf from the initial point to the point 
of distance ~ from the fixed point satisfies 

A E  
tf < (5.4) 

The exact value v~ depends on the particular system 
at hand. We next approximate va for two examples: 
gradient flow and the Hopfield neural network. 
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5.2.1. Gradient f low 
Gradient flow is defined by 

dxi 0 E 
Fi -- -- . (5.5) 

dt Oxi 

Using the chain rule 

d E  v-"  O E dxi 
d--7 = 2_., axi dt 

(5.6) 
i 

we obtain that 

dE 
-- ~ ~ Fi 2 = - I F ]  2 (5.7) 

dt 
i 

and va of (5.3) is the value of IF(xa)l 2 where xa is a 
point in the linear regime of  distance 8. 

5.2.2. The Hopfield neural network 
A more sophisticated example is the Hopfield net- 

work [16,54]. This is a particular type of  neural net- 
work that was inspired by the spin glass model and the 
modeling of  associative memory. It has been practi- 
cally used to solve some optimization problems, such 
as small instances of the Traveling Salesman Problem. 
The continuous version of the Hopfield network [16] 
is defined by 

dxi 
-- Fi = - x i  + Z Wij°j (x j )  (5.8) 

dt 
J 

with symmetric weights W/j = Wji and crj(xj) = 
tanh(xj). In what follows we assume a "generalized 
Hopfield model" with the functions crj satisfying: 

(i) [crjl < 1, 
(ii) Ocrj(x)/Ox > O, 

O2Oj(X) 
(iii) ~ is negative for positive x, positive for neg- 

ative x and tends to zero monotonically in the 
limits 4-00. 

The energy E is defined here by 

I O E  
Fi - (5.9) 

c 3ai 

where c is a positive constant, leading to 

dE _ W (cqcri~ ( d x i ~  2 
dt - c  z--~ \ Oxi J \ dt I 

(5.10) m 

l 

Because of  condition (ii), the differential of  the energy 
is indeed negative. 

We next estimate a bound on the time of flow. De- 
note Bi : Z j  I W/j I. Because of condition (i) there 
are no fixed points in the region Ixil > Bi since there 
d x i / d t  < 0 for positive xi and d x i / d t  > 0 for nega- 
tive xi. For this reason, after sometime the equations 
of motion flow in the region Ixil < Bi. In this region, 
because of condition (iii), d~ri/dx takes its minimal 
value at Ixi] = Bi. Denote this value by bi, and let 
B w  be the minimal value of these bi. Then va of  (5.3) 
can be estimated by 

va = cBwlF(xa) l  2, (5.11) 

where x~ is a point in the linear regime of  the fixed 
point. 

6. Computation for chaotic systems 

In this section we consider strange attractors, and 
in particular chaotic attractors; usually (though not 
always) strange attractors are chaotic. There are var- 
ious options regarding the definition of  chaotic at- 
tractors [70]; in this paper we follow the definition 
by Milnor. A is a "Milnor attractor" if it cannot be 
divided into invariant subsets (for an exact defini- 
tion see [70]). This definition gives rise to various 
types of  chaotic attractors; for example, the attrac- 
tors of a system may be intermingled [77-79]. In 
this case near each point of the attractor there are 
points belonging to basins of other attractors; under 
other definitions of  chaotic attractors [2,70] such in- 
termingling will be considered as one attractor only. 
Also the phenomenon of crisis [1,80] may occur; 
this describes systems in which chaotic attractors 
change dramatically when a parameter is varied. It 
is believed, however, that most chaotic attractors are 
isolated (namely isolated chaotic attractors are preva- 
lent [69]). This is based on the fact that other types 
of chaotic attractors (intermingled or in crisis) be- 
come isolated when a generic perturbation is added 
to the system. In the case of crisis this perturba- 
tion is a change in some parameter. In the case of 
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intermingled attractors these are symmetry breaking 
perturbations. 

The behavior of a chaotic system can be very rich, 
exhibiting structures on all scales. These increasingly 
rich structures are revealed as the resolution is in- 
creased. Furthermore, systems where the number of  
attractors is arbitrarily large can be found [12,81] and 
thus many possible output responses are possible in 
the associated computation. These statements will be 
demonstrated in the following paragraph. 

Assume a regular Hamiltonian system with an el- 
liptic fixed point and trajectories x(n)  = cos27rcon. 
If co is rational, the trajectory is periodic, and it is 
quasi-periodic for irrational co. If some disturbance is 
added so that the system is not integrable anymore, 
by Kolmogorov-Amold-Moser  theorem [2-4,82,83] 
most of the irrational trajectories around the ellip- 
tic fixed point will be only slightly deformed; by the 
Poincard-Birkhoff theorem [2-4,84], the rational tra- 
jectories will be replaced by a sequence of fixed points 
that are alternatively unstable hyperbolic and elliptic. 
Around the unstable hyperbolic points there are two 
types of manifolds (stable and unstable); these may in- 
tersect many times and generate chaotic motion. The 
elliptic fixed points in the new sequence are again sub- 
ject to a perturbation and thus a chain of fixed points 
is generated on a finer scale. This construction can 
be continued ad infinitum; island chains of arbitrary 
length are generated in this way, So far a Hamilto- 
nian system was considered. When some small dissi- 
pation is introduced this process is truncated. Some 
of the chaotic parts will turn into chaotic attractors 
and many elliptic points will become periodic attrac- 
tors. The period of the longest attractors of  this type 
will be determined by the rate of  dissipation. The 
weaker the dissipation, the longer the surviving orbits 
will be. Consequently for such a chaotic system we 
can reach very fine dynamics or equivalently, complex 
computation. 

Where does the complex behavior of the dynamics 
show itself'? The convergence is as fast as in the case 
of regular attractors, due to the assumption of expo- 
nential convergence, The verification, though, is much 
harder. (In some situations it is possible to define a 
simply structured trapping region [85] that encloses 

the attracting nonwandering set. In this case there is no 
need to verify the attractor, and the complexity is low. 
However, usually such a method is not applicable.) 

6. I. Polynomial and exponential classes 

We start with isolated attractors. If one has to deter- 
mine the location of the attractor within the precision 
e, there is a profound difference between regular and 
strange attractors. In the first case the computation is 
polynomial while it may require exponentially long 
time in the second case. A typical strange attractor is 
multifractal: its measure on various points is not uni- 
form. Let the measure in a hyper-sphere of radius e 
on the attractor be [1,86] 

/~i = e < .  (6.1) 

The measure is smallest in regions where oE i = lYma x. 
The time it takes to reach the region of the smallest 
measure is inversely proportional to it. Therefore, the 
time required to compute the location of  the attractor is 

tA ~ e -amax = e c%~XI log<, (6.2) 

which is exponential in the number of bits of  the 
required precision. This computation thus belongs to 
the computational class EXPj.  

If the attractors are known (from previous calcu- 
lations for example), and this exponential amount of 
information is kept, the computation time required to 
determine the attractor is proportional to [log el. Oth- 
erwise, it is exponential in I log el. 

If we are to classify one initial point, it requires ex- 
ponential time to recognize the attractor. If, however, 
we wish to compute starting from exponentially many 
initial points for a constant (independent of  e) number 
of  isolated attractors, the total time will be exponen- 
tial in I log el, which may translate into behavior rang- 
ing from exponential growth to exponential decay per 
input point. 

Note that the process described above does not in- 
clude verifying that the strange set is indeed an attrac- 
tor rather than a transient. With the exponential (in 
I log el) amount of information, one may sometimes 
use the probabilistic verification described for fixed 
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points. In order to have a polynomial  algorithm we 
resort to nondeterminism. 

6.2. Nondeterministic computation 

We can do better than exponential time for typical 
(i.e. isolated) chaotic attractors if the computational 
problem is rephrased as: "Does a given point x ap- 
proach an isolated chaotic attractor 4"?", where the 
attractor is specified by one of its fixed points, 4". In 
this case, we abuse the notation, using 4" both to de- 
note the fixed point and its associated attractor. In ad- 
dition to 4, another real constant v is provided so that 
any periodic orbit that passes in the v neighborhood 
of 4' is on the attractor as well [1]. Now the problem 
is defined as follows: 

Given an initial point with precision ~ decide 
whether  this point is attracted to the ~ vicinity of  
the attractor 4". 

We next show that this problem is in the nondeter- 
ministic class NPd. 

Let us recall the definition of the class NP from 
classical computation. Assume for example that one 
has to decide if a natural number n is composite. This 
problem is hard. However, if the rules are changed, 
so that in addition to n you are also given two natural 
numbers n l and n2, with the promise that n is com- 
posite if and only if the multiplication nln2 is equal 
to n. In this setup we call n l and n2 the certificate of 
the "yes" answer to the question whether n is compos- 
ite. The authentication of the certificate is all that is 
required in this new framework. Here the authentica- 
tion process is the multiplication n I n2 and comparing 
it to n: according to the rules, n ~ nln2 implies that 
the answer is "no". It is not clear that if a decision 
problem can be authenticated efficiently for any given 
certificate, it can also be solved efficiently. This is one 
of  the most fundamental open questions in the realm 
of  theoretical computer science, and is known as the 
P = NP question. 

Here we consider the class NPd rather than NP. 
The difference is that the authentication is executed 
with the dynamical  system, rather than with a Turing 
machine. 

Assume one is given an initial point x. There is 
a certificate point y so that y is in the v neighbor- 
hood of 4" and y belongs to a periodic orbit of  length 
O(I log el). These two properties are easy to authen- 
ticate, and hence to deduce that y is on the attractor. 
Furthermore, we maintain that for this initial point x 
the periodic orbit of the point y is going to pass in the 

vicinity of the trajectory of x in time O(log ~), pro- 
vided that x approaches the attractor associated with 
the point 4". If  such a point y is provided, the affirma- 
tive answer can be indeed computed polynomially. 

The following lemma is required: 

Lemma 2. There is a constant v such that for any ini- 
tial point x in the basin of  attraction of an isolated 
chaotic attractor, that is denoted by one of its fixed 
points 4", there is a point Yx so that: 

(i) Yx is in the v-vicinity of  the fixed point 4,. 
(ii) Yx is on a periodic orbit of length O([ log~l) .  

(iii) The periodic orbit of  (ii) passes in the ~ vicinity 
of the trajectory starting from x up to O(I log ~ l) 
many steps (or the corresponding time for the 
continuous system) on both the trajectories. 

The correctness of  this lemma will validate the ex- 
istence of a certificate y with the properties described 
above. 

We next justify the lemma: The measure of  the v 
neighborhood ,t4 around 4" is # (v )  ~ v c~ for a constant 
a .  We denote by /3 the set of points on the attractor 
which are in the ~ vicinity of the trajectory starting at 
x. The measure of this set is #(/3) ~ ~ .  The measure 
of the set of orbits that start in ,,4 and v is i t /3  after n 
iterations is thus 

# ( T n ( A )  N B); 

because of mixing [4,6], in the limit n --~ oc it ap- 
proaches I~(A)tI(B).  Therefore for large n we can 
approximate 

# ( T n ( A )  (3 13) ~ #(A)#(13) .  (6.3) 

The number of periodic orbits of length n on a chaotic 
attractor of topological entropy hT [ I] is 

ehT"n 
N, ~ (6.4) 

n 
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We denote by N,, (A,/3) the approximate number of 
periodic orbits of length n that pass in both sets ,A and 
/3. It is estimated by: 

Nn(A, /3) = #(Tn(A) A/3)Nn. (6.5) 

We want 

Nn (A, B) ~. r, (6.6) 

where r is somewhat larger than unity so that to assure 
the existence of such an orbit. From Eqs. (6.5) and 
(6.6) we conclude that 

r 
tz(Tn (A) N/3) - (6.7) 

Nn" 
Taking logs of both sides of Eq. (6.7) and substituting 
Eq. (6.3), we can approximate 

log v + fi log e ~ log r - log Nn, (6.8) 

which is equivalent to 

ot log v + f l log~ ~ logr  - hTn + logn. (6.9) 

Because asymptotically ~ << v, r ~ 1, and n >> log n, 
we approximate 

I log~l ~ hTn/fi, (6.10) 

or equivalently n : O(I logE[). That is, the period of  
the trajectory that passes in both ,,4 and/3 is linear in 
the precision required. 

We can now compare the NPd result of approaching 
an attractor with the parallel case of a regular attractor, 
where the fixed point is given. In the case of a fixed 
point verification of its identity is trivial, while for a 
chaotic attractor it is required, resulting in NP~ com- 
putation. For chaotic attractors the extension of veri- 
fication of  stability as performed for regular attractors 
is still an open question and is left for future study. 
The complexity of chaotic attractors as manifest by 
their KS entropy and their multifractality leads us to 
conjecture that: 

Conjecture 3. Pd ~ NPa 

6.3. Probabilistic computation and intermingling 

For chaotic systems there is also the possibility of  
intermingled - rather than isolated - attractors. In this 

case in any &vicinity of an attractor there are points 
belonging to the basin of attraction of another attractor. 
A deterministic computation with a limited precision 
initial condition may be erroneous; yet, probabilistic 
computation may be applicable. 

For the existence of intermingled attractors it is re- 
quired that there is a chaotic attractor in an invariant 
subset of phase space [77,78]. This results in tem- 
poral fluctuations in the Lyapunov exponents of the 
motion transverse to this subspace. Consequently for 
such an attractor the motion looks repelling for finite 
intervals of time. In any arbitrary small vicinity of the 
attractor there are sets of  points that are not attracted 
to it. The measure of  these shrinks as the attractor is 
approached. Invariant subspaces, which are required 
for such attractors, are usually found in systems with 
some symmetry, namely when the equations of mo- 
tion are invariant under some operation. An example 
of  such a system is a particle (of a unit mass) moving 
in the two-dimensional potential [77,78]: 

V(x, y) = (1 - X2) 2 -/"- (17 @ .~)y2 

with friction and driving. Assigning r = (x, y), the 
equation of motion is given by 

d2r dr  ( 0 0 )  
d t 2 = - y ~  - XO~x+YO~y V(x,y)  

+ f0 sin(cot)x0, (6.11 ) 

where y, £, f0 and co are parameters, while x0 and Y0 
are unit vectors in the x and y directions, respectively. 
The phase space is five-dimensional with the coor- 
dinates x, y, dx/dt,  dy/dt  and (cot) rood 27r. Be- 
cause of the y ¢~ - y  symmetry of the potential, 
the motion is invariant with respect to (y, dy/dt) ¢:~ 
( -y ,  - d y / d t ) .  Consequently (y = 0, dy/dt = 0) is 
an invariant subspace. The motion in this subspace 
satisfies 

dZx dx 
dt 2 - y ~ - + 4 x ( 1 - x  2 )+f0s in (co t ) .  (6.12) 

For appropriate values of the parameters there is a 
chaotic attractor A for the motion described by (6.12). 
For general initial conditions with (y, dy/dt) v~ O, the 
flow is either to A or to lyl = cx~. The initial conditions 
leading to these two attractors are intermingled: in any 
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vicinity of  an initial condition from which the flow is to 
the attractor A, points that flow to l yl = c~ are found. 
Reaching a particular attractor can never be assured. 
However, some probabilistic arguments may hold. 

Let Y0 be the distance of a point from an attractor A. 
The probability to flow from this point to another at- 
tractor is proportional to l Y0l '7, where 0 is a positive ex- 
ponent [77,78]. The probability decreases with Y0 but 
does not vanish for any nonvanishing Y0. This suggests 
a computation process defined by flowing towards the 
attractor until Y0 is within the required preassigned 
probability. There is another type of probabilistic be- 
havior in this system: Let a flow starting from some 
initial point go to the attractor A. Choose a neighbor- 
ing point at random within a distance E from the first 
point. With a probability proportional to ~4, where 4) 
is positive, it will not flow to A. (The exponents 
and ~b describe different probabilities.) A probabilistic 
computation can be associated with intermingled at- 
tractors either by running a deterministic computation 
or by adding first a small independent perturbation to 
smooth up the phase space, and only then perform 
the calculation. The last is maybe more similar to the 
classical definition of probabilistic computation. 

6.4. Strong undecidabili  O' and crisis 

For chaotic systems computation may be totally un- 
decidable, and no nondeterminism or stochasticity can 
help. A strong undecidability takes place when "cri- 
sis," namely a sudden change in the structure of  the 
attractor with the change of a parameter p, occurs [ 1 ]. 
The value of p where the change takes place is de- 
noted by Pc. 

One type of  crisis is boundary crisis, where at p = 
Pc the attractor touches its basin boundary. A system 
exhibiting such a crisis is the Ikeda-Hamel-Jones-  
Maloney map [1,80] given by 

z~+j = C + Bzn expi ~c 1 +-/-z,,I 2 ' (6.13) 

where Zn = Xn + iyn. At crisis (p = Pc), there exists 
an e vicinity (for an E arbitrary small) of  the attractor 
that contains a hyper-sphere of  radius El (Ej < e) that 
flows to another attractor. For p slightly larger than 

Pc, the chaotic attractor crosses its basin boundary 
and therefore disappears and is replaced by a chaotic 
transient [87]. That is, for a time T the trajectories 
behave as if they move to the chaotic attractor but then 
suddenly, they "realize" that this is not an attractor 
and they move off to another distant attractor. The 
probability to find a transient of  time T is 

P ( T )  ~ e -T/(T)  (6.14) 

where 

(T) ~ (p - pc) -~>, (6.15) 

where ~ is a positive exponent. The average transient 
time diverges at pc. Consequently, for p slightly larger 
than Pc, the computation will not converge for a very 
long time. 

Another type of crisis is "attractor merging crisis", 
where strange attractors merge when a parameter p is 
varied [ 1 ]. Again at Pc the attractors touch and then the 
computation is undecidable. For p slightly larger than 
Pc, the orbits will spend long time intervals T in the 
vicinity of one of  the "old" attractors. The distribution 
again satisfies (6.14). The trajectory jumps intermit- 
tently between the "old" attractors and computation- 
ally it is undecidable. There are examples where the 
average time scale is 

(T)  ~ e ~/~(p p~)~/z), (6.16) 

which near pc is much larger than in (6.15). If  the 
distance between the attractors in the case of  the "at- 
tractor merging crisis", or the distance between the at- 
tractor and its basin boundary, in the case of  boundary 
crisis is smaller than E (which is the precision of the 
computation) the behavior will be similar to a compu- 
tationally undecidable one. 

7. Discussion 

Analog computation is useful in a wide range of  
engineering applications such as control and robotics, 
and is important for modeling of  biological motor 
control and neural modeling. It is also of  impor- 
tance for fundamental problems in computer science, 
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like the validity of  the physical Church-Turing the- 
sis [19]. It may also be of use in the design of 
special purpose analog computers. For these reasons 
a fundamental theory for computation in cont inu-  
ous  space  and  t ime is required. This paper consti- 
tutes the first effort (to our knowledge) to provide 
a natural interface between dynamical systems and 
computational models with the emphasis on continu- 
ous time update. Our theory formulates problems in 
computational complexity within the framework of 
dynamical systems. In this field much is "believed" 
and "conjectured" (e.g. [ 1,3,5,6,67]), but relatively lit- 
tle is mathematically proven. Hence, we are unable to 
provide a mathematical theory but rather an instruc- 
tive understanding that bridges between realizable 
dynamical systems and the theory of computation. 

The main results of the present work are: 
- Definition of  computation by dynamical systems. 
- Definition of computation time that applies to both 

discrete and continuous time. 
- Complexity analysis of the continuous-time Hop- 

field network. 
- For systems with regular attractors two computation 

frameworks are provided. In the first one, compu- 
tation is deterministic and in Pj. In the second it 
is probabilistic and in Co-RPj (works only under 
some restrictions). 

- If the attractors are chaotic and isolated, polyno- 
mial time is not sufficient to trace an attractor, but 
exponential deterministic time is needed. However, 
we can naturally define nondeterministic computa- 
tion in this case and these systems are in NPj.  We 
conjectured that P~t ~ NPd. 

- If the attractors are chaotic and intermingled (with 
riddled basins) only probabilistic computation is 
feasible. 

- Chaotic systems which exhibit crisis (or chaotic 
intermittency) demonstrate natural undecidable 
computation. 
In a forthcoming paper the application of this the- 

ory to the problem of linear programming and its im- 
plications to optimal performance continuous time al- 
gorithms will be discussed [9]. 

There is some difficulty in comparing the classical 
digital model with our model. For example, the corn- 

putation time of a problem is not fixed for all inputs, 
but rather only for all those inputs that are in the same 
basin of attraction (resulting in the same response). We 
can still bound the computation time for all inputs by 
the slowest computation time, but such an approach 
will remove some useful information. 

Interesting open questions are: 
- Can one find a deterministic method to verify at- 

tractors without introduction of an additional device 
that solves linear equations? 

- Can one find a better lower bound on the compu- 
tational complexity of verifying an isolated strange 
attractor? 

- What is the complexity of deciding a point close to 
the boundaries? Or equivalently: we associated the 
computational class NPd with the task of recogniz- 
ing an isolated strange attractor. What is the extra 
information required to recognize a boundary and 
in particular its "sides"? 
For systems with intermingled basins of attraction 
deterministic computation will never converge. The 
corresponding problems should be decidable by 
probabilistic computation. What notions of classi- 
cal complexity theory are applicable in such a case'? 
Can one formalize non-uniform classes by our 
model? In particular, could we realize the super- 
Turing model suggested in [22]'? 
Can one find examples of problems that are non- 
decidable by other models of computation but are 
decidable by our model? Are there problems that 
are more efficiently computed in our model than in 
the classical theory of computation'? Are there such 
natural questions? 
Our dynamical systems are special purpose comput- 
ers. Can one define a general purpose analog com- 
puter within the above formalism? 
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