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Computational Capabilities of
Recurrent NARX Neural Networks
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Abstract—Recently, fully connected recurrent neural networks fully connected networks can simulate pushdown automata
have been proven to be computationally rich—at least as powerful with two stacks, which are computationally equivalent to
as Turing machines. This work focuses on another network which Turing machines. The stacks are encoded in two of the nodes

is popular in control applications and has been found to be very . L .
effective at learning a variety of problems. These networks are of the network with the remaining nodes used to simulate the

based upon Nonlinear AutoRegressive models with eXogenousﬁnite State Control. There iS an |n|t|a| period during Wh|Ch the
Inputs (NARX models), and are therefore calledNARX networks network reads the input, then the network performs the desired

As opposed to other recurrent networks, NARX networks have a computation, and finally the output of the network is decoded.
limited feedback which comes only from the output neuron rather An important class of discrete-time nonlinear systems is
than from hidden states. They are formalized by the Nonlinear AutoRegressive with eXogenous IngMARX)

y(t) = W(u(t = n,), - ult = D,u(t)y(t —n,).---.y(t = 1) model [10]

where «(t) and y(¢) represent input and output of the network _

at time ¢, n,, and n, are the input and output order, and the y(8) = flult =na)s - ult = 1), u(t), y(t = ny)

function W is the mapping performed by a Multilayer Perceptron. eyt —=1)) 1)

We constructively prove that the NARX networks with a finite

number of parameters are computationally as strong as fully wherew(t) andy(t) represent input and output of the network
connected recurrent networks and thus Turing machines. We at time ¢, n, andn, are the input and output order, and

conclude that in theory one can use the NARX models, rather he f ’ . i f . h he f !
than conventional recurrent networks without any computational the function f is a nonlinear function. When the functigh

loss even though their feedback is limited. Furthermore, these can be approximated by a Multilayer Perceptron, the resulting
results raise the issue of what amount of feedback or recurrence system is called a@NARX network[11], [12]. It has been
is necessary for any network to be Turing equivalent and what demonstrated that this particular model is well suited for
restrictions on feedback limit computational power. modeling nonlinear systems such as heat exchangers [11],
waste water treatment plants [13], [14], catalytic reforming
|. INTRODUCTION systems in a petroleum refinery [14], nonlinear oscillations
HE computational capabilities of recurrent neural negssociated with mutli-legged locomotion in biological systems
works have been studied for at least fifty years. Soni&5], and various artificial nonlinear systems [11], [12], [16].
of the earliest work in this area by McCulloch and Pittsurthermore, in a previously published paper we benchmarked
showed that networks of neuron-like elements are capableMARX networks against nine other recurrent neural network
implementing some types of finite state machines (FSM's) [#§rchitectures on problems including grammatical inference
Later, Minsky showed that any FSM could be mapped in@nd nonlinear system identification [17], [18]. We found that
such a network [2]. More recently, new results have been d$ARX networks typically converge much faster and generalize
veloped to improve the efficiency of this mapping [3]-[5], [30]better than these other networks. We have also shown that
All of these results assume that the nonlinearity used in thtARX networks perform better on problems involvitgng-
network is a hard-limiting threshold function. However, wheterm dependencied 9], [20].
recurrent networks are used adaptively, continuous-valuedBased on the mapping theorems of [21], [22], NARX
differentiable nonlinearities are almost always used. Thusgetworks should be capable of representing arbitrary systems
an interesting question is how the computational complexigxpressible in the form of (1). However, using such an
changes for these types of functions. It has been recenalgproach there is no bound to the number of nodes required to
shown that such networks are at least as powerful as Turiaghieve a good approximation. Furthermore, it is not clear how
machines, and in some cases can have super-Turing capabilch systems relate to conventional models of computation. In
ties [6]-[9]. The proof utilizes a construction that shows howhis paper we explore the computational capabilities of this
Manuscript received March 18, 1995; revised August 7, 1995. network compared to those of the fully connected networks.
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Fig. 1. A fully connected recurrent neural network.

We also provide some related results concerning NARX
networks with nonlinear output functions. In particular, when
hard-limiting nonlinearities are used, we show that NARX
networks are only capable of implementing a subclass of
FSM’s called Finite Memory Machines (FMM's). Howeverwherea, ;,b;, andc; are fixed real valued weights, andis a
we show that FSM's can be simulated by FMM'’s within aonlinear function which will be discussed below. The output
sublinear slowdown. is assigned arbitrarily to be the value of the first node in the

network

ig. 2. A NARX network withn, = n, = 2 and i = 3.

Il. RECURRENT NEURAL NETWORK MODELS

We consider two recurrent neural network models: 1) fully y(t) = 21(t).
connected networks; and 2) NARX networks. We shall restrict
our attention to single-input, single-output systems, which aféne network is said to be fully connected because there
sufficient for establishing the computational capabilities of the a weight between every pair of nodes. However, when
network. These results can easily be extended to the multieight a; ; = 0 there is effectively no connection between
variable case, by simply replacing scalars by vectors whatedes: and j. Thus, a fully connected network is very
appropriate and creating multiple tapped delay lines from tigeneral, and can be used to represent many different kinds
outputs of the network. Each tapped delay line would b# architectures, including those in which only a subset of the
constructed following the method used for a single output. possible connections between nodes are used. Alternatively,

We shall adopt the notation that corresponds to a stateone can think of fully connected networks as a single layer of
variable,u to an input variabley to an output variable, and nodes with complete feedback, as shown in Fig. 1.
z to a node activation value. In each of these networks weA NARX network consists of a Multilayer Perceptron
shall let N correspond to the dimension of the state spac@ILP) which takes as input a window of past input and
When necessary to distinguish between variables of the twotput values and computes the current output. Specifically,
networks, those associated with the NARX network will béhe operation of the network is defined by
marked with a tilde, e.g.z;(¢) and #;(t) will refer to the
ith stat(_a variable in the fully connected and NARX networks, — g(¢) = (it — ny,), - -, @t — 1), a(t), §(t — ny)
respectively. = 1))

The state variables of a recurrent network are defined to be ’
the memory elements, i.e., the set of time delay operators. In a . . )
fully connected network there is a one-to-one correspondertBere the functionl is the mapping performed by the MLP,

between node activations and state variables of the netwd#®, Shown in Fig. 2.

since each node value is stored at every time step. Specificall The states of the NARX network correspond to a set of

the value of the/V state variables at the next time step aryvo tapped-delay lines. One consistssof taps on the input

given by value.s., and the other consistsrof taps on the output values.
Specifically, the states are updated as

@®)

zi(t+1) = z(t).

Each node weights and sums the external inputs to the networxk(t +1)= qfég i i Z“ i
and the states of the network. Specifically, the activatiori™ 1Y o .
Ziy1(t) 1 <i<n, andn, <i<ny, +ny

function for each node is defined by

N so that at timet the taps correspond to the values
zi(t) = o | Y aigwi(t) + biu(t) + ¢ )
g=1 Z(t) = [a(t—ny) -+ a(t=1) g{t—-ny) --- gt=1)]
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The MLP consists of a set of nodes organized into two ldyers  Proof: To prove the theorem we show how to construct a
There areH nodes in the first layer which perform the functioNARX network A that simulates a fully connected netwafk
. with N nodes, each of which uses a BOSS activation function
: N . : ‘ . 0. The NARX network requiresV + 1 hidden layer nodes, a
Zt) =0 Z @i ;35 (t) + bia(t) + & ¢=1- H. Jinear output node, an output shift register of ordgr= 2N,
=1 and no taps on the input. Without loss of generality we assume
that the left saturation value ef is S = 0. This restriction
makes the proof somewhat simpler, but can be easily relaxed.
H The simulation suffers a linear slowdown; specificallyZif
(t) = Z w; ;2 (t) + 6;. computes in timé’, then the total computation time taken by
i=1 Nis (N + 1)T. In particular, timet is simulated during time
stepsk = (N + D)t + 4,4 = 1,---, N + 1. Because of the
linear slowdown, the input toV" must be kept constant for
each simulation period, i.e.,

The output layer consists of a single linear node

A detailed picture of a NARX network with,, = n, = 2 and
H = 3 is shown in Fig. 2.

Definition 1: A function ¢ is said to be aounded, one-
side saturated (BOSS) functiah it satisfies the following (N + Dt +1) = u(t) =1, N+1.

conditions: = h < i< N.A will simul h | f I
2) o has a bounded range, i.d..< o(x) < U, L # U for or eachl < i < N, A will simulate the value of exactly one

of the nodes inF. The additional time step will be used to
encode a sequencing signal indicating which node should be
simulated next. Specifically,

all x € R.
b) o is left-side saturateqi.e., there exists a finite valug
such thato(z) = S for all z < s.

C) ¢ is nonconstant (i.e., there exist at least two values zi(t) 1<i=j<N
andx, such thato(z1) # a(z2)). O Z((N+1Dt+4) = {a(a) i=j=N+1 (6)
BOSS functions include many sigmoid-like functions; for 0 otherwise
example,hard-limiting threshold functions for 1 < i < N + 1, whereo(a) is related to the sequencing
0 <0 signal and will be discussed at length below.
() = {1 >0 (4) The output taps ofV" will be used to store the simulated

states ofF; no taps on the input are required, i.e,, = 0.

and the saturated linear function At any given time the tapped delay line must contain the

0 <0 complete set of values corresponding to &llnodes ofF at
o(x) = {a: 0<z <1 (5) the previous simulated time step. To accomplish this, a tapped
1 z2>1 delay line of lengthn, = 2N is sufficient. Specifically, at

time (N 4+ 1)t + ¢, the tapped delay line contains the values

are both BOSS functions. (G=1,  N41j =150 2N)

Although the sigmoid functiong(x) = [1 + exp(—z)] !,

is not considered to be a BOSS function because it does not Zigj+1(t—2) O0<i+j<N
saturate, it can be slightly modified to be so. Specifically, a Iz i+j=N
“one side saturated sigmoid,” Zi((N+1t+1) =< zipj—n(t—1) N<i+j<2N+1
0 z<c K L= 2N +.1
a(a:) _ { 1 x;c Zi+j_2]\f_1(t) 2N+ 1<+
l+e® (7)
is a BOSS function, where € R. where . (the sequencing signal) is outside the rargel]

(see Definition 1A); this constant will be discussed shortly.
With this representation the taps will always contain all of the
values ofF at timet—1 immediately preceding the sequencing
In this section, we prove that NARX networks with BOSSsignal, 11, to indicate where these variables are in the tap. The
functions are capable of simulating fully connected networksntents of the taps at various times are illustrated in Fig. 3.
with only a linear slowdown. Because of the universality of We next show how to chose the dynamics of the hidden
some types of fully connected networks with a finite numbereurons. The sequencing signal is chosen in such a way that
of nodes, we conclude that the associated NARX networig can define a simple functiof), that is used to either “turn
are Turing universal as well. off” neurons or to yield a constant value, according to the
Theorem 1:NARX networks with one hidden layer of values in the taps. Lgt = U + ¢ for some positive constant
nodes with BOSS activation functions and a linear output nodeWe define the affine function
can simulate fully connected recurrent networks with BOSS
activation functions with a linear slowdown. O Julw) =z = p. (8)

1More layers could be used, but are not necessary for our purposes. Then, f#(“) = 0 and f#(x) < —cforal z e [LvU]'

2Equivalently, the function can be defined to be saturated to the right, i.é’CCOI’dlng to (6) and (7), nOdbéi((N + 1)t + J) may take
o(x) = S for all z > s, and we would obtain the same results. on a nonzero value only wheh= j, or equivalently when

1. MAIN RESULT
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Fig. 3. The contents of the output tapped delay line of the NARX networkid- 4. The Dual Parity FSM.
at times(N +1)t+1 whenx (¢) is to be simulated next (top)/N +1)t+ N

whenz n (¢) is to be simulated next (middle), addv + 1)t 4+ (N + 1) when .
the sequencing signal is to be generated next (bottom). After each time It has been shown that fully connected networks with a

step, the contents of the taps move to the left, and the value of the outpufiled, finite number of saturated linear activation functions are
stored in the right most tap. universal computation devices [7], [8]. As a result it is possible

to simulate a Turing machine with the NARX network such
Fan_ip1 = p; in this case, the values af(t — 1) are stored thatthe slowdown is constant regardless of problem size. Thus,
in the tapsi y4m—i,m = 1,---, N. Thus, using (2) and (8), We conclude that

the ith node in the hidden layer of is updated as follows: ~ Corollary 1: NARX networks with one hidden layer of
nodes with saturated linear activation functions and linear

output nodes are Turing equivalent. O

N
Zik+1) =0 < [Z @i mEN4m—i(k) + biu(k) + ¢;

m=1

IV. RELATED RESULTS

+ BilFan—iv1(k) — u]) 9) In this section, we look at variants of the NARX networks,
in which the output functions are not linear combiners but

where the constang; is large enough to make the input 4o rather some kind of nonlinear activation function.

::s;trh&ans whenZsn_;11(k) # 1 so that the whole function A Hard-Limiters
There exists at least one fixed valaesuch thato(«) #  If the nonlinearity is a hard-limiting function [see (4)] and
0. The value zy, (k) will toggle between 0 ands(«). the inputs are binary, then recurrent neural networks are only
Specifically, #x41 (k) should equab(c) only whenzy = i, Ccapable of implementing FSM's, and NARX networks are
otherwise it should equal zero. Thus, using (8), its upda@ly capable of implementing a subset of FSM's called Finite

equation can be written Memory Machines (FMM’s) [23], [24], which are defined to
be an FSM whose input/output relationship can be described
iInNt1(k) = o(BnwalEn(k) — p] + @) (10) by the equation

where once againjy 4, is large enough to make the entirey(t) = ¢(u(t —nu), -+, w(t =1), u(t), y(t—n,), - -, y(t—1))

function zero wheni (k) # . where «(#) and y(t) assume boolean values, ardis a

tSo Iar tge c;\r}s_tnlﬁnon enSllJretf] thlfat (6) wil Epld't.NeXt’ th8ombinational logic function. Clearly this equation has the
output node oty 1S then simply the finear combination same form as (3), so when a hard-limiter is used for the

u N nonlinearity of the output node, the functioh is a logic
g(k) = —Zn11(k) + Zéi(k) (11) function, and it is clear that NARX networks are equivalent
o(@) P to FMM's.

so that the output of the network is equal to the value of the Not all FSM's are FMM’s. FMM’s have the property that

currently active hidden layer node, which in turn ensures that: state of the machine can always.be determined from a
the feedback will be consistent with (7). inite number of observations of the inputs and outputs of

Finally, we consider the initial conditions of the network?ﬂe system \;vhenFtl\P;li/llnltlal sbtate |sbL|mkgown. In o}herhwolrjds,l
The taps should be initially configured as follows: t e.states oran Vi are observablé. For example, the Dua
Parity FSM, shown in Fig. 4, is not finite memory since one

* 0<j<N can observe an infinite sequence of ones at the input and an
#;(0) = § wj-n+1(0) N <j<2N infinite sequence of zeros at the output without being able to
1% J=2N determine whether the FSM is in stajg or ¢s. In contrast,

the FSM shown in Fig. 5, is an FMM since for any input
sequence of length two, the state of the FSM’s can always be
determined from knowledge of the past two inputs and the last
3We assume the value of the input is bounded. output as illustrated in Table I.

wherex stands for any value in the rangk, U]. At the next
time step the network will be ready to simulatg1). Q.E.D.
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TABLE |
THE STATE OF THE MACHINE AS A FUNCTION OF THE
0/0,1/0 PREVIOUS TWO INPUTS AND PREVIOUS OUTPUT
y(t—1) u(t—2) u(t—1) state
qs 0 0 0 qs3
0/0 5 B 1 0
Fig. 5. A Finite Memory Machine (FFM). 0 1 0 43
0 1 1 a3
1 0 0 P
Intuitively, the reason why FMM'’s are constrained is that 1 0 1 o
there is a limited amount of information that can be represented 1 i 2 o
40

by feeding back the outputs alone. If more information coutd

be inserted into the feedback loop, then it should be possible to

simulate arbitrary FSM’s in structures like NARX networks. The network will still have N + 1 hidden nodes, corre-

In fact, we next show that this is the case. We will prove thgponding to the nodes ¢f. Each node will correspond to the

NARX networks with hard-limiting nonlinearities are capablealues

of simulating fully connected networks with a slowdown zi(t) 1=25-1, 1<j<N

proportional to the number of nodes. As a result, the NAR)%<((2N 4 3)t+5) = ola) i=N+1,

network will be able to simulate arbitrary FSM’s. To do this,”™ 2N+ 1< j<2N 42

the network uses the extra time steps associated with the 0 otherwise.

slowdown to insert information about the state of the FSM. We . N (13)

provide an upper bound for the amount of slowdown, which The ith node has a nonzero value wheny_siy1 =

is a function of the number of states of the FSM. Zan-2i42 = 1, and values ofz,---, zy correspond to tap
Theorem 2: NARX networks with hard-limiting activation Valu,eS“j?(NJr’_"—i)—l’m = L.+, N. So, using (2) and (12),

functions and one hidden layer of nodes can simulate fulfj€?th node in the hidden layer ot is updated as follows:

connected networks with hard-limiting activation functions N

with a linear slowdown. o zik+1) =0 < [Z @imT2(Nm—i)—1 () + biu(k) + ¢

Proof: By a construction similar Theorem 1, we show m=1

that a NARX networkA/, consisting of a shift-register of N N

length4N 41, N +1 BOSS hidden neurons, and a hard-limiter + BilFan-2it1(F) + Ean-siva(k) — 21)

activation at the output level, can simulate a fully connected

network F with N nodes, each of which uses a hard-limitingvhere the constang; is large enough to make the whole

activation functiono. function O if Z4n_2i11(k) and Z4nv_2;42(k) are not equal
The simulation suffers a linear slowdown. Except heré; if t0 one.

computes in time’, then the total computation time taken by The node that implements the sequencing signal becomes

N is (2N+3)T. The extra computations are used to implemesctivated either whettay_»(k) = Z2ny-1(k) = 1 or when

a null signal (chosen to be zero) between the simulation ®f~x—1(k) = Z2n(k) = 1, as illustrated in Fig. 6. Since the

each node, and the “end of sequence” signal (chosen as t@@c function f(a, b, c) = ab-+bc s a threshold logic function,

consecutive 1s). By interleaving the simulation of the nodkfollows that the sequencing signal can be implemented as

values with zeros, the only way two consecutive ones c&nsingle node.

appear within the tap is if they correspond to the end of The output node of\ is then simply the function

sequence signal. N+1
The network will require a tapped delay line of length g(k) = a<z éi(k))
ny, = 4N+1 on the output, but still no taps on the input. Fig. 6 i=1

illustrates the tap contents at various times. The indexingThe interleaved zeros are implemented by default since no
scheme is similar to the one given in (7), but because Rigden layer nodes will be activated when the sequencing
the interleaved zeros, it is excessively cumbersome, and s¥9nal is in a position where the next value to be produced
we omit it for the sake of brevity. With this representations 5 interleaved zero.
the taps will always contain all of the values 8f at ime  As in Theorem 1, the taps are initialized to values appro-
t—_1 precedmg_ the sequencing signals, to indicate where th‘iﬁf‘ate for simulatingz; (1) on the first time step.  Q.E.D.
variables are in the tap. _ . In [4], it was shown that any-state FSM can be im-
_ We pursue a similar approach to define the dynamic eqyfamented by a four layer recurrent neural netwokth
tlo?s of the neurons: we define a simple functybt‘nat. s - o(\/nlogn) hard-limiting nodes. It is trivial to show that a
off" nodes or produces a constant value, depending on iy connected recurrent neural network can simulateZan
contents of the taps. Specifically, define the affine function layer recurrent network with a slowdown &f Based on the
Flar, @) = 21 + 22 — 2. (12) fact that a NAR)_( network Wlth hard,—llmltlng output nodes is
only capable of implementing FMM'’s, we conclude that

Then,f(l, 1) =0 andf(a:, 0) and f(O, 37) are both less than 4A multilayer recurrent network is like the network shown in Fig. 1, except
or equal to—1 for all z € {0,1}. that the single layer feedforward section is replaced by a MLP.
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Fig. 6. The contents of the output tapped delay line of the NARX network at §igwst3)¢+1 whenz (t) is to be simulated next (top)2 N +3)t+2N—1

when zn () is to be simulated next (middle topj2N + 3)¢t + 2N + 1 when the first timing signal is to be generated next (middle bottom), and

(2N 4+ 3)t + 2N + 2 when the second timing signal is to be generated next. After each time step, the contents of the taps move to the left, and the
value of the output is stored in the last tap on the right.

Corollary 2: For every FSMM, there exists an FMM Although only one hidden layer node is active, the affine

which can simulateM with O(y/nlogn) slowdown. transformation will, in general, convert zero node values to
some nonzero value. The terMAz . (.,5(0) compensates
B. Partially Affine Output Functions for this bias.

Theorem 1 holds also when the output nonlinearity is The hidden layer nodes are then modifications of (9)

partially affine Denote an affine transformation by N
(d—c)(z — a) Zk+1) =0 | | aiAped L @Exii(k) + biu(k)
Al p)[e,a)(T) = o,  T¢ =1

so that ifx € [a,b], then Afg 4 [c,q(z) € [c,d]. Then a non-
linearity is said to be partially affine ¥(x) = Afg 1), (e, q) (%),
for x € [a, b]. For example, the saturated linear function given
in (5) is partially affine witha = ¢ =0 andb =d = 1. for i = 1---N, and (10)

The modification of Theorem 1 is simply acquired by
transforming the values of the hidden layer nodes, which are  Zn+41(k) = o(Bn41[Afe,ap, (L, (EN(K)) — 1] + ).
in [L,U +¢| = [L, p] to the rangda, b]. These values are then
passed through the partially affine region to produce values V. CONCLUSION
in the rangdc, d], which is fed back. This transformation can

be undone by another affine transformation which convertsRecem r(_asul_ts suggest that gradlent_ descent leaming is
: more effective in NARX networks than in recurrent neural
values in[e,d] to [L, ).

Specifically, the representation of the contents of the taﬁgtwork architectures that have “hidden states” [18]. We
. . . o ) ave also shown that NARX networks perform better on
given in (7) is modified as follows: . . :
problems involvinglong-term dependencieR0]. We have

+ ci| + BilApe,a, i (Fan i1 (k) — 4]

Z;((N+1)t+1) shown that NARX networks are capable of simulating fully
Alp e (i1t =2))  0<i+j<N conneqted networks yvithin a linear slqwdown, anq as a result
Az e (1) i+j=N are u.nllversgl dynamical systems. Thls_theqrem is somewhat

= Appfe,q(zitj-n(t—1)) N<i+j<2N 41, Surprising since the nature of feedback in this type of network
(Lol el (1) i+j=2N+1 is so limited, i.e., only output neuron feedback. _
Al e (Zivi—an—1(1) 2N +1<i+j What does the Turing equivalence of neural networks im-

ply? It implies that these networks are capable of representing
These values can be achieved by modifying the output nog§utions to just about any classical computational problem we
(11) to want to apply them. Thus, we conclude that in theory one may

use NARX networks in place of fully recurrent nets without

(k) :0'<_NA[L,/L],[a,b}(O) + LA[L,p},[a,b}(gN-H(k)) loosing any computational power.

o(@) On the other hand, Turing equivalence implies that the
N space of possible solutions is extremely large. Thus, it may be

+ Z A[L7M7[a7b1(§i(/€))> prohibitively difficult to search with gradient descent learning

i=1 algorithms. So far, experience indicates that it is difficult to
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learn even small FSM’s from example strings in either dfi7]
these types of networks (unless the FSM has little logic in its
implementation [25]). Often, a solution is found that classifiggg
the training set perfectly, but the network in fact learns a
chaotic system which cannot necessarily be equated with any
finite state machine [26]. [19]

We also showed some related results that NARX networks
with neurons with hard-limiting nonlinearities are only capabl
of implementing a subclass of finite state machines called
finite memory machines. But, if a sublinear slowdown is
allowed, then such networks can implement arbitrary finitg™!
state machines.

Our results open several questions for future research. WHa
is the simplest feedback or recurrence necessary for apy
network to be Turing universal? What do these results imply
about the computational power of recurrent networks with4!
local recurrence [27]-[29]? And finally, can the efficiency ofs)
the simulation described in this paper be improved upon?

[26]
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