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Abstract. F U E L C O N  is an expert system in nuclear 
engineering. Its task is optimized refueling-design, which is 
crucial to keep down operation costs at a plant. F U E L C O N  
proposes sets of alternative configurations of  fuel-allocation; 
the .fuel is positioned in a grid representing the core of  a 
reactor. The practitioner of in-core fuel management uses 
F U E L C O N  to generate a reasonably good configuration for 
the situation at hand. The domain expert, on the other hand, 
resorts to the system to test heuristics and discover new ones, 
for the task described above. Expert use involves a manual 
phase of revising the ruleset, based on petformance during 
previous iterations in the same session. This paper is 
concerned with a new phase." the design of  a neural component 
to carry out the revision automatically. Such an automated 
revision considers previous performance of  the system and uses 
it for adaptation and learning better rules. The neural 
component is based on a particular schema for a symbolic to 
recurrent-analogue bridge, called N I P P L, and on the reinforce- 
ment learning of neural networks for the adaptation. 
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1. Introduction 

F U E L C O N  is an expert system in an industrially 
significant domain: nuclear engineering. The system's 
task is to provide a good fuel-reload configuration (i.e. 
refueling design), and thus to indirectly achieve 
minimization for the duration of the very costly 
shut-down periods at nuclear plants. F U E L C O N  is 
already a working system that as is, can be applied 
industrially [1-5].  We report on current achievements 
of the project, and on new developments that upgrade 
the reasoning capabilities of the tool. 

In FUELCON,  peculiar heuristic domain- 
knowledge is applied to the generation of a very great 
number of configurations of how to allocate units of 
fuel of different kinds, inside the cases of the (geo- 
metrically and symmetrically schematized) core of the 
nuclear reactor. The type of reactor, the features of 
the individual plant, and its current state, along with 
the cumulated knowledge corpus of the specialty, as 
reflecting (at a deeper level) models of reactor physics, 
determine the selection of the relevant criteria of fuel 
allocation. These cannot be fully predefined, before 
the moment  comes for shutting down a plant. 
Therefore, the design of the new allocation is possible 
only at this moment. 

In FUELCON,  a ruleset is applied to generate 
families of good configurations of fuel in nuclear 
reactor cores. Whereas the practit ioner may be 
satisfied with the output, the domain expert is 
challenged to optimize not just the configurations, but 
his or her own heuristic as well: the results of one given 
iteration of the expert system are simulated by another 
component, which prompts the human expert to 
(manually) improve on the ruleset previously (manu- 
ally) formulated. 

In this work, we design a device for automated 
ruleset-revision. Because of the peculiar architecture 
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of FUELCON,  which involves a certain operation- 
loop, success with the device proposed is tantamount 
to achieving a full automation of the discovery 
process, at the task considered (apart from the initial 
formulation of the ruleset, as provided by the 
expert). 

The automation of revision is accomplished by 
using neural networks learning algorithms, which tune 
the rules to yield better configurations, based on 
previous performance. For this aim, we translate the 
rules into a neural network using a particular 
technique: NIPPL is a language and translation 
schema defined by Siegelmann [6] for transforming 
rulesets into neural networks. Here, we use this 
schema to obtain translation from symbolic rules to 
analogue network. The application is not trivial at all, 
as many questions related to the neural structure and 
the learning still remain difficult. 

2. Preliminaries 

As our work encompasses four subjects: fuel manage- 
ment, the system FUELCON,  neural networks, and 
learning algorithms, we shortly describe some related 
background for each. 

2.1. Preliminaries of  Fuel Management in Nuclear 
Power Plants 

1. Nuclear fuel is loaded into the core of a nuclear 
reactor. Fuel comes in fuel assemblies, i.e. packages of 
200 250 fuel rods. These are 350 cm long (see Fig. 1). 
Fuel assemblies are inserted vertically in the core, in 
a grid of positions. In fact, whereas the core actually 
is in three dimensions, the core geometry is usually 
represented as a grid in the plane: Fig. 2 shows a 
planar schema of a reactor core. 

For the purposes of designing the allocation of fuel, 
it is enough to reason on just one slice out of this 
table of perpendicular square cases: a symmetry of one 
eighth is typical (see Fig. 3). In this core geometry, 
important regions for reasoning about are, for example, 
diagonals, or then the central region of the core. (In 
the figure, it is the upper tip of the slice.) 

2. Among the fuel rods, there is liquid coolant: a 
major (and, in traditional fuel management, simpler) 
kind of plant employs, as coolant, pressurized water. 
Pressure is needed to prevent the water from boiling. 
However, there are steam generators on the borders: 
their role is to act as heat exchangers. Of course, not 
all of the thermal energy thus produced can be 

Fig. 1. An assembly of fuel rods. ~t 1its in a position within the 
grid that constitutes the core of a nuclear reactor. 

exploited as electrical power, e.g. about 3000 thermal 
MW would yield about 1000 electric MW. 

As the nuclear plant produces energy, the fuel 
assemblies become depleted. Typically, annually (but 
the length of such cycles is somewhat variable), plants 
are shut down, and fuel is reallocated into the core. 1 
According to the degree of their partial depletion, one 
distinguishes between different types of assemblies. 
(There exist also other parameters setting a difference.) 
There is fresh fuel, and then one-, twice-, and 
thrice-burned fuel. The latter kind is discharged from 
the core, and no longer reused in the next interval of 
operation. It is replaced with fresh fuel) Heuristics of 
allocation of units of the various kinds of fuel into the 
core geometry, take into account the difference 
between the various kinds, in terms of the degree of 
depletion. For example, one heuristic includes the 
avoidance of allocating fresh fuel at the centre of 
the core, to avoid too high a local power density 

~An exception is such reactors that do not practice reload in 
batches of fuel, as there are no downtime periods for refueling; 
replacement is continuous. As said by Cochran and Tsoulfanidis 
[7]: 'Canadian  deuterium uranium (CANDU) reactors [ . . . ]  can 
operate with natural uranium as fuel. [ . . . ]  Another  unique 
characteristic of C A N D U  is that it can be replaced on line, i.e., 
without shutting down'  (p. 5). 
2 In a pressurized water reactor (PWR}, fie. the kind of reactors we 
are concerned with, fuel replaced per year is b(3. The fraction is 
different in other kinds of reactors: in boilin.q water reactors (BWR), 
it is 1/4, whereas in high-temperature yas reactors (HTGR), it is just 
1/6. Cochran and Tsoulfanidis [7] define major types of reactors 
(Ch. t) and give values for that parameter (p. 4). In C A N D U  
reactors, replacement is continuous, not  a fi'action of a batch of 
fuel: cf. previous footnote. 
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Fig. 2. A planar schema of the core of a typical nuclear reactor. 
l, The position of a single fuel-assembly; 2, a control rod assembly 
location: 3, an in-core instrument location; 4, the reactor vessel; 
5, the thermal shield; 6, the core barrel; 7, a surveillance specimen 
holder tube. Understanding these detailed notions is unnecessary 
to make sense of the text. 
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Fig. 3. A slice, in one-eighth core symmetry, of the schema of a 
core. The positions in the core (i.e. the cases in the grid) are named 
after the coordinates inside this slice. The position-identifiers, as 
naming each case in this figure, are those in use in FUELCON. 

distribution, which would be p rob lemat ic  for cooling 
purposes.  

Fuel deplet ion reduces the potency of the fuel. The 
relevant p a r a m e t e r  is the neu t ron  mul t ip l ica t ion  
factor, symbol ized as K. It is defined as the n u m b e r  

of neut rons  created per one neu t ron  destroyed.  To  
achieve cont inuous  power  product ion,  an adequate  
chain react ion is necessary. This is expressed by saying 
that  the reactor  core has to be kept  critical. For  this, 
K = 1 is the minimal  value that  it is strictly necessary 
to maintain,  but  practically, a higher value of K is 
maintained,  i.e. we need a certain excess of criticality. 
This is mean t  to sustain r easonab ly  long inter-  
refueling intervals. 

3. Fuel  m a n a g e m e n t  includes two domains :  the 
m a n a g e m e n t  of fuel to be acquired and in store is a 
fairly complex  domain;  instead, the area  of our  own 
project is in-core fuel management. The (in-core) fuel 
m a n a g e m e n t  p rob lem is the problem,  for the (in-core) 
fuel manager ,  of designing the reload, i.e. of deter- 
mining the conf igurat ion of fuel in the core, in order  
to start  a new opera t ion  period at the nuclear plant. 

Downt ime  periods at plants are costly: they typically 
take a few weeks per year; just  consider the case of  a 
plant that  produces  approx imate ly  one million dollars 
of electricity per day. 

It  is legit imate to wonder:  couldn ' t  the fuel manage r  
do his reload design job  dur ing the previous opera t ion  
cycle? This would allow arrival at the downt ime  
period with a ready design, thus cutt ing down the 
inactivity per iod of the plant. 

The experienced engineer can forecast power profiles 
for the core, according to the design implemented  at 
the beginning of the current  opera t ion  cycle. Real- 
istically, a forecast for the end of that  cycle (EOC)  will 
not  match  the actual  state of the reactor,  because of 
unforeseen reasons,  n o t w i t h s t a n d i n g  a flexibili ty 
window. Differences would be such that  were a design 
prepared  for the next cycle based on forecasts for the 
end of the current  cycle, that  solut ion would not  be 
robust  enough to fit the actual  s i tuat ion at E O C  (see 
Fig. 4). 

A solution has to be devised by customizing it for 
the given plant: plants  have their own individuality, 
because of their configuration.  Moreover ,  the way 
plants opera te  may  vary f rom place to place because 
regulat ions are different in different countries (e.g. it 
happens  that  a count ry  forbids the use of p lu ton ium 
in fuel, as its prol iferat ion could subserve mili tary 
purposes).  

Even if we are to refer to the same plant,  predict ions 
for the next cycle cannot  be valid, as, for example,  
unpredictable  weather  condit ions can cause a shift in 
energy consumpt ion  (for the purposes  of domest ic  and 
insti tutional c l imatizat ion of interiors). Therefore ,  
there is a shift in energy supply requirements  at a given 
plant  subserving the given communi ty .  

As to t ime-dependent  variability, it depends,  at a 
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Fig. 4. Why the next-cycle refueling design is unavailable before 
downtime periods: a list of reasons and their mutual dependency. 
Key: 
B~o%: actual fuel-burnup 
cumulated values at EOC N. 

DN: design of the in-core 
fuel-allocation for the Nth 
operation-cycle. 

EOC,~: the end-of-cycle of the 
Nth operation cycle at the given 
plant. 

B d " designed fuel-burnup EOC N' 

cumulated values at EOCN. 

EN: actual end-of-cycle state of 
the reactor core, once the Nth 
operation-cycle is completed. 

FN: forecasts for the state of the 
reactor core at the end of the 
N th operation-cycle at the given 
plant. 

RN: robustness of solutions for the fuel-management problem 
(i.e. of such configurations that may be designed for fuel-reload 
into the core) as devised for Fy. 

plant, also on the availability of fuel in store. Another 
kind of time-variability, this one applying to longer 
spans, is due to political realities: in a given country, 
regulations are sometimes modified through political 
intervention, as prompted by public pressure (e.g. in 
the aftermath of widely reported accidents). 

4. Let us consider the standard practice of the 
engineer who is responsible for designing the con- 
figuration according to which the reactor core is going 
to be refueled at the next EOC. This procedure is 
shown in Fig. 5. 

This procedure (unlike what we do in our FUEL- 
CON expert system) embodies such a best-first search 

that starts from an initial candidate, and follows with 
a series of trial-and-error correction steps of a local 
nature. The suitability of best-first search stems from 
the very nature of the procedure. The fuel manager 
makes an effort to avoid potentially dangerous 
patterns, with regard to the local power peaking in 
the process of looking for the 'best' position, within 
the core grid, for each fuel assembly. Heuristics do 
exist, and the more experienced the fuel manager is, 
the more s/he is able to carry out 'mentally computed' 
evaluations, corresponding to a heuristic model of 
reactor core physics. 

Of course, the solution thus obtained must be 
simulated. Not only that, standard simulations are 
mandated by current legislation and plant manu- 
facturers' guidelines. An expert fuel manager can 
predict roughly, without detailed calculations, a 
power profile across a core, and even local power 
spikes. However, power density distributions in the core 
depend on physical properties of different materials, 
which make up the reactor core itself, and these 
properties are described by complicated functions of 
energy and space. An accurate evaluation of the 
spatial power distribution involves a series of intensive 
calculations (to be performed by a simulator) solving 
a space-energy dependent Boltzmann equation. 

5. Figure 6 illustrates three different classes of 
computer tools for assisting the fuel manager in 
devising configurations for refueling. A survey of 
extant tools is beyond our present scope [8]. Because 
of relevance to the present work, we mention an expert 
system prototype, that looks for just one solution by 
modifying a given configuration. 

At IntelliCorp, the prototype was developed (using 
the KEE shell) of an interactive fuel-shuffling knowl- 
edge-based system. Petschhat et at. [9] described it 
focusing on the application, whereas Faught [10] 
stressed the discussion of knowledge-engineering 
aspects (see also Rothleder e~ aL [t II, that addresses 
nuclear engineers). 

As far as we know, that particular project did not 
proceed beyond the early prototyping phase. There 
exist, at the present state of the art, other projects that 
reached a more advanced phase, e.g. in simulated 
annealing as applied to the in-core fuel-management 
problem. (Kropaczek and Turinsky [121 described 
FORMOSA, a program that combines GPT and 
optimization by simulated annealing.) We are men- 
tioning the IntelliCorp expert system in particular, 
because like our own project, it adopted rule-based 
expert systems as a technology. 

The IntelliCorp system handles differently two 
major classes of plants (pressurized water reactors, 



Upgrading Automat ion for Nuclear Fuel In-Core Management  5 

n 
i 

.......... >I 

I_ 
I 
i 
V 

Sort fuel for reload 
according to some 
physical feature 

Construct a 
{ candidate 
[ configuration: 
I 

Insert an assembly I< 
into a selected I 
position I 

I _ _  

1 F / \ T 
/ Is core \ 
\ filled? / I 
\ _ _ /  I 

i ^ 1 
_ _ I  I 

i 

current 
candidate 
configuration 

+ 

Fig. 5. A standard solution method resorted 
lo by human fuel-managers to solve the 
fuel management  problem, i.e. to design 
how to refuel the reactor core. Unlike 
what we do with F U E L C O N ,  here it is 
best first search we have; it starts from an 
initial candidate configuration, which is 
gradually modified. 

I 

f 
............ >] 

I 
I 

I 

Evaluate the current candidate configuration 
by means of a computer code simulation of the 
power production period to establish solution 
acceptability. 

/ 
T / 

+ __/ 

i \ 
I \ 
v \ 
i 
f 

i 
i I 
+ .... >I 

I 
....... < ........ I 

i 

\ 
Does the current configuration \ F 
involve an unacceptably high \ +  
local power density? / [ 

/ i 
./ V 

EXIT 

"Reshuffle': generate a new configuration 
by means of a binary (or more complicated) 
assemblies exchange. 

and such that use so-called burnable poisons), whereas 
in FUELCON, handling is substantially similar. 

In shuffling, backtracking is expressed through 
binary exchanges made in the reload design: the 
positions of two fuel assemblies are switched. Such 
backtrack steps are aimed to correct local problems, 
e.g. excessively high power density of a specific fuel 
assembly. When it is the engineer that generates a 
candidate solution, the manual procedure consists of 
consecutive single placements (on the paper in front 
of the human fuel manager) of the fuel assemblies into 
one of the available core positions, until the core is 
filled. It is a heuristically guided depth-first strategy. 
Next, the manually obtained configuration is analysed 
(typically, by means of software), and, if found 
unsatisfactory, either the engineer or a shuffling 
system that s/he uses, modifies the solution by a 
binary exchange of assemblies. The basic configuration 
pattern is preserved, unless a large number of such 

binary exchanges is carried out. With such ~ 
on the observability space (the latter being the idiom 
from systems and control), local optimality is a prized 
target. With FUELCON, instead, we have been more 
ambitious. 

2.2. Preliminaries of FUELCON 

Unlike the IntelliCorp expert system, our own tool, 
the FUELCON expert system, does not simply assist 
the user in shuffling a configuration that s/he has 
provided as input (according to personal experience, 
or real case studies published in the domain litera- 
ture). Indeed, FUELCON is not fed an input con- 
figuration, but instead it incorporates a replace- 
able ruleset, as formulated by a domain expert: the 
search is carried out, not for a single optimal solution, 
but for a set of alternative allocations (i.e. fuel con- 
figurations) grouped into families; these are typified 
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Fig. 6, Classes of computer tools lbr reload design. 
Arrows between boxes stand for shared roles. This 
classification is based on Galperin et al. [1] (Sec. 4) 
and Parks and Lewins [8], 

by the given ruleset that generates them, and which, 
in turn, embodies heuristics reflecting a given generic 
conception. The given input situation is typified 
by the given reactor (whose core has a given geom- 
etry), and the time-dependent given pool of available 
fuel. 

Let us describe the way configuration-families are 
generated. The expert system accesses, in the database, 
the geometry of the reactor core concerned, and the 
pool of fuel-assemblies, as being subdivided by type. 
The generation of the set of configurations is guided 
by the ruleset being consulted, and is e x  nihiIo, i.e. 
starting with an empty core. 

The search, in FUELCON, is forward-oriented and 
breadth-first. There is no backtracking. According to 
a beam-search algorithm, a tree of configurations is 

developed, !eve1 by level, through partial configur- 
ations as intermediate stages. Each leaf in the tree 
corresponds to one full configura[ion, i.e. to a fully 
loaded core that fully exploits the available fuel. Each 
level in the tree is associated with a particular fuel 
assembly (out of the available pool kept in store), 
according to a predefined order as given in a loading 
sequence. 

For efficiency reasons, the loading sequence is 
given: actually, it is part of the contribution of the 
domain expert, just as is the ruleset. However, 
basically, it would be easy to automate the generation 
of the loading sequence, too: those fuel-assemb]ies 
about whose class there are elimination rules, are put 
ahead in the loading sequence; the more numerous 
are the rules that affect the class of the assembly, the 
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earlier the place has to be of that assembly within the 
!oading sequence. 

As to the rules in FUELCON,  they represent two 
distinct types of knowledge: generic principles from 
physics, and local, specific knowledge suited to 
accommodate given situations. When an experienced 
user uses FUELCON,  s/he is typically ambitious, as 
to the goals of optimization. Moreover, the researcher 
in the domain typically wishes to test new versions of 
a given ruleset s/he had formulated, in order to obtain 
improved configurations out of the family generated, 
or improved families of configurations. Then, an 
operation-loop in using F U E L C O N  takes place, for 
the same given input problem. Each single iteration 
includes a generation phase, and an evaluation phase. 
Figure ? illustrates the generation phase as during a 
single iteration. (The configuration-base is that part 
of the database that stores the collection of con- 
figurations being generated.) 

Downstream of the rule-based generator of con- 
figurations (which is coded in Lisp), the output is fed 
to NOXER, a locally developed simulator. The results 
of NOXER are both visual and numeric. A 'cloud'  of 
solutions is displayed in the cartesian plane of two 
parameters, within a 'window' of admissibility: this is 
a region laying under a horizontal line in the display. 
Its 'southwestern' corner is at the origin of the 
coordinates. In this admissible region, configurations 
on the right are more efficient than configurations on 
the left. The domain expert may wish to move the 
'cloud'  of solutions into a 'southeast '  direction, in 
order to get several configurations that are both safe 
and very efficient. To do so, s/he manually revises the 
ruleset. This is the step that we have set to automate 
by means of a neural component, based on the N I P P L  

Fig. 7. A projection of a single iteration on the ruleset and 
database, from the viewpoint of the FUELCON generator of 
configurations as candidates for the fuel-reload to be implemented 
in the reactor core. The database contains the pool of output 
configurations. 

language and symbolic-to-neural conversion schema. 
Figure 8 shows the loop of how the F U E L C O N /  
NOXER integrated tool is used. 

Now, let us consider Fig. 9. It illustrates the sub- 
components  of the ruleset and the database in 
FUELCON.  The ruleset includes elimination rules 

(that are never revised, and that prevent the gener- 
ation of forbidden configurations), and preference 

rules (which are subject to revision, and that typify 
the search-subspace). The database of F U E L C O N  
includes a subdatabase of fuel types and units, and a 

It = 

-IS 

I ~ ~ ~ ~ ! or: quicker, 

I I 

\ [ . . . . . . .  I ( I }, I (a .  r ~ h a a . k e  

Fig. 8. The integrated operation-loop. 
Configuration-set generation and 
simulation are followed by ruleset 
revision. S stands for the statement: 3c, 
c ~ Configurations i A Evaluation(Simula- 
tion(c)) >_ Goal i. The index in Goali 
reflects the fact that the user will often 
set higher goals from iteration to iteration. 
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Fig. 9. The subcomponents of, and relationship between, the 
ruleset and the database in FUELCON. 

component that describes the geometry and the 
features of the reactor core (as per the symmetric 
slice considered). The two combine into the third 
subcomponent of the database: the collection of 
configurations being developed. 

Figure 10 illustrates the way a single iteration in 
the operation loop (shown in Fig. 8) affects the 
configuration-base and the ruleset. In other terms, 
Fig. 10 shows how the loop modifies parts inside 
the components for which the two circles in Fig. 9 
stand. 

[ con(f~ur~tion-Base._ fuei-Mse 

~ _ n i l - - - - - C 0 n ( i  ura~ion-[~as%~e~ ,jj/)/j../ 
\ 

rev[sion~ c-~r~~ . 

Fig. I0. A projection (more detailed than in Fig. 7) of a single 
iteration of the operation loop of the global system, on the 
macro-components of the database, and on the ruleset. 

Evaluation, downstream of generation, is by 
NOXER, and then manually, by the user, or auto- 
matically, by our neural component, as he/she/it 
checks the output of NOXER: such evaluation has to 
be conducted on the output sets of full-Mad con- 
figurations, as we have seen. Improvement is checked 
by comparing the visual simulations of successive 
iterations, that each includes full generation, instead 
of backtracking before the core is filled: Such an 
ergonomic choice, in the way the operation of 
FUELCON was conceived, is better than the following 
alternative, that could be conceivably put forth, as 
based on our previous description of our project: 
evaluating partial solutions, i.e. comparing pairs of 
such configurations that were only partially loaded. 
Such a course of action would be difficult and 
generally rather inconclusive, if we were to perform 
such comparisons on the basis of given hypotheses. 
We have tried to avoid the basic deficiency of shuffling 
systems, a disadvantage because the starting point of 
the search is somewhere in the solution space. Such 
an early decision deprives the user of the advantage 
of a broad search: s/he has to make the first guess, 
and that guess is decMve for the outcome of the 
session. 

2.3. Preliminaries of NeuraJ Networks 

Artificial neural networks provide an appealing model 
of computation. Such networks consist of an inter- 
connection of a number of parallel agents, or neurons. 
Each of these receives signals as inputs, computes 
some simple function, and produces a signal as output, 
which is in turn broadcast to the successive neurons 
involved in a given computation. Some of the signals 
originate from outside the network and act as inputs 
to the whole system, while some of the output signals 
are communicated back to the environment and are 
used to encode the end result of the computation. 

The study of recurrent networks has many different 
motivations. They constitute a very powerful model 
of computation, they are capable of approximating 
rather arbitrary dynamical systems, and this is of use 
in adaptive control and signal processing applications 
[13-15] and, most importantly for us, they constitute 
a powerful tool of automatic learning. 

The classical approaches of computer science and 
artificial intelligence are based on understanding and 
explaining key phenomena in a discrete, symbolic 
manner. These approaches have the limitations of 
human understanding, and more seriously, they can 
not change or adapt by observing their own perform- 
ance or additional data. 
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Neural networks, on the other hand, estimate 
input- output functions. They are trainable dynamical 
systems which learn by observing a training set of 
input- output pairs. In speech processing applications 
and language induction, recurrent net models are used 
as identification models, and they are fitted to 
experimental data by means of a gradient descent 
optimization (the so-called backpropagation technique) 
of some cost criterion [16 20]. Unlike statistical 
estimators, they estimate functions without assuming 
a mathematical model for the dependence of the 
output on the input. 

We focus on recurrent neural networks, that is, 
networks of simple processors where the architecture 
allows for feedback loops. Each processor's state is 
updated by an equation of the type 

j 1 j = l  

i = 1 . . . . .  N ( 1 )  

where N is the number of processors and M is the 
number of external input signals. Oftentimes, the 
function a is the classical sigmoid function: 

1 
~ ( x )  - ( 2 )  

l + e  -x 

Sometimes, however, we prefer it to be the linear- 
saturated function: 

(0 i f x < O  
/ 

o ' (x ) := tx  i f 0 < x _ <  1 (3) 

[l i f x >  1 

A subset of the N processors, say x q , . . . ,  xi~, are the 
output processors; they are used to communicate the 
outputs of the network to the environment. 

The input-output  map of the network depends 
upon the constants (also called weights) a, b, c. 
Learning, or adapting, is thus the process of fitting the 
constant so that the network computes what is 
required. Such fitting can be done numerically, as the 
network is a dynamical system. 

2.4. Preliminaries of Learning Algorithms 

There are various techniques for adapting the con- 
stants, depending on the architecture of the network, 
on the type of task required, and on the type of 
information that is available to learn from. Some of 
the learning algorithms are based on learning in 
biological neural networks, such as the Hebb rule; 
others are totally numerical, such as gradient descent 
techniques. 

The learning algorithms can roughly be described 
as belonging to one of three main methodologies. The 
classical neural network learning paradigms are the 
learning with teacher approaches. The assumption is 
that a set of pairs of (input, desired-output) of the 
neural network are provided and the network adapts 
itself to comply with them. The main technique for 
adapting the network is the gradient descent, also 
called backpropagation. 

The second methodology is unsupervised learning. 
Here, no teacher provides the output of the network, 
only input strings are taken (sampled) from some 
large input set, and the network is to classify them by 
similarities. The most common network of this type 
is the Kohonen self-organizing map. 

The third methodology is the one we adopted. It is 
called reinforcement learning [21-23]. This one is 
commonly used in control applications. In reinforce- 
ment learning problems, it is common to think 
explicitly of the network as a controller in an 
environment (see Fig. 11). The environment supplies 
the inputs to the network, receives its output, and then 
provides the reinforcement signal. This signal gives no 
hint of what the right output should be, but evaluates 
how good the current output is. It is therefore 
important to have some source of randomness in the 
network so that the space of possible outputs can be 
explored. The output units are thus governed by the 
standard stochastic rule: 

l 
Prob (S~ = b) = a~(h~) = (4) 

1 + exp (2fihi) 

where h~ = Zj  c% Vj is the input net to the neuron, that 
is, the linear combination of the values of the neurons 
and possibly the external input. We first have to define 
the error 6~, which is the error in the output unit i 
when the input to the network is the pattern #. 

Assume that the score r u of the input pattern it is 
binary. The desired binary output D~ of the ith output 
neuron is then well defined: Si for r ~ = 1 and - S i  for 
r u = - 1. The error in the output neuron can then be 
easily computed by 

~ ~t o~t ~t 

I / 
/ 

\ / 

Fig. l l .  A schema of reinforcement learning for adapting neural 
networks. 
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where (Sf} is the average of the ith output unit for 
input/x. If the score value r" is in the range [0, 1] then, 
by Barto and Jordan [24], 

~'/= r'~[s~- <Sy>] + ( I  - r") [ -S, -  <s~>] 

The update rule of the weights is 

A(gi; = v(H')6f Vj" 

where v is a coefficient deciding the amount of 
adjustment. This rule only explains how to adapt the 
weights of the output units. We can, however, 
propagate the error 6 and adjust the other weights by 
the backpropagation technique. 

For more background on networks and reinforce- 
ment learning, see, for example, the textbook by Hertz 
et al. [25]. 

3. An Example of a Ruleset and 
Manual Revision 

3.1. The Initial Ruleset 

Let us exemplify a configuration-generating ruleset, in 
one real-case study, the following initial ruleset was 
used [1, 2]: 

1. Don't load any fresh fuel-assembly in any such 
position that its distance from the centre of the core 
is shorter than the distance of POS44 therefrom. 
(Distance is an integer number: a number of 
positions separating the given position from the 
centre, not the distance on the paper, by which, say, 
measuring a case diagonally yields a longer distance 
than measuring the case along one of its four sides.) 
This rule is meant to prevent the loading of fresh 
assemblies into the innermost region of the core; 
and this, in order to make it less likely that 
configurations are generated that would yield too 
high local power densities in the innermost region 
of the core. 

2. Don't load a fresh assembly in such a position that 
is adjacent to another position where there is another 
assembly of the same kind, except when one of those 
two positions is in a corner position, that is, except 
when one of those two positions is adjacent along 
two of its sides to the reflector (i.e. the water that 
surrounds the fuel-assemblies in the core). 
This rule, which prevents placing two fresh 
assemblies side by side, has the same purpose as 
Rule 1. Indeed, placing two fresh assemblies 
adjacently when none of them contains rods of 
burnable poison, would lead, in most cases, to an 
increase in local power density at beginning-of-cycle 

(BOC), if the region considered is not on the 
periphery of the core. 

3. Don't place any twice-burned assembly in any of the 
positions of the eighth row and of positions POS74, 
POS75, and POS66. 
This rule, which prevents placing high-burnup 
assemblies in the outermost region of the core, fits 
into the general strategy adopted, which is 'from 
the outside, inside' in principle, that is, that 
more power is expected to go on the periphery, 
and that eventually allows one to replace some 
fresh assemblies with low-burnup already used 
assemblies. 

4. Don't load a twice-burned assembly in such a position 
that is adjacent to another position where there is 
another twice-burned assembly, if the positions 
considered are comprised in rows 5-8 in the core. 
This rule, which prevents placing high-burnup 
assemblies adjacent to each other, is intended to 
direct the process towards the generation of such 
reload configurations that fit into the category 
typified by a checkboard pattern (in respect of 
burnup levels). 

5. Don't toad any such twice-burned assembly that 
has a very high value of cumulated burnup (over 
20500 M Wd/t), adjacently to a position containing a 
twice-burned assembly: 
This rule is in line with Rule 4. Rule 5 is meant to 
prevent the concentration of such assemblies that 
have a high burnup (corresponding to a low value 
of K, the neutron multiplication factor), this time 
(as opposed to Rule 4) in any region of the core, 
and this in order to prevent the formation of 
'hollows' in respect of power density. 

6. Don't load any twice-burned assembly in any position 
belonging to any of rows 2, 3 or 4, if more than one 
position adjacent thereto does contain a twice- 
burned assembly. 
This rule is meant to prevent a concentration of 
high-K fuel in the innermost region of the core: this 
is an important region, in terms of neutron flow. 
Rule 6 is intended to prevent the formation of 
configurations where local power densities would 
exceed the threshold allowed. Moreover, Rule 6 is 
intended to convey the generation process into 
producing burnup checkboard configurations. 

7. I f  it is a twice-burned assembly that is currently 
being considered, then choose Jbr it (from amongst 
those positions that were not forbidden by Rules I -6)  
that position whose distance from the centre of the 
core is minimal. 
(Cf. Rule 3.) 

8. I f  it is a once-burned assembly that is currently being 
considered, then choose for it (from amongst those 
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positions that were not jorbidden by Rules 1-6) that 
position whose distance fi'om the centre of the core 
is minimal. 
Rule 8, along with Rule 7, and along with the given 
order of the loading list, is intended to direct the 
generation process into producing such configur- 
ations that the lower the burnup value of the 
assembly, the more important for neutron flow the 
region is where that assembly's position has been 
selected. 

3.2. Elimination Rules versus Preference Rules 

Rules 1-6 are elimination rules, whereas Rules 7 and 8 
are not mandatory from the physical viewpoint, but 
are preference rules meant for pruning, and are 
enacted last. A constraint was imposed, that the size 
of the space of solutions must not exceed about one 
thousand solutions at any moment in the generation 
process. What this constraint affects most is the 
possibility to optimize the way partly-burned assem- 
blies are reloaded. However, two main considerations 
were retained: 

| Experience teaches that, for a problem and general 
policy of the kind considered, the influence, on the 
fuel cycle length, of how partly-burned assemblies 
are ordered inside the core, is smaller than the in- 
fluence thereon of how the fresh assemblies are placed. 

| Preference rules, along with the constraint on the 
size of the solution space, allow for a shorter 
processing time. (However, when we switched 
supporting systems, generation time became much 
faster, measured in seconds, and thus less of a 
problem. On the other hand, we have already seen 
that the real bottleneck is in the time required 
for performing the simulations on the solutions 
obtained: it is this that advises in favour of wavering 
the requirement that the absolute optimum be 
found, in favour of good local optima.) 

3.3. Ruleset Revision Steps 

Once resutts were obtained and simulated, the 
domain experts spotted which positions in the core 
configurations caused the maximal power density, 
which led to modifications in the ruleset, as follows. 

| Rule 2, about adjacent fresh-fuel assemblies, was 
modified to allow adjacency even when one of the 
positions is adjacent to the reflector on just one side 
(instead of, as before, when adjacency to the 
reflector is on two sides, that is, in corner positions). 
Such a modification leads to an increase in the 
number of fresh-fuel configurations generated. 

| One more rule was formulated that is concerned 
with once-burned assemblies, and it is an exclusion 
rule. It is as follows: 

Rule 9." Don't place any once-burned assembly in any 
position adjacent to a fresh assembly, if the position 
considered for loading the once-burned assembly 
belongs to any of rows 2, 3 or4  in the core. 

Indeed, the analysis of the configurations generated 
by the first step indicated that the situation 
excluded by the new Rule 9 caused an increase in 
local power density, in the region involved, to a 
range of values between 1.4 and 1.5. As the 
threshold assumed is 1.4, it was suitable to have a 
specific rule preventing this kind of situation. 

Now, the generator was run again; simulation led to 
further revision; of both the ruleset, and the given 
loading sequence. 

The gradual improvement of solutions can be seen 
in the three parts of Fig. 12. In the upper display, no 
configuration in the family generated is admissible, as 
none falls within the admissibility window, i.e. the 
region under peaking = 40. 

The middle display, instead, features some ad- 
missible solutions, of which, moreover, several are 
good, because, inside the admissibility window, they 
are up (with high peaking, though below the threshold), 
and on the right (with high boron concentration at 
end-of-cycle). Then, in the third display, we can see 
that the family itself is improved, as it tends to 
concentrate closer to the admissibility region, and in 
a higher percentage than before within its window; 
moreover densly on the right-hand side (the better 
part) of the admissibility window. 

In Fig. 13, a sample output configuration is shown. 
Fuel assemblies are allocated to the positions of the 
reactor core, that here is shown as in a one-eight 
symmetry, which, in turn, is the symmetry for which 
the reasoning was carried out. 

3.4. Contribution of the Neural Component 

It is especially because of its positioning within the 
architecture, that the neural component we are adding 
does contribute to the automation of discovery. 
Indeed, the neural component, which we are going to 
discuss in the following two sections, is inserted in the 
architecture with the role of ruleset-reviser (rather 
than, for example, the simulator). 

The point is that FUELCON generates configur- 
ations by means of a ruleset, originally provided by 
the expert, and later revised by the expert. Revision is 
a 'noble' task, intellectually speaking~ but we are 
trying to show that the heuristics of ruleset-revision 
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Fig. 12. An example of graphic display of the simulation of an output  family of configurations ( 'dots'), evoJving from iteration to iteration. 
In the quadrant  shown, a horizontal line and a vertical line are drawn, that divide it into four regions. Those configurations falling in the 
two upper regions are forbidden, because of safety reasons. Configurations in the lower leftmost rectangle are less efficient than those in the 
also admissible region on its right. The more an admissible configuration is on the right, the more it is efficient. Therefore, the human  expert 
wishes to have the 'c loud'  of dots moved into a ' southeas t '  direction, during the next iteration. Another effect that the human expert may 
wish is 'zooming' ,  i.e. a higher density in the cloud, a smaller spread in the family generated by the heuristics currently tested, as embodied 
in the ruleset and gradually improved from formulation to formulation. 
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Fig. t3. A sample output configuration. To each position in the 
core, a fuel assembly is assigned, whose kind is indicated by the 
identifier that appears in the first row inside each case in the grid. 
Just a slice, in one-eighth core symmetry, of the core schema is 
shown. 

can be, in turn, automated. Hence the substantiality 
of the specific contribution of the neural component, 
as outlined in this paper. 

4. The Neural Component 

The development of the neural network component, 
called NEURALIZER,  is meant to achieve complete 
automation of the operation loop of our expert 
system. For  this purpose, we translate the ruleset into 
a neural network, and cause it to change in such a 
way that would yield better configurations. 

In the following, we are going to concentrate on 
two issues: 

| the learning algorithm selected for carrying out the 
adaptation phase, and 

| the translation scheme. 

The network is constituted of a representation of 
the rules. The input of our network is the current state 
of the core of the nuclear reactor. As to the output of 
the network, it is the advice, which relies upon the 
rules, on how to build a new fuel configuration. The 
advice is forwarded into the environment that uses it 
to construct a configuration of the fuel assemblies in 
the core. After a few steps of consulting the network, 
the configuration is ready. This is the output of our 
composite system, within whose architecture the 
network is just one component. The configuration is 
evaluated by NOXER, and the evaluation is fed back 
to the network in order to have the rules tuned in 
such a way that would yield a better fuel configuration. 
Notice that we do not know the (input, desired-outpuO 
pairs of the network as in the supervised learning 
approach, but, rather, just the (input, evaluation of the 

output of the environment) pairs of the composition. 
The particular learning approach that complies with 
such knowledge is reinforcement learning [26]. 

It is important to note that the network includes 
two types of rules. The mandatory  (also called 
elimination) rules, are mainly those intended to ensure 
safety, and must not be changed, while the optional 
(i.e. preference) rules may be reconsidered. We leave 
the mandatory  part of the network unchanged, 
similarly to the way described by Jordan [27] for the 
approach of supervised learning with a distal teacher. 

Our translation technique is general, and allows 
rules of not only propositional calculus, but of 
first-order logic as well. This is due to the recursion 
of the resulting network. We are going to use the 
neural information processing programming language 
(NIPPL) and the corresponding translation scheme, 
introduced by Siegelmann 1-6, 28]. NIPPL,  also called 
NEL, is defined as a high level language which is rich 
enough to express any computer algorithm or rule- 
based system. The language combines features of both 
PASCAL and LISP in terms of the data structures 
and the flow control (including loops). Previously, 
N IP P L  was a theoretical language only. Here we 
suggest bringing it into use. Let us briefly overview the 
language and its compiler. 

N IP P L  is a procedural, parallel language. It allows 
for the subprograms procedure and function. A 
sequence of commands may either be executed 
sequentially (Begin, End) or in parallel (Parbegin , 
Parend). There is a wide range of possible data types 
for constants and variables in NIPPL,  including the 
simple types: Boolean, character, scalar type, integer, 
real, and counter (i.e. an unbounded natural number 
or 0); and the compound types: list (with the operations 
defined in LISP), stacks, sets, records and arrays. For  
each data type, there are a few associated predefined 
functions, e.g. Isempty(stack), In(element, set) and 
tszero(counter). 

Expressions will be defined on the different data 
types. Examples of expressions are: 

1. Z]=I cixi for constants c and either real or integer 
values of the variables xi. 

2. (B1 And B2) Or (x > i) for Boolean values B 1, B2 
and an integer value x. 

3. Pred and Suee of an element e of a finite ordered 
type T returns another element of the same type. 

4. Chr operates on an integer argument and returns 
a character. 

Statements of N I P P L  must include atomic statements 
(e.g. assignments, procedure calls, I /O statements), 
sequential compound statements (Begin, End), parallel 
compound statements (Parbegin, Parend), flow control 
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statements  which include both  condi t iona l  (e.g. 
If-then, If-then-else, case, and cond) and repetition 
statements (such as while and repeat). 

Instead of describing the compiler, we show one 
example of translation [6]. Let M and N be values in 
[0 ,1]  and let B be a Boolean expression. The 
conditional statement 

If (B) then x = M 
else x = N 

can be executed by the network shown in Fig. 14, as 
follows: 

x~(t) = •(M + B - t) 

x2(t) = a(N -- B) 

x3(t -~- l )  - -  O ' (X l ( t  ) -~ x 2 ( t ) )  

The neuron xl attains the value a (M)  when B = 1. 
As ~ is the l inear-saturated function of equat ion (3), 
and M is assumed to lie in the  range [0, 1], 

x l(t) = a(M) = M 

When B = 0, x l ( t ) =  a ( M -  1 ) =  0. The neuron x 2 
computes  a ( N - 1 ) = O  for B =  !, and a ( N ) = N  
for B = 0. Summing the above two values into x3 
results in 

a ( M + O ) = M  for B = 1, 

0(0 + N)  = N for B = 0 

as desired. 
To synchronize the update, an I f  statement requires 

two sub-statement counters: one for the first update 
level, % and one for the second update, c a . The full 

~ 
.x N N . \ N ,  ~ 

B N % 

Fig. t4, ' I f  statement' as a neural network. 

update for the I f  statement is thus: 

x~ = a ( M  + B + c 1 - 2 )  

x2 ~ = ~ r ( N -  B + q - t) 

x3 ~ = ~(xl + x2 + c2 - I) 

The update equat ions of the counters are omitted. 

5. Rule  Trans lat ion:  An E x a m p l e  

We next illustrate how to construct  a network oa t  of 
the rules of F U E L C O N .  Consider  the second rule of 
Section 3.1: 

Don't toad a fi'esh assembly in ,such a position that 
is adjacent to another position where there is another 
assembly of the same kind, except when one of those 
~wo positions is in a corner position. 

The input to the network includes the new assembly, 
A, which is represented as a record~ 

A = record o f [  burnt, 

kind, 

position, 

. . . .  

The rule can be written as a N I P P L  function that 
receives as input the record A and a position s, and 
decides whether the posit ion contradicts Rule 2. In 
the following function, we write the reserved words  of 
N I P P L  in boldface and the predicates in italics. Lines 
are numbered  successively. 

2. Function rule-2 (A, s): Boolean; 
2. var p: integer, flag: BooLean 
3. Begin 
4. p = O  
5. flag = Good-posi t ion;  
6. I f  

((A. burnt  = fresh) A (-7 corner(s)) 7. 
8. then 
9. repeat 

10. p = p +  I; 
11. If 
12. (neighbor(s~ p) A -qcorner(p) A 

kind (A) = kind(assembly (p))) 
t3. then 
14. flag = Bad-position; 
15. Until 
16. (flag = Bad-position) v (p = 20); 
17. rule-2 = flag 
18. End; 
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Fig. 15. The neural network corresponding to the sample rule whose translation and processing are discussed in the text. Circles in the 
upper row are variables. Cirlces on the left in the Sower row are copies, Circles on the right in the lower row are temporary variables. 
The six-pointed star upon each copy indicates there is full connection to the upper row (i.e. the circle has arrows towards all of the circles in the 
upper row). The five-pointed star upon each temporary variable indicates there is full connection both to and from the upper row (i.e. the 
circle has bidirectional arrows connecting it to all of the circles in the upper row). 

This program carries out its task by scanning all of 
the positions in the one-eight slice of the reactor core. 
This is redundant. An alternative version just checks 
adjacent positions. 

We next demonstrate how to translate this little 
program into a network. This rule can be translated 
into either a simple feedforward network that tests the 
20 positions simultaneously or into a recurrent  
network that tests them serially. 

The first implementation requires more hardware 
but is fast and straightforward. The second one is 
cheaper in terms of hardware, and it scales to any 
number of positions. This tradeoff of hardware and 
time will be decided upon in the exact application. We 
choose to construct a recurrent network in this case, 
as to demonstrate the compilation of loops. 

There will be a neuron for each variable and a 
temporary variable, as well as for the distributed 
representation of the program counter. The function 
includes the variables p and flag, as well as Rule 2 
itself. In addition, each expression implies an expression 
variable (and possibly some temporary variables as 
well). The program counters are p c 1 , . . . ,  PCls. 

| The variables: 
1. The variable p is changed in lines 4 and 10. 

We can write its substitutions in the general 
formula of 

p = O ' p c  4 + ( p  + 1)'pClo + p(1 -- p c , , - -  pClo ) 

2. The function variable rule-2 - f l a g . p c l 6 .  
| The expression variables: 

1. The expression of line 7 required three tem- 
porary variables: 

v7 = ~(v7,1 - ~%2) 

where v7,1 is a Boolean neuron for fresh 
assembly and vv, 2 tests whether the position is 
in the corner. These neurons will be set with 
program counter 6, and the neuron for v7 sets 
with pc 7. 

2. Similar is the Boolean expression for line 12. 
Here v12.1 to vz2,3 are set during the set of 
program counter 11, and the update v~2 = 
c~(v12,1 - va2,2 + Vlz,a - 1) with 12. 

3. The Boolean expression of line 16 is translated 
similarly. 

�9 The program counters: Each p rogram counter  
(between 1 and 18) is associated with a neuron. The 
update of the counters decides the flow control. As 
the program is parallel, a few counters may take 
true values simultaneously. The update equations 
of the program counter neurons are given by: 

p c i = p c i _ l  f o r i = { 2 , 3 , 4 , 5 , 6 , 7 , 9 , 1 1 ,  12, 14, 
15, 16, 18}, 

pc8 = a (pc7  + v7 - 1) 
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pClo  = ~ ( p c  9 -t- Uloop 1), 

pC13 =- i f (pc12  -[- U 1 2 - -  l )  

pC17 = f f (pCl6  -1- U 1 6 - -  l )  

Oloop = 0"(pC16 - -  ~16) 

The resulting network is cyclic; see Fig. 15. 

6. Symbolic and Neural Integration: 
A Comparison 

The integration of expert systems and neural networks 
is an emerging area [29, 30]. The two areas are 
complementary. Sometimes they are overlapping 
alternatives. Hybrid systems with expert system and 
neural network components are just one option for 
integration; another active subsector is neural re- 
implementations, i.e. redoing extant symbolic reason- 
ing systems as neural, through some interface or just 
by recoding. 

A recently announced volume, Medsker [31], is 
devoted to hybrid neural and symbolic expert systems; 
the present authors have not had the opportunity to 
see it. The table of contents, as announced, features 
in Ch. 5 an application in nuclear engineering, to a 
different task: nuclear plant monitoring by means of 
a hybrid systems approach. 

The strength of the approach embodied in the 
F U E L C O N / N I P P L  integration is apparent, if we 
consider the more limited ambitions and capabilities 
of CAPS, a connectionist architecture for implementing 
extant rulesets coded in OPS5: 'CAPS supports 
a subset of the OPS5 language which includes 
variables, negation, conjunction, and disjunction of 
conditions. It uses a translation program to transform 
an OPS5 program into a limited interconnected, fully 
trained neural network' [32]. 

The advantage of N I P P L  is that not only is it more 
expressive, but it also enhances clarity, by allowing 
one to code in a high-level language that is similar to 
conventional, parallel, or symbolic programming. 
Instead, CAPS is considered by its proponents just an 
interim solution, given the fact there are extant 
symbolic rulesets around: they do 'not  advocate that 
future expert systems should be implemented in this 
manner. It is better to build future connectionist 
expert systems by using the adaptive nature of neural 
networks to bypass rules (as formed by a human 
expert) and let the network form its own internal rules 
(by learning from examples). The architecture is an 
interim measure for enhancing the performance of 
existing rule-based OPS5 programs by implementing 
them on connectionist networks' (ibid.). 
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For certain tasks, it would be desirable that once a 
symbolic ruleset is enhanced through a neural imple- 
mentation, it could reformulate symbolic rules for the 
human expert to see. Neither N I P P L  nor CAPS do 
that. The generality of N IP P L  makes it suitable for 
having further components in a project such as 
F U ELCO N  go neural; we are envisaging such a new 
project for the simulator: the extant simulator is a 
conventional code, not a ruleset. 

CAPS supports dynamic variable bindings, and 
some of the OPS5 constructs. N I P P L  is clearly 
superior, in respect of syntactic richness; actually, the 
application to F U E L C O N  exploits just a small subset 
of NIPPL.  However, because of the maximal generality 
goal of N I P P L  as a high-level language, an interim 
tradeoff was necessary, and mterconnection mini- 
mization was not pursued, at least not as a specific 
goal. CAPS. instead. 'addresses the hardware imple- 
mentation issues by utilizing timitedly interconnected 
networks of a few basic unit types' (ibid.). 

There is one more remark to make. about the 
appropriateness of the neural learning adopted in the 
F U E L C O N / N I P P L  project. The rulesets that the 
human experts developed for FUELCON.  are not 
large. Of about a dozen rules, one half or more are 
mandatory rules, that N IP P L  should not modify. Just 
half a dozen or less rules are those concerned by the 
optimization effort. This makes the situation very 
satisfactory, for learning. Indeed. had we large rulesets 
to optimize, then learning could be expected to be very 
slow: tile larger the ruleset~ the slower the learning. 
Instead. ruleset size is no problem, for the application 
to FUELCON.  

7. Conclusions 

7.1. The novelty of the results reported in this paper 
shows up under different respects. F U E L C O N  repre- 
sents a definite improvement in the domain area: 
nuclear engineering. Indeed, both the practitioner and 
the researcher in the domain of in-core fuel manage- 
ment (as distinct from fuel storage management), are 
offered a tool that greatly increases their options at 
allocating fuel assemblies in the positions of the core 
of a nuclear reactor. 

Visibility at handling the allocation problem, and, 
thus, the possibility to manoeuvre, are enhanced. It 
was usual, in the domain, to look for just one 
configuration per plant/cycle situation, as a solution 
of the fuel management problem. To put it bluntly, 
the relative lack of ambition featured by this goal 
reflected the opacity of the process of problem-solving, 
let alone optimization: looking for one solution was 
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like the game by which a child is blindfolded, and has 
to attach the tail on the image of a donkey. Solutions 
used to be found, but without a clear view of 
alternatives. Several techniques are known that 
generate a single solution, i.e. by modifying a fuel- 
allocation devised for a different situation, and found 
in the literature in the framework of a real-case study. 
Operations research methods were applied, by some. 

With FUELCON, not only the expert system 
generates families of alternative solutions ex nihilo 
(rather than a single one), based on a transparent 
formulation of rules of thumb by an expert, but we 
can actually see, on the graphic display, a simulation 
of the entire family: the single configurations are dots 
in a plane, so we can compare the merits and defects of 
the alternative allocations, and the domain expert is 
enabled to evaluate the heuristics, and revise them 
iteratively. 

7.2. Furthermore, our project is also novel in the 
following respects, that are specific to the new stage we 
have been discussing in this paper. The cognitive 
process of revising the heuristics is, prima facie, a 
'noble' task: it is, in the sense of its belonging to the 
competence of the expert, as compared to the novice, 
and of the researcher, as compared to the practitioner. 

Yet, we can be ambitious in this regard, too. We 
can, because of our adoption of the neural-network 
paradigm, on top of symbolic reasoning and algor- 
ithmic simulation methods, as typifying the previous 
stages of the FUELCON project. We set to automate 
even the process of revising the heuristic rules. In 
FUELCON, the operation loop has admissible, good 
options for fuel allocation generated at single iterations, 
whereas the domain heuristics themselves improve 
from iteration to iteration. Because of this loop, the 
automation of revision is tantamount to automating 
the global discovery process. 

An earlier stage of FUELCON, as in an AI 
perspective, is described in Gatperin et al. [1]. The 
approach, in that paper, was to stress the integrated 
human/machine operation cycle, and the ergonomics 
of the manual phases in the discovery process. This 
includes considerations in the perspective of the expert 
critiquing systems paradigm [33]. It also includes an 
appreciation of the new body of knowledge acquired 
specifically about how to use FUELCON through 
manual interaction. However, those ergonomic con- 
siderations are no longer relevant, once we take the 
bold step of setting to completely automate the 
discovery process, by delegating ruleset-revision to a 
neural component, instead of to the human expert. 

7.3. The state of research in neural computing 
features only a few papers about ruleset revision, that 
is, about converting rule-based systems into neural 

networks with the intention of correcting them or 
improving them. Towell et al. [34] had to deal with 
an expert system based on propositional calculus, and 
suggested transforming the original propositional 
domain theory into a neural network. The connection 
weights were elegantly adjusted in accordance with 
the observed examples using standard backpropa- 
gation techniques. Maclin and Shavlik [35] suggests 
the use of reinforcement learning for adaptation. 

We list below three innovations of our work in 
terms of neural revision. First, our application is the 
first effort to affect real application by means of neural 
revision. It addresses a technically and economically 
challenging task in engineering, and its success can be 
expected to allow savings in the order of even millions 
of dollars, per nuclear reactor, per operation cycle. 
Secondly, although, in practice, most of the rules 
are propositional, rather than recurrent, our novel 
methodology of translating rules in both propositional 
and first order logic encompasses both the immediate 
practical translation as well as future applications to 
any complicated type of rule-based system. 

The third, subtle, but very important point is 
the type of neural learning algorithm applied. Many 
learning algorithms exist and they are to be used in 
different settings. The classical neural network learning 
paradigms are the learnin9 with teacher approaches. 
The assumption is that a set of pairs of input/output 
of the neural network are provided and the network 
adapts itself to comply with them. Our setting is more 
complicated. We do not know the input/output pairs 
of the network, but rather only the input and the 
evaluation of the output of the system which is 
composed of the neural network (i.e., the rules) and 
the environment that creates the configuration based 
on the output of the network. Two learning approaches 
have been developed to subserve such cases: the 
reinforcement learnin9 approach [26] and the learning- 
with-distal-teacher approach [27]. These two methods 
differ by some subtle characteristics of the evaluation 
available: reinforcement learning is more general It is 
the approach necessary for our own purposes in the 
project we have been discussing. 

Previous phases of our project (the building blocks 
available at its inception, and a sample translation 
of one rule) were presented in two shorter papers 
[36, 37]. 
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