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We investigate the computational power of recurrent neural networks
that apply the sigmoid activation function o(x)=[2/(1+e *)]—1.
These networks are extensively used in automatic learning of non-linear
dynamical behavior. We show that in the noiseless model, there exists
a universal architecture that can be used to compute any recursive
(Turing) function. This is the first result of its kind for the sigmoid
activation function; previous techniques only applied to linearized and
truncated version of this function. The significance of our result,
besides the proving technique itself, lies in the popularity of the
sigmoidal function both in engineering applications of artificial neural
networks and in biological modelling. Our techniques can be applied to
a much more general class of “sigmoidal-like” activation functions,
suggesting that Turing universality is a relatively common property of
recurrent neural network models.  © 1996 Academic Press, Inc.

1. INTRODUCTION

We consider the power of recurrent sigmoidal neural
networks. In the simplest form, an N-state recurrent neural
network is an N-dimensional dynamical system over a
bounded subset of the reals (e.g., over the solid N-cube
[—1,11"), and can be expressed as a quadruple
(N, W,0,f). Here N is the dimension of the network,
W={w, ,eR|1<ij<N}, @={0,,.. 0y} are called the
weights (or constants), and f: R — [0, 1] is called the activa-
tion function. Each neuron i computes its next state,
x;(t+ 1), by the formula

x,;(l+l)=f<<§: w,;jxj(t)>—6’,;>. (1)

J=1

We emphasize the difference between acyclic (so called
feedforward) architectures and the general (recurrent) ones,
like those treated here. The feedforward nets cannot predict
non-stationary time-series nor can they describe temporal
processing, while the later demonstrate a much more flexible
and rich dynamics. Hence, in the acyclic model, one is inter-
ested in approximation mainly, while the expectations from
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the recurrent structured networks are at the level of dynami-
cal and computational properties.

The computational and general dynamical properties of
recurrent neural networks depend intimately upon the
choice of the activation function. For example, if fis a linear
function, then this linear system is essentially computing
repeated matrix multiplications on an initial vector. If f'is
the Heaviside function given by

1 for x>0
0 otherwise,

i =
then each neuron takes on a value in {0, 1}, and the system
becomes finite-state. These qualitatively different behaviors
motivate the study of the power of neural network models
under different activation functions.

1.1. Previous Work

Pollack [ 8] proposed a recurrent net model that is Tur-
ing universal. His model consists of a finite number of
neurons of two different kinds, having linear and Heaviside
responses. (The unbounded precision of the neurons was
used by him to implement the context of the tape, and the
Heaviside neurons simulated the finite control.) A crucial
characteristic of Pollack’s machine was that the activations
were combined using multiplications as opposed to just
linear combinations. His model, thus, does not fall into the
framework given above.

Siegelmann and Sontag first demonstrated the Turing
universality of first-order neural nets for a specific activation
function [ 10, 11]. Their activation function, known as the
saturated linear function, is defined by

0 for x<0
flx)=<x for 0<x<l1 (2)
1 for x>1.
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They demonstrated the existence of a single choice of
weights (which are simple rational numbers) and hence a
constant number of nodes, such that by choosing the initial
values of the neurons one could simulate the behavior of an
arbitrary Turing machine. That is, once the initial values
were chosen, then n steps of computation by a Turing
machine could be simulated in O(n) steps by this universal
network. This result was generalized in [5] to other
saturated functions (ones that eventually become constants
in both ends), not necessarily saturated-linear ones.

Given these results, it is natural to ask whether one can
prove Turing universality results for activation functions
used in practice. One family of activation functions widely
considered in the literature is this of the sigmoid functions,
such as o(x)=1/(1+e~ ) or

2

=——1.
l4+e "

a(x) (3)

Much effort has been directed towards the practical
implementations of sigmoidal neural networks applications
[1, 2, 3,9, 13]. However, almost no previous theoretical
work was done on such networks, mainly because of techni-
cal difficulties encountered with the sigmoidal function.

1.2. The Results of This Paper

We show the existence of a finite dimensional universal
sigmoidal neural network. That is, we show the existence of
anetwork (N, W, 0, ¢), with a distinguished neuron x, and
a recursive encoding function J6(M, o), such that for every
Turing machine M and string a € {0, 1} *: M halts on input
o iff x, ever exceeds 3 when (N, W, @, ¢) is run from initial
configuration §(M, ). At any other time x, <j. In par-
ticular, if M does not halt on input « then x, is always less
than 1.

As a corollary of our result, there is no computable limit
on the running time of a general sigmoidal neural network.
(Clearly, there are particular networks having a well
specified limit.) Also, if one wishes to emulate a sigmoidal
neural network using fixed-precision arithmetic, one cannot
fix in advance the number of bits of precision. Thus, our
construction may be thought of as a negative result con-
cerning real-life sigmoidal neural networks. One cannot
automatically assume that a natural network converges or
enters a detectable oscillatory state within any reasonable
time bound. Also, one cannot a priori ignore the presence of
even the slightest noise or roundoff error—since our con-
struction is exquisitely sensitive to both effects. (In the con-
struction given in this version of our paper, some of the
weights are equal to a constant that is a solution to a trans-
cendental equation. We conjecture that indeed only rational
weights are required.)

The universality results hold not only for sigmoidal
networks, but also for networks with activation functions
“similar” to the sigmoid. This will be further described
below.

1.3. Techniques Used

The proof we present here must contend with some sub-
stantial technical difficulties that arise when using o
networks. The primary difficulty we face is that we can no
longer implement noise-free logical operations. Using
saturated activation functions (i.e., ones that eventually
become perfectly constant), one can keep a finite number of
bits stored as discrete values (such as 1 and O or 1 and —1),
and perfectly implement logical operations on these bits.
These implementations will map slightly noisy boolean out-
puts to perfectly noise-free boolean outputs. This ability has
proved crucial to all previous constructions. However, with
the sigmoid activation function, we do not have this
property. For instance, even if neurons x and y were guaran-
teed to have “ideal” 0/1 values, we still cannot exactly com-
pute the logical AND of x and y in our model. In our
implementation, not only will the answer not take on an
“ideal” 0/1 value, but it will take on slightly different values
depending on whether (x, y)=1(0,0) or (x,y)=(0,1). We
only guarantee that the two values will be reasonably close
together.

In our construction, there is complete “crosstalk”: devia-
tions from the ideal in one part of the system will result in
deviations from the ideal in every other part. We have to be
careful, for instance, to keep one data-storing neuron from
irrecoverably corrupting another data-storing neuron. A
more difficult problem is that continuous fluctuations in the
state of the finite control will send unmanageable amounts
of noise throughout the entire system. Indeed, just the fact
that it remembers state information will in subtle ways
corrupt the data.

On a high level, we solve these problems by introducing
a new type of automaton, called an alarm clock machine,
that does not rely on remembering state information. An
alarm clock machine consists of a restricted finite control
that has access to a finite number of alarm clocks. Each
alarm clock ¢, has a variable period p,. If the clock alarms
at time ¢;, then the clock will next alarm at time ¢;+ p;
(unless delayed, as described below). Until it is woken by
one or more alarm clocks, the finite control is required to
spend its time in a memoryless “sleep” state. When woken,
the finite control is allowed to run for a constant number of
steps, in which it may perform operations such as delaying
a clock (so that it next alarms at ¢;+ 1) or lengthening its
period (setting p, = p,;+ 1) before going back to sleep. Since
the finite control remembers nothing from before it woke
up, it must base its actions only on its knowledge of
which clocks alarmed during this short waking phase; see
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FIG. 1. An alarm clock machine: k alarm clocks and a controller that
is in a sleeping state and when woken up is active for ¢ steps only.

Fig. 1. We first show that alarm clock machines are Turing
universal by a series of reductions to more conventional
automata. We then show how to implement our alarm clock
machines by sigmoidal neural networks. (To be more
precise, this implementation is only guaranteed to work for
the universal alarm clock machine running on a properly
constructed input.) The finite control neurons in this
implementation spend most of their time in a low-noise
sleep state that prevents our data from being corrupted
faster than it can be repaired.

The rest of the paper is organized as follows. In Section 2,
we introduce alarm clock machines and prove that they are
Turing universal. In the following section, we show how to
substitute the alarm clocks with “dynamic counters” that
behave in a restricted manner. In Section 4, we describe how
to simulate alarm clock machines by sigmoidal first-order
neural networks thus proving the universality of the
networks. Section 5 generalizes the universality result to
other “sigmoidal-like” networks.

The proof is conceptually hard. To make it relatively
reader-friendly, we omit excessive notations and details.

2. ALARM CLOCK MACHINES

An alarm clock machine </ is a triple (F,k, ¢) where
k,c>1 and F is a function from {0, 1}* to a subset of
ACTION, where

ACTION = {delay(i), lengthen(i) | 1 <i<k} U {halt}.

Here, k denotes the number of alarm clocks available to F,
and Fis a function that, based on the history of alarms from
the last ¢ time steps, halts and/or performs some simple
operations on its clocks.

The input to (F, k, ¢) consists of ((py, t1), - (P> 1)),
where p; denotes the period of clock 7, and time 7, denotes
the next time it is set to alarm.

The alarm clock machine operates as follows. For nota-
tional ease, we (conceptually) keep arrays a,(¢), for te Z
and 1 <i<k, with each entry initially set to 0. At time step
T (initially 0), for 1 <i<k, if t,=T, then a,(T) is set to 1
and ¢, is set to t;+ p,. This event corresponds to clock i
alarming. F'then looksata,(¢)for 1 <i<kand T—c<t<T,
and executes 0 or more actions. Action delay(i) sets t; to
t;+ 1, action lengthen(i) sets p; to p,+ 1, and action halt
halts the alarm clock machine.

We make two stipulations on a legal execution of an
alarm clock machine. First, if its input consists of all 0’s,
then F outputs the null set of actions (the machine
is “asleep” until woken). Second, we require that
|p:/p;| <O(1) for all 1 <i, j< k. That is, there is a positive
upper bound on the ratio between any two clock periods.
This second restriction allows us to more easily simulate our
machines. In fact, in our proof of Turing universality, we
guarantee that p; and p; differ by at most 1. We assert that
alarm clock machines are computationally (dynamically)
universal.

THEOREM 1. There exists an alarm clock machine
(F, k, ¢) and a recursive encoding function enc(M) such that
for all Turing machines M and binary inputs o, (F, k, ¢) halts
on input enc(M, o) iff M halts on input o.. Furthermore, if M
halts in T steps, then (F, k, ¢) will halt in 27 steps.

We prove this result by a series of reductions to counter
machines, which are known to be Turing universal.

2.1. Adder Machines
We first introduce the adder machines.

DErFINITION 2.1.  An adder machine Z(k) is a machine
consisting of a finite control and k adders.
The operations on the adders are

e Inc(adder) for adders i=1, .., k,

o Compare (Adder-i, Adder-j) is a function with the
range { <, > }.

DEerFINITION 2.2.  An Adder machine is said to be simply
controlled if its finite control consists of a combinational cir-
cuit only, with no loops (i.e., no internal memory).

LEMMA 2.3.  An adder machine (k) with ¢ control states
can be simulated by a simply controlled adder machine
9'(k + ¢) (proof omitted).

Now, we show the equivalence of adder machines and
counter machines, thus proving that adder machines com-
pute all recursive functions.
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DEerFINITION 2.4. A counter machine % (k) consists of a
finite control and k counters. The counters hold whole num-
bers; the operations on each counter are Test-for-0, Inc,
Dec, and also No-change (Hopcroft and Ullman, 1979)

LEMMA 2.5. Adder machines and counter machines are
linear time equivalent ( proof omitted).

COROLLARY 2.6. The class of functions computed by an
adder machine is recursive. N recursive functions ¢ which are
computed by a TM M in time T, 3, adder machines that com-
pute ¢ in time O(27).

Proof. Counter machines with at least four counters are
known to simulate TM’s in exponential time slowdown [ 4,
p- 171, Lemma 747. |

2.2. Alarm Clock and Adder Machines

An alarm clock machine .7 is a special case of a counter
machine, and hence {.«/} = {%}. Next, we show the other
inclusion.

Lemma 2.7. Given a simply controlled adder machine
9(k) that computes in time T, 3 an alarm clock machine
having O(k?) clocks that simulates & in time O(T?).

The rest of this section is the proof of Lemma 2.7.

Given a simply controlled adder machine & with k
adders, 1, ..., k, we construct an alarm clock machine .o/
which simulates &.

The alarm clocks 1, ..., k of .o/ simulate the adders. Alarm
clock 0 is used as the “0” value to be compared against by
the other k alarm clocks. An adder i is simulated by the
alarm clock i, by its temporal shift from alarm clock 0. That
is, if adder i is set to n, then clock i has the same period as
clock 0, but it alarms n time units after clock 0 alarms. We
always ensure that the period of the clocks is greater
than their phase differences, thus avoiding wraparound
problems. The correspondence between adders and the
alarm clocks 1, ..., k is as follows:

Adder; Alarm clock;

Inc(4,) Delay(i)

Compare(A4;, 4;) Compare shift phase of
clocks i and j from 0

One subtlety is how to implement the Compare opera-
tion. The alarm clock machine’s finite control is only
allowed to remember the alarm sequence for the last O(1)
time steps. However, after simulating the 7 th time step of
the adder machine, any two alarm clocks may be phase
shifted by Q(¢) time units. We need to perform the com-
parisons and represent this information in a way usable by
the short-memory finite control. We accomplish this task by

having a set of O(k?) auxiliary clocks used to collect this
information:

For each pair of clocks (i, j), i <j, the auxiliary clock #j
determines whether the phase shift of clock i is less than or
equal to the phase shift of clock j. The auxiliary reference
clock 00 is used to synchronize the auxiliary clocks.

We now describe how the finite control uses the auxiliary
clocks to compare the phase shift of the adder clocks. The
period of the auxiliary clocks is maintained to be one
greater than the period of the adder clocks. Thus, they
alarm one time-step later in each successive cycle of the
adder clocks. Conceptually the finite control uses these
auxiliary clocks to sweep through the adder clock cycle, and
records the information it needs by delaying the auxiliary
clocks.

Initially, we assume that all of the auxiliary clocks alarm
in synchrony with clock 00, and that their phase shift with
respect to clock 0 is less than that of any of the adder clocks
(this is easily accomplished by suitably setting the initial
conditions). The finite control works as follows:

e If clocks 00, ij, and i alarm simultaneously, but not
clock j, then the finite control delays clock ij once. If 00 and
j but not i alarm, it delays clock ij twice.

o Ifclocks 00 and 0 alarm simultaneously, then it means
that the comparison is done and its result is stored by the
auxiliary clocks. The finite control will then be woken up
and receive the results during the next two steps: the alarm
pattern of the auxiliary clock ij determines whether clock i’s
phase shift is less than, equal to, or greater than that of clock
J, for all clocks 7,j. The finite control then delays the
auxiliary clocks so that they will again be synchronous.

It is easy to verify that each of these operations can be
performed by remembering the alarm history of the last four
time steps only.

Once the finite control has the comparison information,
it determines if the original adder machine would have
halted, and halts accordingly. Otherwise, it determines
which adders of the original machine would have incremen-
ted, and delays their corresponding clocks. Finally, in order
to ensure that the phase shift for the adder clocks do not
wrap around, the finite control lengthens the period of all of
the clocks by 1.

To simulate the ¢ th step of the adder machine, the alarm
clock machine performs the comparisons in O(¢>) time (the
period is O(7)) and in O(1) time it performs the requisite
delays and lengthens the clock periods. Thus, O(#?) steps are
required to simulate 7z steps of the adder machine, and
Lemma 2.7 is proven.

3. SIMULATING CLOCKS WITH DYNAMIC COUNTERS

We now show how to simulate the clocks in the universal
alarm clock machine with simple restricted counters, which
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FIG. 2. The values of a dynamic counter that is associated with an alarm clock of period p.

Value

Time
M: 1-0 0-0 00 0-1 1-2 253 354 455 554 453 352 251 1-0 0-0
E: 3-4 455 554 453 352 251 1-0 0-0 0-0 0-1 1-2 253 3-4 45
k k+12

FIG. 3. A pair of dynamic counters simulating an alarm clock of period p: in steady state (top) after alarming at time k. (Bottom) A numerical
example for p =3.

Value
2p-1
(A)
O .
Time
Value
Delay
2p-1
(B) .-r*"fMuming
O .
Time
Value
2p+1 Lengthen
/,f' .
() #Moraing A .
0 ; 4 t -
k k+4(p+1) k+8(p+1) Time

FIG. 4. A pair of dynamic counters (A) simulating an alarm clock in steady state (B) simulating delay in alarming (C) simulating lengthening the period
of an alarm clock.
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we call dynamic counters. This will make the simulation of
alarm clock machines by sigmoidal networks—described in
the next section—easier. We call the event that dynamic
counter i is set to 0 a zero event for i, and the event that some
dynamic counter is set to 0 a zero event. Our restrictions are
as follows:

e Every dynamic counter must always be either
incremented or decremented in each time step, unless it
is at 0, in which case it must be incremented within O(1)
steps.

e Once the finite control starts incrementing {decre-
menting} a dynamic counter, it must continue to do so in
each successive time step, until it has an opportunity to
change its direction. (It can “sleep” after giving the
command of what direction to go on with.)

e The finite control is only allowed to change the
directions of the dynamic counters during a period of O(1)
time steps following a zero event.

o At any time step, for any i, there will be at most O(1)
zero events before the next zero event for i.

o A clock alarming must correspond to a zero event.

We next show our particular implementation. To simplify
matters, we assume that the universal alarm clock machine
runs a valid simulation of a simply controlled adder
machine, and thus behaves as described in the previous
section.

We implement each alarm clock i with a pair of dynamic
counters, which we call morning (M) and evening (E;). We
refer to the period between two successive alarmings of a
morning dynamic counter as a day. The operations delay
and lengthen can be referred to as delaying the next day and
lengthening the duration of all days from now on, respec-
tively. When the clock is in its steady state (neither being
delayed or lengthened) with period p, the value of each
dynamic counter has the periodic behavior, described in
Fig. 2. That is, it counts up to 2p — 1, then down to 0, stays
0 for two time steps, and starts counting up again:

.001234...2p—1)---432100123---.

To achieve this oscillatory effect, we put M, and E; 2p time
steps out of phase. If M, (resp. E;) is decremented to 0 at
time k, then E; (resp. M;) (which has been incrementing)
starts decrementing at time k+ 1 and M, (resp. E;) starts
incrementing at time k + 2.

Thus, in its steady state, the system oscillates with a
period of 4p. We interpret a unit of clock time as four units
of the dynamic counter time, and identify the event that M,

turns from 1 to 0 with the clock alarming; see Fig. 3. (This
construction does not handle clocks with period 1.
However, such clocks are not necessary for our alarm clock
machine to be universal.)

We now show how to implement the delay and lengthen
operations. For these operations, we assume that neither
dynamic counter is equal to 0, and that it is known which
dynamic counter is decrementing and which dynamic coun-
ter is incrementing. By inspection of our “program”, one can
verify that the finite control will always have this informa-
tion within O(1) time after it has woken up, and that it must
wait only O(1) steps before the nonzero condition is met.
For example, when the finite control has received all of
its comparison information, it can wait a few steps and
ensure that the morning dynamic counters of all the com-
parison clocks and the 0 clock are incrementing, while the
evening dynamic counters of all the adder clocks are
decrementing.

To delay a clock, the finite control increments the
dynamic counter it had previously been decrementing and
decrements the dynamic counter it has previously been
incrementing for two time steps, and then resumes its nor-
mal operations; see Fig. 4. To lengthen the day’s period, the
finite control increments, for one time step, the dynamic
counter that it had previously been decrementing (and
does not change the direction of the other counter) and
then continues with normal operation. Note that this opera-
tion will also alter the phase shift of the dynamic
counters. However, since it will be performed on all of the
clocks in the simulation, the relative phase shifts will be
preserved.

4. SIGMOIDAL NETWORKS ARE UNIVERSAL

In this section, we prove the main theorem:

THEOREM 2. Given an alarm clock machine </ (with no
input) that simulates a simply controlled adder machine; there
is a g-network N that computes just like </ and requires the
same computation time. Furthermore, the size of this network
is linear in the number of clocks and the size of the finite con-
trol of o/

The rest of this section is dedicated to the proof. Let us,
first, demonstrate the four properties of our sigmoid that are
useful in the proof:

o Feature 1. There exists a positive constant ¢ such
that V|x|>¢, o(x) is monotone nondecreasing, and
a(x)e[ —1, —1/2] or o(x) € [ 3, 1], depending on the sign
of x.
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o Feature 2. For every constant b for which the slope
of a(bx) at 0 is larger than 1, g(bx) has three fixed points.
One is zero and the two others are denoted 4 and — A4; they
differ only in sign. (For example, for the sigmoid

x)=2/(1 +e ~)—1, the slope at 0 is 3 and the feature
requires b >2.) The larger b is, the closer 4 gets to 1
(0.5<A4<1). For example, using 15 decimal digits in the
precision:

b=5 A =0.98562369130483
b=10 A=0.999909121699349
b=130 A =0.999999999999812.

Let ¢ be a constant. In the equation a(bx + ¢), the two
external fixed points are not equal in size anymore,
provided that ¢ #0, and thus are denoted by 4, (~ —1)
and 4, (~1).

The fixed points 4, and 4, are exponential attractors (for
all x #0), and the middle fixed point is unstable. (In fact,
one can achieve d ~’ convergence for any d, 0 <d<1 by a
suitable choice of the constant b.)

e Feature 3. The function o is differentiable twice
around its attractors.

o Feature 4. For every x, o(x) =x + O(x?). (Hence, if
x is a small number then a(x) ~ x.) This is proved by con-
sidering the Taylor expansion around 0.

We will use the above four properties of our sigmoid to
prove its universality. Given an alarm clock machine .o/
(with dynamic counters), the network /" that simulates .o/
consists of three main components as shown in Fig. 5: a
finite control, a set of dynamic counters, and a set of flip-
flops. The finite control and the dynamic counter parts of
the network simulate the corresponding components of the
alarm clock machine. Since the finite control is memoryless,
we need a third mechanism for controlling the dynamic
counters. This is accomplished by implementing a set of
bi-state flip-flop neurons which serve as intermediaries
between the finite control and the dynamic counters.

Implementing the Finite Control. It has long been known
how to simulate any finite control FC_, of .o/ by a network
of threshold devices [6, 7]. If the original finite control
depends only on the last O(1) time steps, the resulting
threshold network can be made to be feed-forward.

Finite

Control #- | Flip-flops - Counters r—]

FIG. 5. Block diagram of our simulation.

We substitute each threshold device

x,(t+1)= <Zw,,x,+0>

Jj=1

(o § )

for a large fixed constant a,. As long as the summation in
the above expression is guaranteed to be bounded away
from 0, the output values of the neuron using the sigmoid
activation function will closely approximate the output of
the neurons using the Heaviside activation function. By
choosing sufficiently large o, we can make this approxima-
tion as close as we desire (feature 1).

Note that the number of states in our “finite control” is in
fact infinite, since every neuron can take on an infinite set of
values. Since these values fall within a small neighborhood
of either 1 or —1, we can conceptually discretize them,;
however the continuous nature of these values result in
accuracy problems.

For each dynamic counter i, the finite control has two
output lines (implemented as neurons) Start-Inc; and
Start-Dec;. When Start-Inc; is active (i.e., ~ 1), this means
that dynamic counter i should be continually incremented.
Similarly, an active Start-Dec; means that dynamic counter
i should be continually decremented. Most of the time both
output lines are in an inactive state (i.e., ~0). In this case
dynamic counter i is treated according to the last issued
command, allowing operations to be performed on the
dynamic counter when the finite control is inactive. It will
never be the case that both signals are simultaneously
active.

with a sigmoidal device

x;(t+1)=

Bi-directional Flip-flops. Recall that to avoid irre-
coverable data corruption, we implement a “finite-control”
that converges to a constant “ground state” during the long
periods between interesting events. In order to maintain
control of the dynamic counters during these quiet period,
we introduce special flip-flop devices. These devices will
have two stable states, and are guaranteed to exponentially
converge to one of them during the quiet periods. While the
finite control is active, it can set or reset the value of a flip-
flop. Otherwise, the flip-flop maintains its current state.

The update equation of each flip-flop is

ff; = o(a, (Start-Inc, — Start-Dec;) + a, ff, + o3),

where oy, a,, and ay are suitably chosen constants
(feature 2).

Counters. Each dynamic counter is implemented via
three sigmoidal neurons: one, called the dc neuron, retains
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the value of the dynamic counter, and the other two assist
in executing the Inc/Dec operations. Let B be a constant
B>2. A dynamic counter with the value ve N is imple-
mented in a dc neuron with a value “close” to B~". That is,
a value 0 in a dynamic counter is implemented as a constant
close to 1 in the neuron. When a dynamic counter increases,
the associated dc neuron decreases by a factor of B.

Thus, at each step, the dc neuron is multiplied by either
B or 1/B. To do this, we use the approximation

o(V+cex;)—o(V)yxd'(V)cx;

for sufficiently small ¢ and |x;| <1 (feature 3). Let ¥ be the
direction input signal, coming from the i th flip-flop. That s,
V converges to either 4, or 4,. A dc neuron updates by the
equation

X[(t+ 1)20'[0(010'(0((?2 V+OC(?3 +O((?4X,;(l))
— 0 0(te Vit o) +aesx;(1) ]

Ro[ (a0 (o V+as)) xax; (1) +asx,(2)].

By a suitable choice of the constants «.,, ..., 5, We have

!
U %y (A +ot3) tos =B

o1y 0 (Xp As +0t3) + s =1/B.

If the value of x; is close enough to 0, we can approximate
(using feature 4)

0[(0((?10-,(0(('2 V+ O‘(?S) + O('(?4) xi]

R0 (X VAt os) + o) X,

The above discussion provides the intuition for why the
dc neuron computes either ~ Bx; or ( ~ 1/B) x,. Note also
that when x is positive and “close to 1,” and it is “multiplied
by B” then it will in fact be drawn toward a fixed point of
the above equation. This acts as a form of error correction.

Proof of Convergence: Sketch

To save much details and heavy notation, we sketch the
proof to the point that we believe it is clear to complete the
details. Ideally, our finite-state neurons would all have
{0, 1} values, our flip-flops would take on precisely two
values (A4,, A,) and the dc neuron would have the exact
activation B~", where v is the value of the simulated
dynamic counter. Unfortunately, it is inevitable that the
neuron’s values will deviate from their ideal values. To
obtain our result, we show that these errors are controllable.

The proof of convergence is organized inductively on the
serial number of the day (that is, the times of M, alarming).
As the network ./~ consists of three parts; finite automaton

(FA), flip-flops (FF), and dynamic counters; for each part
we assume a “well behaved input” in day d and prove a “well
behaved output” for the same day. As on the first day, input
to all parts is well behaved; the correctness follows induc-
tively.

LemMa 4.1.  We next provide three claims and prove that
assuming that one claim is true, the next one (in cyclic order)
resullts.

(1) On each day d, FC sends O(1) signals (intentionally
non-zero) to the flip-flops. Each signal has an error bounded
by 1 <0.01. The sum of errors in the signals of the FC during
the d th day is bounded by the constant f <0.1.

(2) Oneachdayd, O(1) of the signals sent by FF have an
error of y, where y can be made arbitrarily small (as a func-
tion of p and the constants of the flip-flops). The sum of error
of all signals during the d th day is bounded by o, where 0 can
also be made arbitrarily small.

(3) On each day d, a dynamic counter with a value y
acquires total multiplicative error { <0.01. That is, the ratio
of the actual value with the ideal value will always be between
0.99 and 1.01.

Proof. 1=-2. Assume the finite control sends Start-Inc,
and Start-Dec; to ff; and these two values are never both
active simultaneously. The update equation for each flip-
flop is

ff; = o(a(Start-Inc; — Start-Dec,) + oy i, + o f3).

e When either Start-Inc,; or Start-Dec; is active, ff; is
set to the new value. The error y is bounded by

y<|1 _0(“/1(1 —u) _0?/2+0‘/3)|-

It is easy to see that when |o | — |ap| + o | increases, p
decreases. That is, y is controllable. For example, if
%y >u 'and %, %5 < 20 then y < 0.01.

e When both Start-Inc; and Start-Dec; are small, ff;
converges to its closer fixed point. If (Start-Inc,—
Start-Dec;) were exactly 0, then ff; would be attracted
exponentially to its closest fixed point. If a, is large enough,
the fixed points can be made arbitrarily close to —1 and 1.
Furthermore, noise from o, (Start-Inc, — Start-Dec;) can be
arbitrarily attenuated, since | 0’ (o, ff; + o 3)| can be made
vanishingly small by a suitable choice of constants.

2 =3. The update equation of a dynamic counter x; is
given by

X;=0lo,0(tnV+as+o,x;)

— & O-(O(L’Z V+ 01(73) + O((,’Sxi]'
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We next show that by using such an update equation, the dc
neuron x; multiplies itself each step by either ~ B or ~1/B
allowing a small controllable error. Recall that for small y,

ale(V+y)—a(V))~d(V)y.
We can choose constants o, &, %3, %4, %5 SUch that

!
X1 %y O (A A +%3) + s =B

Uy %y 0 (A Ay + 0 3) + s =1/B.

The deviation from this ideal behavior is caused by three
elements:

e the error caused by approximating the difference
equation by the differential.

e the error in ¢'(a,, V' +a ) relative to the desired
o'(ad; + o),

e the error caused by using the approximation
o(x) =~ x for x small.

In the first case, the multiplicative error is proportional to
o"(A4,)(xx;)% However, x; shrinks exponentially (and then
grows back in a symmetric manner). Hence, in a given day,
these terms form two exponentially decreasing sums. In the
second case, we can bound the resulting multiplicative error
by a function of a,, ., o, and ¢"(a,A;+ o) times
the error in V relative to A;. Finally, note that
a(x)=x+ O(x*)=x(1 + O(x?)). Since x; exponentially
vanishes (and reappears), the multiplicative error terms
form two exponentially decreasing sums.

By “summing” these multiplicative errors, we get the
desired bound. We can then use the identity that

(1+0)(14+065)---(14+6,)=14+0(6,+ ---6,),

when the sum J,+ --- +J, is sufficiently small, to
approximate the multiplicative error.

3=1. Because the finite control is feed-forward, and
since each dynamic counter alarms O(1) times a day, the
finite control will output (intentionally) non-zero signals
only O(1) times a day. By adjusting the constants in our
implementation of the finite control, we can make them
have arbitrarily small errors when they change their values.
During the quiescent period, if the dynamic counters were
actually at 0, then the Start-Inc; and Start-Dec; neurons
would converge exponentially to some canonical value, and
their difference would converge exponentially close to 0.
We can bound the errors caused by the dynamic counters
being non-zero as some constant ¢ times the sum of the

values of all the dynamic counters at every time in the day.
By choosing the weights appropriately, we can in fact make
c as small as desired. ||

5. DISCUSSION

The proof of universality is not constrained to the par-
ticular sigmoid we used, but rather can be generalized. Let
6 be any function which adheres to features 1-4, defined in
Section 4. We call all such functions sigmoidal-like func-
tions. The proof of Theorem 2 can be generalized to any
sigmoidal-like net.

COROLLARY 5.1. Let & be any sigmoidal-like function.
Given an alarm clock machine </ (with no input) that com-
putes the function ¢ in time T, there is a G-network N~ that
computes ¢ in time O(T). Furthermore, the size of this
network is linear in the number of clocks and the size of the
finite control of <.

We conclude that universality may be a general feature
for many neural networks.
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