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Abstract 

Selecting a “best subset” of input variables is a critical 
issue in forecasting. This is especially true when the 
number of available input series is large, and exhaustive 
search through all combinations of variables is computa- 
tionally infeasible. Inclusion of irrelevant variables not 
only does not help prediction, but can reduce forecast 
accuracy through added noise or systematic bias. We 
demonstrate a technique called Sensitivity-Based Prun- 
ing (SBP) that removes irrelevant input variables from a 
nonlinear forecasting or regression model. The technique 
makes use of a saliency measure computed for each input 
variable and uses estimates of prediction risk for determin- 
ing the number of input variables to prune. We present 
preliminary results of the SBP technique applied to neural 
network predictors of a key business cycle measure, the 
U.S. Index of Industrial Production. 

1 Introduction: The usiness Cycle and 
the Index of Industrial Production 

Of great interest to forecasters of the economy is predict- 
ing the “business cycle”, or the overall level of economic 
activity. The business cycle affects society as a whole by 
its fluctuations in economic quantities such as the unem- 
ployment rate (the misery index), corporate profits (which 
affect stock market prices), the demand for manufactured 
goods and new housing units, bankruptcy rates, invest- 
ment in research and development, investment in capital 
equipment, savings rates, and so on. The business cy- 
cle also affects important socio-political factors such as 
the the general mood of the people and the outcomes of 
elections . 

A scientific model of business cycle dynamics is not yet 
available due to the complexities of the economic system, 
the impossibility of doing controlled experiments on the 
economy, and the non-quantifiable factors such as mass 
psychology and sociology that influence economic activ- 
ity. Given the absence of reliable or convincing scientific 
models of the business cycle, economists have resorted 

to analyzing and forecasting economic activity by using 
the empirical “black box” techniques of standard linear 
time series analysis. We have developed robust predictive 
models of the business cycle based on neural networks that 
outperform the standard linear AR models used by most 
economists. 

Economic statistics for the U.S. such as the national 
income and product accounts and the indices of leading, 
coincident, and lagging indicators have beer, collected and 
computed by the Bureau of Economic Analysis of the De- 
partment of Commerce since 1946. The standard measures 
of economic activity used by economists to track the busi- 
ness cycle are the Gross Domestic Product (GDP)’ and 
the Index of Industrial Production (IP). 

GDP is a broader measure of economic activity than 
is IP. However, GDP is computed by the Department of 
Commerce on only a quarterly basis, while Industrial Pro- 
duction is computed and published monthly. We have 
focussed on the Index of Industrial Production rather than 
GDP for three reasons. First, being published monthly, 
there is more data available for Industrial Production than 
for GDP. Second, the IP series is more timely than GDP 
and is therefore watched more closely by business, fi- 
nancial, and economic professionals for making business, 
trading, or policy decisions. Third, due to its greater 
oscillation and higher noise level, the IP series is more 
interesting and challenging from a time series forecasting 
standpoint than is GDP. 

Following prior work by Moody, Levin and Rehfuss 
(1993) and Levin, Leen and Moody (1994), we develop 
neural network forecasting models for IP based on monthly 
observations of IP and other macroeconomic and financial 
time series. 

‘In 1990, GDPreplaced Gross National Product (GNP) as a standard 
measure of domestic economic activity. GNP includes so-called “factor 
payments” to and “factor income” from foreign sources that are not in- 
cluded in GDP. These factors relate to interest, dividends, and reinvested 
earnings by foreign subsidiaries of US companies. As such, they are not 
really part of the domestic economy. GDP also includes the consumption 
of fixed capital, an important effect that is not captured by GNP. 
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2 Model Selection 
2.1 Nonparametric Modeling with Limited Data 
Many data modeling problems in finance, economics, and 
other fields are characterized by two difficulties: (1) the 
absence of a complete a priori model of the data gener- 
ation process (such as the models frequently available in 
physics, say) and (2) by a limited quantity of data. When 
constructing statistical models for such applications, the 
issues of model selection and estimation of generalization 
ability or prediction risk are crucial and must be addressed 
in order to construct a better model. 

When a complete a priori model for the data generation 
process does not exist, one must adopt a nonparametric 
modeling approach. In nonparametric modeling, elements 
of a class of functions known to have good approxima- 
tion properties, such as smoothing splines (for one or two 
dimensional problems) or neural networks (for higher di- 
mensional problems), are used to fit the data. An element 
of this class (eg. a particular neural network) is then cho- 
sen which “best fits” the data. 

The notion of “best fits” can be precisely defined via 
an objective criterion; such as maximum a posteriori prob- 
ability (MAP), minimum Bayesian information criterion 
(BIC), minimum description length (MDL), or minimum 
prediction risk (P). In this paper, we use the prediction 
risk as our selection criterion for two reasons. First, it is 
straightforward to compute, and second, it provides more 
information than MAP, BIC, or MDL, since it tells us how 
much confidence to put in predictions produced by our 
best model. 

2.2 Neural Network Architecture Selection 
For the discussion of architecture selection in this paper, 
we focus on the most widely used neural network architec- 
ture, the two-layer perceptron (or backpropagation) net- 
work. The response function for such a network with Ix 
input variables, H A  internal (hidden) neurons, and a single 
output is: 

I,. 

,=I a= 1 

Here, f and g are typically sigmoidal nonlinearities, the 
wa0 and w,o are input weights and thresholds, the U, and 
YO are the output weights and threshold, and the index X 
is an abstract label for the specific two layer perceptron 
network architecture. While we consider for simplicity 
this restricted class of perceptron networks in this paper, 
our approach can be easily generalized to networks with 
multiple outputs and multiple layers. 

For two layer perceptrons, the architecture selection 
problem is to find a good, near-optimal architecture X for 
modeling a given data set. The architecture X is charac- 
terized by the number of hidden units H A ,  the subset of 

Figure 1: Heuristic Search Strategies: After selecting the number of hidden units 
H A ,  the input removal and weight elimination can be carried out in parallel (A) or 
sequentially (B). In (B), the selection of the number of hidden units and removal 
of inputs may be iterated (dashed line). 

input variables IA ,  and the subset of weights U, and W,P 
that are non-zero. If all of the U, and w,p are non-zero, 
the network is referred to asfully connected. 

Since an exhaustive search over the space of possible 
architectures is impossible, the procedure for selecting this 
architecture requires a heuristic search. See Figure 1 for 
examples of heuristic search strategies and Moody (1994) 
and Moody and Utans (1994) for additional discussion. 

In this paper, we focus on selecting the “best subset” of 
input variables for predicting the U.S. Index of Industrial 
Production. In order to avoid an exhaustive search over 
the exponentially-large space of architectures obtained by 
considering all possible combinations of inputs, we em- 
ploy a directed search strategy using the sensitiviry-based 
inputpruning (SBP) algorithm (see section 3). 

2.3 Architecture Selection via the Prediction Risk 

The notion of generalization ability can be defined pre- 
cisely as the prediction risk PA, the expected performance 
of an estimator in predicting new observations. 

Consider a set of observations D = {(Z,,tj);j = 
1 . .  . N }  that are assumed to be generated as t, = 
p(z,) + e, where p(z) is an unknown function, the inputs 
2, are drawn independently with an unknown stationary 
probability density function p ( z ) ,  the y are independent 
random vxiables with zero mean (C = 0) and variance U:, 

and the tj are the observed target values. The learning or 
regression problem is to find an estimate F.A (z; D) of p ( z )  
given the data set D from a class of predictors or models 
,ux(z) indexed by A. In general, X E A = (S ,A ,W) ,  
where S C X denotes a chosen subset of the set of avail- 
able input variables X, A is a selected architecture within 
a class of model architectures A, and W are the adjustable 
parameters (weights) of architecture A. 

The prediction risk P(A) (defined above) can be ap- 
proximated by the expected performance on a finite test 
set. P(X) can be defined for a variety of loss functions. 
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For the special case of squared error, it is: 

. N  

j=1 

where (z; , t5) are new observations that were not used in 
constructing f ix( . ) .  In what follows, we shall use P(X) 
as a measure of the generalization ability of a model. Our 
strategy is to choose an architecture X in the model space A 
which minimizes an estimate of the prediction risk P(A). 

2.4 Estimation of Prediction Risk 

The restriction of limited data makes the model selection 
and prediction risk estimation problems more difficult. 
This is the typical situation in economic forecasting, where 
the time series are short. 

A limited training set results in a more severe 
biaslvariance (or underfitting vs overfitting) tradeoff, so 
the model selection problem is both more challenging and 
more crucial. In particular, it is easier to overfit a small 
training set, so care must be taken not to select a model 
that is too large. Also, limited data sets make prediction 
risk estimation more difficult if there is not enough data 
available to hold out a sufficiently large independent test 
sample. In such situations, one must use alternative ap- 
proaches which enable the estimation of prediction risk 
from the training data, such as data resampling and al- 
gebraic estimation techniques. Data resampling methods 
include nonlinear refinements of v-fold cross-validation 
(NCV) and bootstrap estimation, while algebraic estimates 
(in the regression context) include Akaike’s final predic- 
tion error (FPE) (Akaike, 1970), for linearmodels, and the 
recently proposed generalized prediction error (GPE) for 
nonlinear models (Moody (1992; 1994)). For comprehen- 
sive discussions of prediction risk estimation see Eubank 
(1988), Hastie and Tibshirani (1990), Wahba (1990), and 
Moody (1994). 

Since it is not possible to exactly calculate the prediction 
risk PA given only a finite sample of data, we have to 
estimate it. Cross-validation (CV) is a sample re-use 
method for estimating prediction risk; it makes maximally 
efficient use of the available data. We have developed a 
nonlinear refinement refinement of CV called NCV. For 
a detailed discussion, see Moody and Utans (1994) and 
Moody (1994). 

2.5 

Let the data D be divided into v randomly selected disjoint 
subsets Dj of roughly equal size: U;=lDj = D and 
V i  # j, Di n Dj = 8. Let Nj denote the number of 
observations in subset Dj .  Let fiXp, ) (z) be an estimator 
trained on all data except for (z, t )  E Dj.  Then, the cross- 

NCV: Cross-Validation for Nonlinear Models 

Figure 2 A nonlinear model can have many local minima in the error function. 
Each local mini” wi ,  wj and W k  (solid curve) corresponds to a different set 
of paramters and thus to a different model. Training on a different finite sample 
of data or renaining on a subsample, as in nonlinear cross-validation, gives rise to 
a slightly different error curve (dashed) and perturbed minima W: , W ;  and .I;. 
Variations due to data sampling in error curves and their minima are termed model 
variance. 

Figure 3: Illustration of the computation of Sfold nonlinear cross-validation 
(NCV). First, the network is mined on all data to obtain weights WO which are 
used as starting point for the cross-validation. Each data subset Di , a = 1 . . . 5  is 
removed f“ the haining data D in turn. The network is mined, starting at WO, 

using the remaining data This “perturbs” the weights to obtain wi . The test error 
of the “perturtKd model“ wi is computed on the hold-out sample Di . The average 
of these errors is the 5-fold CV estimate of the prediction risk for the model with 
weights WO. 

validation average squared error for subset j is defined 
as 

These are averaged over j to obtain the v-fold cross- 
validation estimate of prediction risk: 

Typical choices for v are 5 and 10. Leave-one-out CV is 
obtained in the limit v = N .  CV is a nonparametric esti- 
mate of the prediction risk that relies only on the available 
data. 

The frequent occurrence of multiple minima in non- 
linear models (see Figure 2), each of which represents 
a different predictor, requires a refinement of the cross- 
validation procedure. This refinement, nonlinear cross- 
validation (NCV), is illustrated in Figure 3 for U = 5. 

A network is trained on the entire data set D to obtain a 
model fix(.) with weights WO. These weights are used as 
the starting point for the v-fold cross-validation procedure. 
Each subset D j  is removed from the training data in turn. 
The network is re-trained using the remaining data starting 
at 200 (rather than using random initial weights). Under 
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the assumption that deleting a subset from the training 
data does not lead to a large difference in the locally- 
optimal weights, the retraining from WO “perturbs” the 
weights to obtain wi, i = 1 . . . D .  The Cross-Validation 
error computed for the “perturbed models” j 2 ~ ( 0 ,  ) (z) thus 
estimates the prediction risk for the model with locally- 
optimal weights WO as desired, and not the performance of 
other predictors at other local minima. 

If the network would be trained from random initial 
weights for each subset, it could converge to a different 
minimum corresponding to wi different from the one cor- 
responding to WO. This would correspond to a different 
model. Thus, starting from WO assures us that the cross- 
validation estimates the prediction risk for a particular 
model in question corresponding to w WO. 

3 Pruning Inputs via Directed Search and 
Sensitivity Analysis 

Selecting a “best subset” of input variables is a critical part 
of model selection for forecasting. This is especially true 
when the number of available input series is large, and 
exhaustive search through all combinations of variables is 
computationally infeasible. Inclusion of irrelevant vari- 
ables not only does not help prediction, but can reduce 
forecast accuracy through added noise or systematic bias. 

In Moody and Utans (1992) and Utans and Moody 
(199 l),  we proposed a sensitivity-based pruning method 
for input variables (SBP) (see also Moody and Utans 
(1994) or Moody (1994)). With this algorithm, candi- 
date architectures are constructed by evaluating the effect 
of removing an input variable from the fully connected 
network. These are ranked in order of increasing training 
error. Inputs are then removed following a “Best First” 
strategy, i.e. selecting the input that, when removed, in- 
creases the training error least. 

The SBP algorithm computes a sensitivity measure Si 
to evaluate the change in training error that would result if 
input xi  were removed from the network. The sensitivity 
of the network model to variable i is defined as: 

1 si = - sii 
N j  

where Sij is the sensitivity computed for exemplar x j .  

Since there are usually many fewer inputs than weights, a 
direct evaluation of Si is feasible: 

N 1 - 
xi  = c x i j  

- 3=1 

Si measures the effect on the training squared error (SE) of 
replacing the ith input xi  by its average Ti for all exemplars 
(replacement of a variable by its average value removes 
its influence on the network output). 

Note that in computing Si, no retraining is done in 
evaluating SE(Si, WX). Also note that it is not sufficient 
to just set zij = 0 V j ,  because the value of the bias of each 
hidden unit was determined during training and would not 
be offset properly by setting the input arbitrarily to zero. 
Of course, if the inputs are normalized to have zero mean 
prior to training, then setting an input variable to zero is 
equivalent to replacing it by its mean. 

4 Empirical Results 
Following prior work by Moody et al. (1993) and Levin 
et al. (1994), we construct neural network models for pre- 
dicting the rate of change of the U.S. Index of Industrial 
Production (IP). The prediction horizon for the IP results 
presented here is 12 months. 

The data set consists of monthly observations of IP and 
other macroeconomic and financial series for the period 
from January 1950 to December 1989. The data set thus 
has a total of 480 exemplars. Input series are derived 
from around ten raw time series, including IP, the Index of 
Leading Indicators, the Standard & Poors 500 Index, and 
so on. Both the “unfiltered” series and various “filtered” 
versions are considered for inclusion in the model, for a 
total of 48 possible input variables. The target series and 
all 48 candidate input series are normalized to zero mean 
and unit standard deviation. 

For the results reported here, networks with three sig- 
moidal units and a single linear output unit are used (see 
previous work of Moody et al. (1993) and Levin et al. 
(1994)). 

Figures 4 and 5 show the results of the sensitivity anal- 
ysis for the case where the training-set consists of 360 
exemplars randomly chosen from the 40 year period, the 
remaining 120 monthly observations constitute the test- 
set. 

Local optima for the number of inputs are found at 
15 on the FPE curve and 13 on the NCV curve. Due 
to the variability in the FPE and NCV estimates (readily 
apparent in figure 5 for NCV), we favor choosing the 
first good local minimum for these curves rather than a 
slightly better global minimum. This local minimum for 
NCV corresponds to a global minimum for the test error. 
Choosing it leads to a reduction of 35 in the number of 
input series and a reduction in the number of network 
weights from 151 to 46. Inclusion of additional input 
variables, while decreasing the training error, does not 
improve the test-set performance. 

5 Summary 
We have demonstrated the effectiveness of the sensitivity- 
basedpruning (SBP) algorithm for selecting a small subset 
of input variables from a large number of available inputs. 
The SBP algorithm as implemented here uses estimates of 
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Sensitivity Input Pruning: IP (12 month) 

- -  F E  

Figure 4 Sensitivity Input Runing for IP (12 month prediction horizon). The 
figure shows the NCV, FPE and MSE for both the training and test-set. 

Sensitivity Input Pruning: IP (12 month) 

I ,  
5 10 15 10 25 30 36 w 43 

I 
Number of Inputs Included 

Figure 5: Sensitivity Input F'rurung for IP (1 2 month prediction horizon). The figure 
illustrates the spread in test-set error for each of the 10 subsets used to calculate 
NCV (denoted by circles). The NCV error is the average of these test-set errors. 

prediction risk P( A), such as our recently proposed Non- 
linear Cross-Validation (NCV) procedure, to determine the 
number of inputs to prune from a network model. In the 
experiments presented here, 35 out of 48 available input 
time series can be eliminated from a neural network model 
that predicts the U.S. Index of Industrial Production. The 
resulting network models exhibit better prediction perfor- 
mances, as measured by either estimates of prediction risk 
or errors on actual test sets, than models that make use of 
all 48 input series. 
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