
ANALOG COMPUTATION VIA NEURAL NETWORKS �Hava T. SiegelmannDepartment of Computer ScienceRutgers University, New Brunswick, NJ 08903E-mail: siegelma@yoko.rutgers.eduEduardo D. SontagDepartment of MathematicsRutgers University, New Brunswick, NJ 08903E-mail: sontag@control.rutgers.eduABSTRACTWe pursue a particular approach to analog computation, based on dynamical systems of thetype used in neural networks research.Our systems have a �xed structure, invariant in time, corresponding to an unchanging numberof \neurons". If allowed exponential time for computation, they turn out to have unboundedpower. However, under polynomial-time constraints there are limits on their capabilities, thoughbeing more powerful than Turing Machines. (A similar but more restricted model was shown to bepolynomial-time equivalent to classical digital computation in the previous work [20].) Moreover,there is a precise correspondence between nets and standard non-uniform circuits with equivalentresources, and as a consequence one has lower bound constraints on what they can compute. Thisrelationship is perhaps surprising since our analog devices do not change in any manner with inputsize.We note that these networks are not likely to solve polynomially NP-hard problems, as theequality \p= np " in our model implies the almost complete collapse of the standard polynomialhierarchy.In contrast to classical computational models, the models studied here exhibit at least somerobustness with respect to noise and implementation errors.1 Introduction\Neural networks" have attracted much attention lately as models of analog computation. Suchnets consist of a �nite number of simple processors, each of which computes a scalar |real-valued,not binary| function of an integrated input. This scalar function, or \activation," is meantto re
ect the graded response of biological neurons to the net sum of excitatory and inhibitoryinputs a�ecting them. The existence of feedback loops in the interconnection graph gives rise toa dynamical system. In this paper, we introduce a mathematical model for such recurrent neuralnetworks, and we study their computational abilities.�This research was supported in part by US Air Force Grant AFOSR-91-0343.1

1.1 Main ResultsWe focus on recurrent neural networks. In these networks, the activation of each processor is up-dated according to a certain type of piecewise a�ne function of the activations (xj) and inputs (uj)at the previous instant, with real coe�cients |also called weights| (aij ; bij; ci). Each processor'sstate is updated by an equation of the typexi(t+ 1) = �0@ NXj=1 aijxj(t) + MXj=1 bijuj(t) + ci1A ; i = 1; : : : ; N (1)where N is the number of processors and M is the number of external input signals. The function� is the simplest possible \sigmoid," namely the saturated-linear function:�(x) := 8><>: 0 if x < 0x if 0 � x � 11 if x > 1 : (2)We will give later a precise de�nition of language acceptance for these computational models.We prove that neural networks can recognize in polynomial time the same class of languagesas those recognized by Turing Machines that consult sparse oracles in polynomial time (the classP/poly); they can recognize all languages, including of course non-computable ones, in exponentialtime. Furthermore, we show that almost every language requires exponential recognition time. (Forsimplicity, we give our main results in terms of recognition; it is also possible to provide a moregeneral version regarding the computation of more general functions.)The proofs of the above results will be consequences of the following equivalence. For functionsT : IN! IN and S : IN! IN, let net (T) be the class of all functions computed by neural networks intime T (n) |that is, recognition of strings of length n is in time at most T (n)| and let circuit (S)the class of functions computed by non-uniform families of circuits of size S(n) |that is, circuitsfor input vectors of length n have size at most S(n). We show that if F is so that F (n) � n, thennet (F (n)) � circuit (Poly(F (n)))and circuit (F (n)) � net (Poly(F (n))) :This equivalence will allow us to make use of results from the theory of (nonuniform) circuitcomplexity.As our model is highly homogeneous and extremely simple, one may suspect that it is weakerthan other possible more complex models. For example, in many applications of neural networksto language recognition, each neuron is allowed to compute inside its sigma function a polynomialcombination of its input values rather than a�ne combinations only. Furthermore, in both appli-cations and biologically plausible models, the activation function is usually more complicated thanthe saturated-linear function used in our model; for instance, one encounters the classical sigmoid11+e�x or other activations.We show that if one allows multiplications in addition to only linear operations in each neuron,that is, if one considers instead what are often called high order neural nets, the computationalpower does not increase. Even further, and perhaps more surprising, no increase in computationalpower (up to polynomial time) can be achieved by letting the activation function be not necessarilythe simple saturated linear one in equation (2), but any function which satis�es certain reasonable2

assumptions. Also, no increase results even if the activation functions are not necessarily identicalin the di�erent processors.One might ask about using such analog models, maybe high order nets, to \solve" NP-hardproblems in polynomial time. We introduce a nondeterministic model and show that the equalityp= np is unlikely in the nets model.The models used here have a weak property of \robustness" to noise and to implementationerror, in the sense that small enough changes in the network would not a�ect the computation.The robustness includes changes in the precise form of the activation function, in the weights ofthe network, and even an error in the update. In classical models of (digital) computation, thistype of robustness can not even be properly de�ned.A Previous Related ResultIn our work [20], we showed that if one restricts attention to nets all whose interconnection weightsare rational numbers, which we call rational nets , then one obtains a model of computation thatis polynomially related to Turing Machines. More precisely, given any multi-tape Turing Machine,one can simulate it in real time by some network with rational weights, and of course the conversesimulation in polynomial time is obvious. Here we are interested in the case when weights arearbitrary real numbers. (It turns out that, as far as the results given here, the existence of just oneirrational weight is all that is needed.)1.2 The ModelThe model we work with is that described by an iteration equation such as (1). For notationalsimplicity, we often summarize this equation, writing \x+(t)" instead of \x(t+1)" and then droppingarguments t; we also write this in vector form, asx+ = �(Ax+ Bu + c) (3)where x is now a vector of size N = number of processors, u is a vector of size M = number ofinputs, c is an N -vector, and A and B are, respectively, real matrices of sizes N �N and N �M .(Now � denotes application of � into each coordinate of x.) Of course, one can drop the vectorc from this description at the cost of adding a coordinate x0 � 1, but it is often useful to have cexplicitly, and this allows us to take initial states to be x = 0, which corresponds to the intuitiveidea that the system is at rest before the �rst input appears.As part of the description, we assume that we have singled out a subset of the N processors,say xi1 ; : : : ; xip; these are the p output processors , and they are used to communicate the outputsof the network to the environment. Thus a net is speci�ed by the data (A;B; c) together with asubset of its nodes.In our further development, both input and output channels will be forced to carry only binarydata. Input and output are streams, that is, one input letter is transferred at each time (viaM binary lines) and one output letter is produced at a time (and appears in the output via pbinary lines). As opposed to the I/O, the computations inside the network will in general involvecontinuous real values.We call a system de�ned by equations such as (3) simply a network or processor network . Inthe neural network literature, these are called recurrent �rst-order neural nets. We show laterthat considering higher-order nets , those in which multiplications of activations and/or inputs are3

allowed, does not result in any gain in computational capabilities (up to a polynomial increase intime).The Finite StructureWe should emphasize from the outset that our networks are built up of �nitely many processors,whose number does not increase with the length of the input. There is a small number of inputchannels (just two in our main result), into which inputs get presented sequentially. We assumethat the structure of the network, including the values of the interconnection weights, does notchange in time but rather remains constant. What changes in time are the activation values, oroutputs of each processor, which are used in the next iteration. (A synchronous update model isused.) In this sense our model is very \uniform" in contrast with certain models used in the past,including those used in [9] or in the cellular automata literature, which allow the number of unitsto increase over time and often even the structure to change depending on the length of inputsbeing presented.The Meaning of (Non-Computable) Real WeightsOne may ask about the meaning of real weights. In response, we recall that our intention is tomodel systems in which certain real numbers |corresponding to values of resistances, capacitances,physical constants, and so forth| may not be directly measurable, indeed may not even be com-putable real numbers, but they a�ect the \macroscopic" behavior of the system. For instance,imagine a spring/mass system. The dynamical behavior of this system is in
uenced by several realvalued constants, such as sti�ness and friction coe�cients. On any �nite time interval, one couldreplace these constants by rational numbers, and the same qualitative behavior is observed, but thelong-term characteristics of the system depend on the true values. We take this use of real numbersas a basic feature of analog computation. (Another characteristic would be the use of di�erentialas opposed to di�erence equations, but technical di�culties make that further study harder, andwe will defer it to future work.)What is interesting is to �nd a class of such systems which on the one hand is rich enoughto exhibit behavior that is not captured by digital computation, while still being amenable touseful theoretical analysis, and in particular so that the imposition of resource constraints resultsin nontrivial reduction of computational power. That this is in accordance with models currentlyused in neural net studies, is especially attractive.1.3 Previous workMany authors have reported successful applications when using neural networks for various com-putational tasks, including classi�cation and optimization problems. Special purpose analog chipsare being built to implement these solutions directly in hardware; see for instance [1], [6]. However,very little work has been done in the direction of exploring the ultimate capabilities of such devicesfrom a theoretical standpoint. Part of the problem is that, much interesting work notwithstanding,analog computation is hard to model, as di�cult questions about precision of data and readout ofresults are immediately encountered |see for instance [21], and the many references there.With the constraint of an unchanging structure, it is easy to see that classical McCulloch-Pitts|that is, binary|neurons would have no more power than �nite automata, which is not aninteresting situation from a theoretical complexity point of view. Therefore, and also because this4

is what is done in practical applications of neural nets, and because it provides a closer analogyto biological systems, we take our neurons to have a graded, analog, response. For mathematicaltractability, we pick this response function to be the saturation function � de�ned in Equation (2).This is a \sigmoidal" nonlinearity; one could also develop a theory using instead of � a di�erentiablefunction such as 1=(1 + e�x) ;but this presents technical di�culties which we prefer to avoid in this presentation. We show inSection 8 that sigmoidal networks are not more powerful, when considering the discrete input-output convention, than networks with the saturated-linear function. (One may ask about thecapabilities of sigmoidal networks with speci�c activation functions such as the above. One step inunderstanding this issue, for �rst order nets, was taken in [11]. On the other hand, if high-ordernets are allowed, such sigmoidal nets can be proved to have the same power as the ones consideredin this paper.)It is important to note that graded responses, as opposed to a threshold-binary output, aremore reasonable in models of computing devices, as it is not reasonable to assume that physicaldevices can discern clearly two values which are arbitrarily close. This continuity in behavior is abasic characteristic of our model.In the paper [22], the author studies a class of machines with just linear activation functions,and shows that this class is at least as powerful as any Turing Machine (and clearly has super-Turing capabilities as well). It is essential in that model, however, that the number of \neurons" beallowed to be in�nite |as a matter of fact, in [22] the number of such units is even uncountable|as the construction relies on using di�erent neurons to encode di�erent possible tape con�gurationsin Turing Machines.The work closest to ours seems to be that on real-number-based computation started by Blum,Shub and Smale (see e.g. [4]); we believe that our setup is far simpler, and is much more appropriateif one is interested in studying neural networks or distributed processor environments. In the relatedprevious paper [13], there were di�erent models for each input size, the model allowed for no loops,and the emphasis was on comparisons with similar models made up of binary processors.The remainder of this paper is organized as follows: Section 2 includes the basic de�nitions ofnetworks and circuits, and states the main theorem regarding the relationships between thesetwo models. Sections 3 and 4 contain the proof of this theorem: Section 3 shows that cir-cuit (F (n)) �net (Poly(F (n))), and section 4 proves that net (F (n)) �circuit (Poly(F (n))).In Section 5, we show the equivalence between networks and threshold circuits. As Boolean andthreshold circuits are polynomially equivalent, this proof does not add any conceptually new ideasto those in previous sections. Nonetheless, the direct connection and simulation may shed insightwhen a �ner comparison is desired. Furthermore, the proof techniques di�er in the two proofs. Sec-tion 6 states some corollaries for neural networks which follow from the above relation with circuits.We also de�ne there a notion of nondeterministic network. In section 7, we brie
y compare ourmodel to the Blum, Shub, and Smale model of computation over the reals. In section 8, we showthat our model does not gain power if one lets each neuron compute a polynomial function |ratherthan just a�ne combinations| of the activations of all the neurons and the external inputs, or byallowing more general activation functions than the piecewise linear one. We conclude in section 9with a discussion on analog and non-Turing computation.We now turn to precise de�nitions. 5

2 Basic De�nitionsAs we discussed above, we consider synchronous networks which can be represented as dynamicalsystems whose state at each instant is a real vector x(t) 2 IRN . The ith coordinate of this vectorrepresents the activation value of the ith processor at time t. In matrix form, the equations are asin (3), for suitable matrices A;B and vector c.Given a system of equations such as (3), an initial state x(1), and an in�nite input sequenceu = u(1); u(2); : : : ;we can de�ne iteratively the state x(t) at time t, for each integer t � 1, as the value obtainedby recursively solving the equations. This gives rise, in turn, to a sequence of output values, byrestricting attention to the output processors; we refer to this sequence as the \output producedby the input u" starting from the given initial state.2.1 Recognizing LanguagesTo de�ne what we mean by a net recognizing a languageL � f0; 1g+ ;we must �rst de�ne a formal network, a network which adheres to a rigid encoding of its input andoutput. We proceed as in [20] and de�ne formal nets with two binary input lines. The �rst of theseis a data line, and it is used to carry a binary input signal; when no signal is present, it defaults tozero. The second is the validation line, and it indicates when the data line is active; it takes thevalue \1" while the input is present there and \0" thereafter. We use \D" and \V " to denote thecontents of these two lines, respectively, sou(t) = (D(t); V (t)) 2 f0; 1g2for each t. We always take the initial state x(1) to be zero and to be an equilibrium state, that is,�(A0 +B0 + c) = 0 :We assume that there are two output processors, which also take the role of data and validationlines and are denoted Od(t); Ov(t) respectively.(The convention of using two input lines allows us to have all external signals be binary; ofcourse many other conventions are possible and would give rise to the same results, for instance,one could use a three-valued input, say with values f�1; 0; 1g, where \0" indicates that no signalis present, and �1 are the two possible binary input values.)We now encode each word � = �1 � � ��k 2 f0; 1g+as follows. Let u�(t) = (V�(t); D�(t)) ; t = 1; : : : ;where V�(t) = (1 if t = 1; : : : ; k0 otherwise ;6

and D�(t) = (�k if t = 1; : : : ; k0 otherwise :Given a formal net N , with two inputs as above, we say that a word � is classi�ed in time � , if thefollowing property holds: the output sequencey(t) = (Od(t); Ov(t))produced by u� when starting from x(1) = 0 has the formOd = 0 � � �0| {z }��1 ��000 � � � ; Ov = 0 � � �0| {z }��1 1000 � � � ;where �� = 0 or 1.Let T : IN ! IN be a function on natural numbers. We say that the language L � f0; 1g+ isrecognized in time T by the formal net N provided that each word � 2 f0; 1g+ is classi�ed in time� � T (j�j), and �� equals 1 when � 2 L, and �� equals 0 otherwise.2.2 Circuit FamiliesWe brie
y recall some of the basic de�nitions of non-uniform families of circuits. A Boolean circuitis a directed acyclic graph. Its nodes of in-degree 0 are called input nodes , while the rest are calledgates and are labeled by one of the Boolean functions AND, OR, or NOT (the �rst two seen asfunctions of many variables, the last one as a unary function). One of the nodes, which has nooutgoing edges, is designated as the output node. The size of the circuit is the total number ofgates. Adding if necessary extra gates, we assume that nodes are arranged into levels 0; 1; : : : ; d,where the input nodes are at level zero, the output node is at level d, and each node only hasincoming edges from the previous level. The depth of the circuit is d, and its width is the maximumsize of each level. A gate computes the corresponding Boolean function of the values from theprevious level, and the value obtained is considered as an input to be used by the successive level;in this fashion each circuit computes a Boolean function of the inputs.A family of circuits C is a set of circuitsfcn; n 2 INg :These have sizes SC(n), depth DC(n), and width WC(n), n = 1; 2; : : :, which are assumed to bemonotone nondecreasing functions. If L � f0; 1g+, we say that the language L is computed by thefamily C if the characteristic function of L\f0; 1gnis computed by cn, for each n 2 IN.The quali�er \nonuniform" serves as a reminder that there is no requirement that circuit familiesbe recursively described. It is this lack of classical computability that makes circuits a possiblemodel of resource-bounded \computing," as emphasized in [16]. We will show that recurrent neuralnetworks, although more \uniform" in the sense that they have an unchanging physical structure,share exactly the same power.If L is recognized by the formal net N in time T , we write �N = L and TN = T . If L iscomputed by the family of circuits C, we write �C = L. We are interested in comparing thefunctions TN and SC for formal nets and circuits so that �N = �C.7

2.3 Statement Of ResultRecall that net (T (n)) is the class of languages recognized by formal networks (with real weights)in time T (n) and that circuit (S(n)) is the class of languages recognized by (non-uniform) familiesof circuits of size S(n).Theorem 1 Let F be so that F (n) � n. Then, net (F (n)) �circuit (Poly(F (n))), and cir-cuit (F (n)) �net (Poly(F (n))).More precisely, we prove the following two facts. For each function F (n) � n:� circuit (F (n)) �net (nF 2(n)).� net (F (n)) �circuit (F 3(n)).3 Circuit Families Are Simulated By NetworksWe start by reducing circuit families to networks. The proof will construct a �xed, \universal" net,having roughly N = 1000 processors, which, through the setting of a particular real weight whichencodes an entire circuit family, can simulate that family.Theorem 2 There exists a positive integer N such that the following property holds: For eachcircuit family C of size SC(n) there exists an N -processor formal network N = N (C) so that�N = �C and TN (n) = O(nS2C(n)).The proof is provided in the remainder of this section.3.1 The circuit EncodingGiven a circuit c|with size s, width w, and wi gates in the ith level|we encode it as a �nitesequence over the alphabet f0; 2; 4; 6g, as follows:� The encoding of each level i starts with the letter 6. Levels are encoded successively, startingwith the bottom level and ending with the top one.� At each level, gates are encoded successively. The encoding of a gate g consists of threeparts|a starting symbol, a 2-digit code for the gate type, and a code to indicate which gatefeeds into it:{ It starts with the letter 0.{ A two digit sequence f42; 44; 22g denotes the type of the gate, fAND, OR, NOTg re-spectively.{ If gate g is in level i, then the input to g is represented as a sequence in f2; 4gwi�1, suchthat the jth position in the sequence is 4 if and only if the jth gate of the (i� 1)th levelfeeds into gate g.The encoding of a gate g in level i is of length (wi�1+ 3). The length of the encoding of a circuit cis l(c) � jen(c)j = O(sw). 8

���������������� 6�����AAAAK�����SSSSo ZZZZZ} @@@@I ZZZZ}6����> I3OrI2I1 Or NotAndFigure 1: Circuit c1Example 3.1 The circuit c1 in Figure 1 is encoded asen[c1] = 6 042444| {z }g1 044424| {z }g2 022242| {z }g3 6 044444| {z }g4 :For instance, the NOT gate corresponds to the subsequence \022242": It starts with the letter0, followed by the two digits \22," denoting that the gate is of type NOT, and ends with \242,"which indicates that only the second input feeds into the gate. 2We encode a non-uniform family of circuits, C, of size S(n) as an in�nite sequencee(C) = 8 en[c1] 8 en[c2] 8 en[c3] � � � ; (4)where en[ci] is the encoding of ci in the reversed order.Let b be a natural number, and r = r1r2 � � � a �nite or in�nite sequence of natural numberssmaller than b. The interpretation of the sequence r in base b is the numberrjb � 1Xi=1 ribi :Generally, two di�erent sequences may result in the same encoding. For instance, both r = 0999 � � �and r = 1000 � � � provide rj10 = 0:1 . However, restricted to the sequences we will consider, theencoding is one-to-one.We can interpret formula (4) in base 9. We denote this representation of the family of circuitsC as Ĉ, Ĉ = 8 en[c1] 8 en[c2] 8 en[c3] � � � j9 : (5)Let ci be the ith circuit in the family. We denote by cen[ci], the encoding en[ci] interpreted in base9.3.2 Cantor Like Set EncodingA number which encodes a family of circuits, or one which is a su�x of such an encoding, is anumber between 0 and 1. However, not every number in the range [0; 1] can appear in this manner.If the �rst digit to the right of the decimal point is 0, then the value of the encoding ranges in[0; 19]; if it is 2, the value ranges in [29 ; 39], and so forth. The number cannot lie in any of the ranges9

Figure 2: Values of the circuit encoding[2i�19 ; 2i9], for i = 1; 2; 3; 4. The second digit after the decimal point decides the possible rangerelative to the currently candidate range; see Figure 2.In summary, not every value in [0; 1] appears. The set of possible values is not continuous andhas \holes". Such a set of values \with holes" is a Cantor set. Its self-similar structure means thatbit (base 9) shifts preserve the \holes."The advantage of this approach is that there is never a need to distinguish among two very closenumbers in order to read the desired circuit out of the encoding; the circuit can be then retrievedwith �nite-precision operations employing a �nite number of neurons.3.3 A Circuit RetrievalLemma 3.2 For each (non-uniform) family of circuitsC there exists a 16-processor networkNR(C)with one input line such that, starting from the zero initial state and given the input signalu(1) = 1 1 � � � 1| {z }n 0 0 � � � j2 = 1� 2�n; u(t) = 0 for t > 1 ;NR(C) outputs xr = 0 0 0 � � � � � �0| {z }2n+2Pni=1 l(ci)+4cen[cn] 0 0 0 � � � :Proof. Let � = f0; 2; 4; 6; 8g. Denote by C9 the \Cantor 9-set," which consists of all those realnumbers q which admit an expansion of the formq = 1Xi=1 �i9i (6)with each �i 2 �. Let � : IR ! [0; 1] be the function�[x] := 8><>: 0 if x < 09x� b9xc if 0 � x � 11 if x > 1 : (7)Let � : IR! [0; 1] be the function�[x] := 8><>: 0 if x < 02b9x2 c if 0 � x � 11 if x > 1 : (8)Note that, for each q = 1Xi=1 �i=9i 2 C9 ;we may think of �[q] as the \select left" operation, since�[q] = �1 ;10

and of �[q] as the \shift left" operation, since�[q] = 1Xi=1 �i+1=9i 2 C9 :For each i � 0, q 2 C9, �[�i[q]] = �i+1 :The following procedure summarizes the task to be performed by the network constructed below,which in turn satis�es the requirements of the lemma.Procedure Retrieval(Ĉ; n)Variables counter, y, zBegincounter 0, y 0, z Ĉ,While counter < nParbeginz �[z]if �[z] = 8 then increment counterParend,While �[z] < 8Parbeginz �[z]y 19(y + �[z])Parend,Return(y)EndThe functions � and � can not be programmed within the neural network model due to theirdiscontinuity. However, we can program the functions ~�; ~�, which coincide with �;� respectivelyon C9: ~�[q] = 8Xj=0(�1)j�(9q � j) ; (9)and ~�[q] = 2 3Xj=0 �(9q � (2j + 1)) : (10)
11

0
1

0 2/9 4/9 6/9 8/9 1Figure 2: the function ~�[x].
0246
8

1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9Figure 3: the function ~�[x].The retrieval procedure is, then, achieved by the following network:x+i = �(9x10 � i) i = 0; : : : ; 8x+9 = �(2u)x+10 = �(Ĉx9 + x0 � x1 + x2 � x3 + x4 � x5 + x6 � x7 + x8)x+11 = �(19x12 + 29(x1 + x3 + x5 + x7)� 2x13)12

x+12 = �(x11)x+13 = �(u+ x14 + x15)x+14 = �(2x13 + x7 � 2)x+15 = �(x13 � x7)x+16 = �(x12 + x7 � 1) :If the input u arrives at time 1, then x10(2k + 3) = ~�k[Ĉ] (because of equation (9)). Processorsx13; x14; x15 serve to implement the counter, and processor x16 is the output processor. This networksatis�es the requirements of the lemma.3.4 Circuit Simulation By A NetworkLet � 2 f0; 1gn be a binary sequence. Denote by en[�] the sequence 2 f2; 4gn that substitutes(2�i + 2) for each �i, and by cen[�] the interpretation of en[�] in base 9, that is, en[�]j9. We nextconstruct a \universal net" for interpreting circuits.Lemma 3.3 There exists a networkNs, such that for each circuit c and binary sequence �, startingfrom the zero initial state and applying the input signalu1 = cen[c] 0 0 � � � u2 = cen[�] 0 0 � � � ;Ns outputs x0 = 0 0 � � � 0| {z }T y 0 0 � � � xv = 0 0 � � � 0| {z }T 1 0 0 � � � ;where y is the response of circuit c on the input �, and T = O(l(c) + j�j).Proof. It is easy to verify that, given any circuit, there is a three-tape Turing Machine which cansimulate the given circuit in time O(l(c) + j�j). This Turing Machine would employ its tapesto store the circuit encoding, the input and output encoding, and the current level's calculation,respectively. Now we can simulate this machine by a net. Indeed, we proved in ([20]) that if Mis a k-tape Turing Machine with s states which computes in time T a function f on binary inputstrings, then there exists a rational network N , which consists of9ks+ s+ 28k + 2processors, that computes the same function f in time O(T). Closer counting shows that less than1000 processors su�ce.Remark 3.4 If the lemma would only require an estimate of a polynomial number of processors,as opposed to the more precise estimate that we obtain, the proof would have been immediate fromthe consideration of the circuit value problem (CVP). This is the problem of recognizing the set ofall pairs <x; y>, where x 2 f0; 1g+, and y encodes a circuit with jxj input lines which outputs 1on input x. It is known that CVP 2 P ([3] volume I, pg 110). 213

3.5 Proof: Circuit Families Are Simulated By NetworksProof of Theorem 2.Let C be a circuit family. We construct the required formal network as a composition of thefollowing three networks:� An input network, NI , which receives the inputu1 = � 0 0 � � �u2 = 1 1 � � � 1| {z }j�j 0 0 � � � ;and computes cen[�] and u2j2, for each � 2 f0; 1g+. This network is trivial to implement.� A retrieval network, NR(c), as described in Lemma 3.2, which receives u2j2 from NI , andcomputes cen[cj�j]. (Note that during the encoding operation, network NI produces an outputof zero, and NR(c) remains in its initial state 0.)� A simulation network, NS , as stated in Lemma 3.3, which receives cen[cj�j] and cen[�j, andcomputes x0 = 0 0 � � � 0| {z }T �c(�) 0 0 � � � xv = 0 0 � � � 0| {z }T 1 0 0 � � � :Notice that out of the above three networks, only NR depends on the speci�c family of circuits C.Moreover, all weights can be taken to be rational numbers, except for the one weight that encodesthe entire circuit family.The time complexity to compute the response of C to the input � is dominated by that ofretrieving the circuit description. Thus, the complexity is of orderT = O0@ j�jXi=1 l(ci)1A :We remarked that the length of the encoding l(ci) is of order O(WC(i)SC(i)) = O(S2C(i)). SinceSC(i) � SC(i+ 1) for i = 1; 2; : : : , we achieve the claimed bound T = O(j�jS2C(j�j)).Remark 3.5 In case of bounded fan-in, the \standard encoding" of circuit cn is of length l(cn) =O(SC(n) log(SC(n))). The total running time of the algorithm is then O(nSC(n) log(SC(n))). 24 Networks Are Simulated By Circuit FamiliesWe next state the reverse simulation, of nets by nonuniform families of circuits.Theorem 3 Let N be a formal network that computes in time T : IN ! IN. There exists a non-uniform family of circuits C(N) of size O(T 3), depth O(Tlog(T)), and width O(T 2), that acceptsthe same language as N does.The proof is given in the next two subsections. In the �rst part, we replace a single formal networkby a family of formal networks with small rational weights. (This is unrelated to the standard factfor threshold gates that weights can be taken to have n logn bits.) In the second part, we simulatesuch a family of formal networks by circuits. 14

4.1 Linear Precision Su�cesDe�ne a processor to be a designated output processor if its activation value is used as an outputof the network (i.e. it is an output processor) and is not fed into any other processor. A formalnetwork, for which its two output processors are designated, is called an output designated network.Its processors, which are not the designated output processors, are called internal processors.For the next result, we introduce the notion of a q-truncation net. This is a processor networkin which the update equations take the formx+i = q-Truncation [�(NXj=1aijxj + MXj=1 bijuj + ci)] ;where q-Truncation means the operation of truncating after q bits.Lemma 4.1 Let N be an output designated network. If N computes in time T , there exists afamily of T (n)-Truncation output designated networks N1(n) such that� For each n, N1(n) has the same number of processors and input and output channels as Ndoes.� The weights feeding into the internal processors of N1(n) are like those of N , but truncatedafter O(T (n)) bits.� For each designated output processor in N , if this processor computes x+i = �(f), where f isa linear function of processors and inputs, then the respective processor in N1(n) computes�(2 ~f � :5), where ~f is the same as the linear function f but applied instead to the processorsof N1(n) and with weights truncated at O(T (n)) bits.� The respective output processors of N and N1(n) have the same activation values at all timest � T (n).Proof. We �rst measure the di�erence (error) between the activations of the corresponding internalprocessors of N1(n) and N at time t � T (n). This calculation is analogous to that of the choperror in
oating point computation, [2].We use the following notations:- N is the number of processors, M is the number of input lines,L � N +M + 1.- W 0 is the largest absolute value of the weights of N , W � W 0 + 1.- xi(t) is the value of processor i of network N at time t.- �w 2 (0; 1) and �p > 0 are the truncation errors at weights and processors,respectively.- �t > 0 is the largest accumulated error at time t in processors of N1(n).- u 2 f0; 1gM is the input to both N and N1(n). (u(t) = 0M for t > n.)- aij , bij , and ci are the weights in
uencing processor i of network N .- ~xi(t), ~aij , ~bij, and ~ci are the respective activation values of processors, andweights of N1(n). 15

Network N1(n) computes at each step~x+i = q-Truncation [�(NXj=1 ~aij ~xj + MXi=1 ~bijuj + ~ci)] :We assume by induction on t that for all internal processors i; j,j ~xi(t)� xi(t)j � �tj~aij(t)� aij(t)j � �wj~bij(t)� bij(t)j � �w ; andj~ci(t)� ci(t)j � �w :Using the global Lipschitz property j�(a)� �(b)j � ja� bj, it follows that�t � N(W 0 + �w)�t�1 + (N +M + 1)�w + �p � LW�t�1 + L�w + �p :Therefore, �t � t�1Xi=0(LW)i(L�w + �p) � (LW)t(L�w + �p) :We now analyze the behavior of the output processors. We need to prove that �(2 ~f � :5) = 0; 1when �(f) = 0; 1 respectively. That is, f � 0 =) ~f < 14and f � 1 =) ~f > 34 :This happens if jf � ~f j < 14 . Arguing as earlier, the condition �t < 14 su�ces. This is translatedinto the requirement (L�w + �p) � 14(LW)�t :If both �w and �p are bounded by 18(LW)�(t�1) , this inequality holds. This happens when theweights and the processor activations are truncated after O(t log(LW)) bits. As L and W areconstants, we conclude as desired that a su�cient truncation for a computation of length T isO(T).4.2 The Network Simulation by a CircuitLemma 4.2 Let N1 be a family of T (n)-Truncation output designated networks, where all net-works N1(n) consist of N processors and the weights are all rational numbers with O(T) bits.Then, there exists a circuit family C of size O(T 3), depth O(T log(T)), and width O(T 2), so thatcn accepts the same language as N1(n) does on f0; 1gn.Proof. We sketch the construction of the circuit cn which corresponds to the T (n)-Truncation outputdesignated net N1(n).The network N1(n) has two input lines: data and validation, where the validation line seesn consecutive 1's followed by 0's. We think of the n data bits on the data line which appear16

simultaneously with the 1's in the validation line, as data input of size n. These n bits are fedsimultaneously into cn via n input nodes.To simulate the sequential input in N1(n), we construct an input-subcircuit which preservesthe input as it is to be released one bit at a time in later times of the computation. The inputsubcircuit is of size nDC(n).Let p; p = 1; : : : ; Nbe a processor of N1(n). We associate with each processor p a subcircuit sc(p). Each processorp 2 N1(n) computes a truncated sum of up to N + 2 numbers, N of which are multiplicationsof two T -bit numbers. Hardwiring the weights, we can say that each processor computes a sumof (TN + 2) (2T)-bit numbers. Using the carry-look-ahead method, [19], the summation can becomputed via a subcircuit of depth O(log(TN)), width O(T 2N), and size O(T 2N). (This depth isof the same order as the lower bound of similar tasks, see [5], [7].)As for the saturation, one gate, pu, is su�cient for the integer part. As only O(T) bits arepreserved, the activation of each processor can be represented in binary by the unit gate, pu, andthe most signi�cant gates pi; i = 1; : : :O(T)after the operation AND(pi;:(pu)); i = 1; : : :O(T) :Let sc(p0) be a subcircuit of largest depth. Pad the other sc(p)'s with \demi gates" (e.g. anAND gate of a single input), so that all sc(p)'s are of equal depth. The output of circuit sc(p) iscalled the activation of sc(p).We place the N subcircuits sc(p); p = 1; : : : ; Nto compute in parallel. We call this subcircuit a layer. A layer corresponds to one step in thecomputation of N1(n). As N1(n) computes in time T (n), T (n) layers are connected sequentially.Each layer i receives the ith input bit from the input-subcircuit, and the N activation values of itspreceding layer (except for layer 1, which receives input only). This main subarchitecture is of sizeO(T 3), depth O(Tlog(T)), and width O(T 2), where T = T (n).As N1(n) may compute the response to di�erent strings of size n in di�erent times of orderO(T), we construct an output-subcircuit which forces the response to every string of size n to appearat the top of the circuit.For each layer i = 1; : : : ; T , we apply the AND function to the output of the subcircuitssc(p1); sc(p2) ; where p1; p2 are the output processors of N1(n). We transfer these values and applythe OR functions to them. The resulting value is the output of the circuit. When OR is applied ateach layer, only DC(n) gates are needed for this subcircuit.The resources of the total circuit are dominated by those of the main subarchitecture.The proof of Theorem 3 follows immediately from Lemma 4.1 and Lemma 4.2.5 Real Networks Versus Threshold CircuitsA threshold circuit is de�ned similarly to a Boolean circuit, but the function computed by eachnode is now a linear threshold function rather than one of the Boolean functions (And, Or, Not).17

Each gate i computes fi : IBni 7! IB ;thus giving rise to the activation updatesxi(t + 1) = fi(xi1; xi2; : : : ; xin) � H0@ niXj=1 aijxij(t) + ci1A : (11)Here xij are the activations of the processors feeding into it, and the aij and ci are integer constantsassociated to the gate. Without loss of generality, one may assume that these constants can eachbe expressed in binary with at most ni log(ni) bits; see [15]. If xi is on the bottom level, its inputis the external input. The function H is the threshold functionH(z) = (1 z � 00 z < 0 : (12)The relationships between threshold circuits and Boolean circuits are well studied. (See for example[17].) They are known to be polynomial equivalent in size. We provide here an alternative directrelationship between threshold circuits and real networks, without passing through Boolean circuits.Statement Of ResultRecall that net (T (n)) is the class of languages recognized by formal networks (with real weights)in time T (n) and de�ne T-circuit (S(n)) as the class of languages recognized by (non-uniform)families of threshold circuits of size S(n).Theorem 4 Let F be so that F (n) � n. Then, net (F (n)) �T-circuit (Poly(F (n))), and T-circuit (F (n)) �net (Poly(F (n))).More precisely, we prove the following two facts. For each function F (n) � n:� T-circuit (F (n)) �net (nF 3(n) log(F (n))).� net (F (n)) �T-circuit (F 2(n)).The �rst implication is proven similarly to the Boolean circuit case. Each threshold gate isencoded in a Cantor like way, including the description of the weights. We next state the reversesimulation, of nets by nonuniform families of threshold circuits.Theorem 5 Let N be a formal network that computes in time T : IN ! IN. There exists a non-uniform family of threshold circuits C(N) of size O(T 2), depth O(T), and width O(T), that acceptsthe same language as N does.We start with simulating N by the family of T (n)-Truncation output designated networksN1(n) as described in Lemma 4.1. Next, we simulate this family of networks of depth T (n) andsize O(T (n)) via a family of threshold circuits of depth 2T (n) and size O(T 2(n)).Assume N 0 � N1(n) is an m-truncation network for input of size n; N 0 has depth T (n) andm = O(T (n)). Each gate of N 0 computes an addition of N m-bit numbers; then, it applies the� function to it. Using a technique similar to the one provided in [17] pg 156-157, we show how18

to simulate each � gate of N 0 via a threshold circuit of size O(m) and depth 2. We achieve thesimulation in two steps: First we add the N numbers and then we simulate the application of thesaturation functions.Simulating a saturated gate in an m-truncation network by a threshold circuit.Step 1: Adding N m-bit numbers.Suppose the numbers are z1; : : :zN ;each having m bit representation: zi = zi1zi2 � � �zim :The sum of the N m-bit numbers has � m+ blogNc+ 1 bits in the representation. [As the upperbound on the absolute value of the result is N(2m � 1).] Generally, the sum isz11 z12 � � � z1m+ ...zN1 zN2 � � � zNmy�l � � � y�1 y0 y1 y2 � � � ymAs the network is an m-truncation network, we only need to compute y0; y1; : : :ym. We show belowhow to compute yk, k � 1. The circuit for y0 is very similar.To compute yk, we need to consider only zij for all i and j � k. Look at the sum:z1k � � � z1m+ ...zNk � � � zNmc�l � � � c�1 c0 yk � � � ymIt is easy to verify that ~zk � c�l � � � c�1 c0 yk � � � ym = NXi=1 mXj=k(zij2m�j) :To extract from the sum the ykth bit, we build the following circuit:1. Level 1: For each possible value i of c�l � � � c�1 c0 (i = 1 : : :2l+1), we have a pair of thresholdgates~yki0 = H(~zk � c�l � � � c�1 c0 1 0 0 � � � 0| {z }m�k) ; ~yki1 = H(�~zk + c�l � � � c�1 c0 1 1 1 � � � 1| {z }m�k) :If yk = 0, exactly one of each pair is active; if yk = 1, one of the pairs has both gates activeand the rest one only. Thus, the yk bit can be computed by counting if more than half of thegates in the �rst level are active.2. Level 2: It includes one gate only that computes the desired bit:yk = H(2l+1Xi=1 (~yki0 + ~yki1)� (2l+1 + 1)) : (13)19

Step 2: Applying the saturated function.The value of the kth bit is bk = (yk c0 = 00 c0 = 1 :First, we have to compute c0. We allocate 2l pairs of threshold gates in the �rst level:~cki0 = H(~zk � c�l � � � c�1 1 0 0 � � � 0| {z }m+1�k) ; ~cki1 = H(�~zk + c�l � � � c�1 1 1 1 � � � 1| {z }m+1�k) :The majority of these gates is the value of c0:c0 � 2lXi=1(~cki0 + ~cki1)� 2l :We change Equation 13 to compute bk directly without computing �rst yk.bk = H(2l+1Xi=1 (~yki0 + ~yki1)� (2l+1 + 1)� c0) : (14)The size of the circuit that computes the kth bit is then O(2l), where l = blogNc. We copy thiscircuit for each of the m bits to simulate one threshold gate. Thus, each � gate is simulated via athreshold circuit of depth 2 and size O(m). The network itself is hence simulated via Nm copiesof those. As m = O(T), and N is considered a constant, the simulating threshold circuit has thesize O(T 2), and it doubles the depth of the network N 0.6 CorollariesLet net-p and net-exp be the classes of languages accepted by formal networks in polynomial timeand exponential time, respectively. Let circuit-p and circuit-exp be the classes of languagesaccepted by families of circuits in polynomial and exponential size, respectively.Corollary 6.1 net-p= circuit-p and net-exp= circuit-exp .The class circuit-p is often called \P/poly" and coincides with the class of languages recognizedby Turing Machine \with advice sequences" in polynomial time. The following corollary statesthat this class also coincides with the class of languages recognized in polynomial time by TuringMachines that consult oracles, where the oracles are sparse sets. A sparse set S is a set in whichfor each length n, the number of words in S of length at most n is bounded by some polynomialfunction. For instance, any tally set, that is, a subset of 1�, is an example of a sparse set. Theclass P (S), for a given sparse set S, is the class of all languages computed by Turing machines inpolynomial time and using queries from the oracle S.From [3], volume I, Theorem 5.5, pg 112, and Corollary 6.1, we conclude as follows:Corollary 6.2 net-p = [S sparse P (S) :From [3], volume I, Theorem 5.11, pg 122 (originally, [14]), we conclude as follows:Corollary 6.3 net-exp includes all possible binary languages. Furthermore, most Boolean func-tions require exponential time complexity. 20

Nondeterministic Neural NetworksThe concept of a nondeterministic circuit family is usually de�ned by means of an extra input,whose role is that of an oracle. Similarly, we de�ne a nondeterministic network to be a networkhaving an extra binary input line, the Guess line, in addition to the Data and Validation lines. Alanguage L is said to accepted by a nondeterministic formal network N in time B ifL = f� j 9 a guess
; �N (�;
) = 1; TN (�;
)� B(j�j)g :It is easy to see that Corollary (6.1), stated for the deterministic case, holds for the nonde-terministic case as well. That is, if we de�ne net-np to be the class of languages accepted bynondeterministic formal networks in polynomial time, and circuit-np to be the class of languagesaccepted by nondeterministic non-uniform families of circuits of polynomial size, then:Corollary 6.4 net-np = circuit-np . 2Since np� net-np (one may simulate a nondeterministic Turing Machine by a nondeterministicnetwork with rational weights), the equality net-np = net-p implies np� circuit-p= P/poly.Thus, from [10] we conclude:Theorem 6 If net-np = net-p then the polynomial hierarchy collapses to �2.The above result says that a theory of computation similar to that which arises in the classicalcase of Turing machine computation is also possible for our model of analog computation. Inparticular, even though the two models have very di�erent power, the question of knowing if theveri�cation of solutions to problems is really easier than �nding solutions, at the core of moderncomputational complexity, has a precise corresponding version in our setup, and its solution willbe closely related to that of the classical case. Of course, it follows from this that it is quite likelythat net-np is strictly more powerful than net-p .7 Complexity Over The RealsBlum, Shub, and Smale introduced in [4] a powerful model of computation over the real numbers.This model allows one possible formalization of the notion of analog computing. Three maincharacteristics di�erentiate our neural network model from the BSS model, namely:� The BSS model allows real-valued inputs, rather than only binary.� In the BSS model, values can be compared for exact equality to any particular value, e.g.,zero. That is, exact precision is available. This is not possible in our model, as discontinuitiesare not allowed. By appropriate choice of weights, we are able, however, to distinguish, forany �xed � > 0, between any two values x and y so that jy � xj > �.� The BSS model allows for an in�nite range of values in registers {which correspond to our\neurons"{ whereas our model restricts the possible range of values to an adjustable, but�nite, bound.The BSS model is closely related to the model that is obtained if two types of neurons are available:\Heaviside" neurons that compute linear threshold functions and identity neurons. This modelallows for discontinuous branching, as in the BSS model.21

8 Equivalence of Di�erent Dynamical SystemsWe show that a large class of di�erent networks and dynamical systems has no more computationalpower than our neural (�rst-order) model with real weights. Analogously to Church's thesis ofcomputability (see e.g. [23] p.98), our results suggest the following Thesis of Time-bounded AnalogComputing: \Any reasonable analog computer will have no more power (up to polynomial time)than �rst-order recurrent networks."We consider dynamical systems {which we will call generalized processor networks{ with farless restrictive structure than the recurrent neural network model which was described above.Let N;M; p be natural numbers. A generalized processor network is a dynamical systemD thatconsists of N processors x1; x2; : : :xN ; and receives its input u1(t); u2(t); : : :uM (t) via M inputlines. A subset of the N processors, say xi1; : : : ; xip, is the set of output processors of the system,used to communicate the output of the system to the environment. In vector form, a generalizedprocessor network D updates its processors via the dynamic equationx+ = f(x; u) ;where x is the current state of the network (a vector), u is an external input (also possibly a vector),and f is a composition of functions: f = � � ;where � : IRN+M 7! IRNis some vector polynomial in N +M variables with real coe�cients, and : IRN 7! IRNis any vector function which has a bounded range and is locally Lipschitz. (Thus, the compositefunction f = � � again satis�es the same properties.)We also assume, as part of the de�nition of generalized processor network, that, at least forbinary inputs of the type considered in the de�nition of \formal networks,"D outputs \soft" binaryinformation. That is, there exist two constants �; �, satisfying � < � and called the decisionthresholds, so that each output neuron of D outputs a stream of numbers each of which is eithersmaller than � or larger than �. We interpret the outputs of each output neuron y as a binaryvalue: binary(y) = (0 if y � �1 if y � � :In the usual model we studied earlier, the values are always binary, but we allow more generalityto show that even if one allows more general analog values, no increase in computational power isattained, at least up to polynomial time.Remark 8.1 The above assumptions imply that, for each � > 0, there exists a constant C, suchthat, for all x and ~x satisfying thatjx� ~xj < � and x 2 Range ()(the absolute value sign indicates Euclidean norm), the following property holds:j (x; u)� (~x; u)j � Cjx� ~xjfor any binary vector u. A similar property holds for f . 222

Let T : IN 7! IN be a function from integers into integers. We say that a generalized processornetwork D computes in time T if for every input of size n 2 IN, D completes its output in no morethan T (n) steps.A neural network is a special case of a generalized processor network, in which all coordinatesof the function compute the same piecewise linear function �, and the polynomial � is a �rstorder polynomial, that is, an a�ne function.8.1 Generalized Networks with Bounded PrecisionLet D be a generalized processor networkD : x+ = (�(x; u))as above. Let Q be a positive integer. The Q-truncation of D, denotedQ-Truncation (D) ;is the network with dynamics de�ned byx+ = Q-Truncation [(�(x; u))] ;where \Q-Truncation" represents the operation of truncating after Q bits. The Q-chop of D is thenetwork with dynamics de�ned byx+ = Q-Chop [(�(x; u))] � Q-Truncation [(~�Q(x; u))] ;where ~�Q is the polynomial � but with coe�cients truncated after Q bits.The next observations insure that round-o� errors due to truncation or chopping are not toolarge.Lemma 8.2 Assume D computes in time T , with decision thresholds �; �. Then, there is aconstant c such that the function q(n) = cT (n)satis�es the following property. For each positive integer n, let Q = q(n). Then, Q-Truncation(D)computes the same function as D on inputs of length at most n, with decision thresholds�0 = � + � � �3 and �0 = � � � � �3 :Proof. Let D be a generalized processor network satisfying the above conditions, and let ~D = Q-truncation(D), with Q still to be decided upon. Let � be the error due to truncating after Q bits,that is, � = c12�Q for some constant c1. Finally, let �t be the largest accumulated error in all theprocessors by time t. The following estimates are obtained using the Lipschitz property of f :�o = 0�1 = ��t = � t�1Xi=o Ci = �Ct � 1C � 1 ;23

where C is the Lipschitz constant of f for � = 1 (c.f. Remark 8.1). To bound the error with theamount
 = ���3 , we require �t �
 :That is, � �
(C � 1)Ct � 1 � ~C�t ;for some constant ~C. This requirement is met when � is the truncation error corresponding toQ = (log2((1c1 ~C))T ;so we can take q(n) = log2(1c1 ~C)T (n).As a corollary of Lemma 4.1, and using an argument exactly as in the proof of Lemma 8.2, weconclude:Lemma 8.3 Lemma 8.2 holds for the Q-chop network as well.8.2 Equivalence of Neural and Generalized NetworksDe�nition 8.4 Given a vector function f = � � as above, we say that f is approximable in timeAf (n), if there is a Turing Machine M that computes T (n)-Truncation(f) in time Af (n) on eachinput having total bit size n.Example 8.5 If f = � �, is approximable, and � has rational coe�cients, then f is approx-imable. (As � is approximable at this case.) 2Lemma 8.6 Let L(T) be the class of languages recognized by generalized processor networks intime T , for which the function f is approximable in time Af , and the function T is computablein time M(n). Then, L(T) is included in the class of languages recognized by Turing Machines intime O(M(n) + T (n)Af(T (n))).Proof. Assume given a generalized processor networkD satisfying the above assumptions. A TuringMachine which approximates it can be built as follows. The machine receives an input string oflength n. As a �rst step, it computes the function T (n), and it estimates the required precisionQ = q(n) as in the previous Lemma. Finally, it simulates the generalized processor network stepby step, forgetting all information but the �rst Q required bits. This Turing Machine computesthe required function in the stated time.Corollary 8.7 Let D be a network which computes in polynomial time T , and so that f is ap-proximable is polynomial time. Then the language recognized by D is in P .De�nition 8.8 Given a vector function f = � � as above, we say that f is non-uniformly F (n)-approximable in time Af (n), if there is a Turing Machine M that computes T (n)-Chop(f) using anadvice function (c.f. [3], volume I, pg 99-115) in K[F (n), poly(T (n))].24

Example 8.9 Assume a generalized processor network D that computes in time T . A polynomial� with general real coe�cients is non-uniformly T (n)-computable: For each input of size n, themachine receives the �rst O(T (n)) bits of each coe�cient as an advice sequence, and then computesthe polynomial. 2From the above results, we may conclude as follows:Theorem 7 Let D be a generalized processor network which computes via a function f = � �.Assume is non-uniformly F (n)-approximable in polynomial time. Then there exists a neuralnetwork ND which recognizes the same language as D and which does so with at most a polynomialtime slowdown. Furthermore, if is F (n)-approximable in polynomial time and � involves rationalcoe�cients only, the weights of ND are rational numbers as well.Corollary 8.10 Adding
exibility to the neural network model does not add power to the model,except for a possible polynomial time speed up. This
exibility includes:� Using a high order polynomial � rather than an a�ne function.� Using other functions rather than the saturation we used earlier, including the possibilityof having di�erent functions in di�erent neurons.� Allowing for the output to be \soft binary" rather than pure binary.Note that networks with high order polynomials have appeared especially in the language recog-nition literature (see e.g. [8] and references there). We emphasize the relationship between thesemodels: Let N1 be neural network (of any order), which recognizes a language L in polynomialtime. Then there is a �rst order network N2 which recognizes the same language L in polynomialtime.Remark 8.11 The networks that we consider are mildly \robust to noise and to implementationerror" in the sense that small enough perturbations in weights or (formulated in a suitable sense)in the sigmoid activation function do not a�ect the computation, as long as \soft binary" outputsare considered. Given any time T , there is some �T so that an error of �T would not a�ect thecomputation up to a time T . This is an easy consequence of the continuous dependence of theoutput on all the data. (A detailed proof involves de�ning precisely \perturbations of the activationfunction; we omit the details.) 29 Comments on Analog and non-Turing \Computation"In the recent, very popular {and very controversial{ book [18], Penrose has argued that the standardmodel of computing is not appropriate for modeling true biological intelligence. The author arguesthat physical processes, evolving at a quantum level, may result in computations which cannotbe incorporated in Church's Thesis. It is interesting to point out that the work that we reporthere does allow for such non-Turing power, while keeping track of computational constraints {andthus embedding a possible answer to Penrose's challenge in more classical computer science. Notethat Parberry, in [16], also insists that possible non-Turing theories should take account of suchconstraints, though he suggests a di�erent approach, namely the use of probabilistic computationswithin the theory of circuit complexity. 25

Finally, we remark that human cognition seems to be clearly based on \subsymbolic" or \analog"components and modes of operation. As pointed out by many authors, in particular in the workof [12], the issue of understanding how macroscopic symbolic behavior arises from such a substrateis one of the most challenging ones in science. Perhaps our work, with its implicit use of in�niteprecision for internal computations, is not at all relevant to this understanding, because neurons areoften taken to be low-precision devices. On the other hand, it is also possible that the precision issueshould be understood solely in terms of limitations on observers and more generally interactionswith the environment, and in that respect, our model is not de�cient, since input and output dataare binary.

26

References[1] Alspector J., R.B. Allen, \A neuromorphic VLSI learning system," in Advanced Research inVLSI: Proceedings of the 1987 Stanford Conference, (P. Loseleben ed.,) MIT Press, Cambridge,MA, 1987: 313-349.[2] Atkinson K.E., An Introduction to Numerical Analysis, Wiley, New York, 1989.[3] Balcazar J.L., J. Diaz, J. Gabarro, Structural Complexity, Springer-Verlag, Berlin, 1988.[4] Blum L., M. Shub, and S. Smale, \On a theory of computation and complexity over the real num-bers: NP completeness, recursive functions, and universal machines," Bull. A.M.S. 21(1989):1-46.[5] Chandra A.K., L. Stockmeyer, U. Vishkin, \Constant depth reducibility," SIAM J. Computing13(1984): 423-439.[6] Eberhardt S.P., T. Daud, D. A. Kerns, T. X. Brown, and A. P. Thakoor, \Competitive neuralarchitecture for hardware solution to the assignment problem," Neural Networks 4(1989): 431-442.[7] Furst M., J.B.Saxe, M. Sipser \Parity, circuits, and the polynomial-time hierarchy," Proc. 22ndIEEE Symp. Foundations of Comp. Sci., 1981: 260-270.[8] Giles, C. L., C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun and Y.C. Lee, \Learning and ExtractingFinite State Automata with Second-Order Recurrent Neural Networks," it Neural Computation,4, 1992: 393-405.[9] Hong J.W., \On Connectionist Models," Comm. on Pure and Applied Mathematics 41(1988):1039-1050.[10] Karp R.M., R. Lipton, \Turing Machines that take advice," Enseign. Math. 28(1982): 191-209.[11] Kilian, J. and H.T. Siegelmann, \On the power of sigmoid neural networks," Proc. Sixth ACMWorkshop on Computational Learning Theory, Santa Cruz, July, 1993.[12] MacLennan B.J., \Continuous symbol systems: The logic of connectionism," in D.S. Levineand M. Aparicio IV (eds.), Neural Networks for Knowledge Representation and Inference,Lawrence Erlbaum, Hillsdale, NJ, 1992.[13] Maass W., G. Schnitger, and E.D. Sontag, \On the computational power of sigmoid versusBoolean threshold circuits," Proc. 32nd IEEE Symp. Foundations of Comp. Sci., 1991: 767-776.[14] Muller D.E., \Complexity in electronic switching circuits," IRE Trans. Electronic Comp.5(1956): 15-19.[15] Muroga, S., Threshold Logic and its Applications, Wiley, New York, 1971.[16] Parberry I., \Knowledge, understanding, and computational complexity," Technical ReportCRPDC-92-2, Center for Research in Parallel and Distributed Computing, Department of Com-puter Sciences, University of North Texas, Feb. 1992.[17] Parberry, I., The Computational and Learning Complexity of Neural Networks, draft.[18] Penrose R., The Emperor's New Mind, Oxford University Press, Oxford, 1989.[19] Savage J.E. The Complexity of Computing, New Tork, Wiley, 1976.[20] Siegelmann H.T., E.D. Sontag, \On the computational power of neural nets," in Proc. FifthACM Workshop on Computational Learning Theory , Pittsburgh, July 1992: 440-449.[21] Vergis A., K. Steiglitz, B. Dickinson, \The complexity of analog computation," in Math. andComputers in Simulation 28(1986): 91-113.[22] Wolpert D., \A computationally universal �eld computer which is purely linear," Los AlamosNational Laboratory report LA-UR-91-2937.[23] Yasuhara, A., Recursive Function Theory and Logic, Academic Press, New York, 1971.27

