
	 1	

Supplement	to	DARPA	Quarterly	Report	Q2	

	

Task	 1.2	 Biologically	 motivated	 spike-timing	 dependent	 plasticity	 (STDP)	
learning		

	

1.	Spiking	Neural	Network	Model	and	STDP	Rules	

We	 first	 re-implemented	 the	 spiking	 neural	 network	 (SNN)	 model	 for	 MNIST	 handwritten	 digit	
classification	 from	 [1].	 We	 tried	 models	 of	 various	 sizes	 (100	 and	 400	 neurons),	 and	 found	 that	
classification	results	were	similar	to	those	reported	in	[1].	To	learn	the	synaptic	weights	of	the	SNN,	we	
implemented	 four	 different	 spike	 time-dependent	 (STDP)	 rules.	 All	 were	 implemented	 in	 an	 “online”	
fashion,	where	we	only	keep	track	of	a	“trace”,	or	a	memory,	of	the	most	recent	spike	(temporal	nearest	
neighbor),	 which	 has	 arrived	 at	 a	 post-	 and	 presynaptic	 neurons.	 The	 first	 was	 online	 STDP	 without	
presynaptic	weight	modification,	the	second	added	an	exponential	dependence	on	the	previous	synaptic	
weight,	 the	 third	 included	a	 rule	 for	decreasing	 synaptic	weight	on	presynaptic	 spikes,	and	 the	 fourth	
was	a	combination	of	the	second	and	third	rules	together.	

The	SNN	model	from	[1]	is	illustrated	below	(Figure	1).	The	training	of	the	model	is	as	follows:	At	first,	all	
neuron	 activations	 in	 the	 excitatory	 layer	 are	 set	 below	 their	 resting	 potentials.	 For	 350ms	 (or	 700	
computation	 steps,	with	 a	 simulation	 time	 step	of	 0.5ms),	 a	 single	 training	 image	 is	 presented	 to	 the	
network.	For	the	MNIST	digit	dataset,	each	data	sample	is	a	28	x	28	grayscale	pixelated	image	of	a	hand-
drawn	digit	from	0	to	9.	The	grayscale	value	of	each	pixel	of	the	image	determines	the	mean	firing	rate	
of	a	Poisson	spike	 train	 it	 corresponds	 to.	We	 include	a	 synapse	 from	all	 input	Poisson	spike	 trains	 to	
each	neuron	in	the	excitatory	layer.	There	are	then	784	x	n	synapses	from	input	to	the	excitatory	layer,	if	
there	are	n	neurons	 in	 the	excitatory	 layer.	The	goal	of	 the	 training	procedure	 is	 to	 learn	a	 setting	of	
these	weights	that	will	cause	distinct	excitatory	neurons	to	fire	for	distinct	digit	classes.	Those	neurons	
which	fire	most	for	a	certain	digit	in	the	training	phase	we	label	with	that	digit’s	value.	In	the	test	phase,	
we	classify	new	data	examples	by	taking	the	majority	vote	of	the	labels	of	those	neurons	,which	fire	for	
a	test	data	sample.	

	

2.	Spiking	Neural	Network	for	MNIST	Handwritten	Digit	Classification	

2.1	-	Description	of	ETH	SNN	Model	

The	excitatory	neurons	are	connected	in	a	one-to-one	fashion	with	an	equally-sized	layer	of	inhibitory	
neurons,	each	of	which	laterally	inhibit	all	excitatory	neurons	but	the	one	which	it	received	its	synaptic	
connection	from.	The	lateral	inhibition	mechanism	typically	causes	a	single	neuron	to	fire	strongly	for	a	
given	data	sample	in	a	“winner	take	all”	fashion,	allowing	the	neuron	which	fires	to	adjust	its	weights	to	
remember	data	samples	of	a	similar	shape	and	pixel	intensity.	



	 2	

	

Figure	1:	ETH	Spiking	Neural	Network	Model	for	MNIST	Digit	Recognition	

	

2.2	-	Online	STDP	Rules	

To	implement	STDP	in	an	online	fashion,	a	pre-	and	postsynaptic	trace	is	kept	as	a	brief	record	of	spike	

activity.	On	a	spike	 from	a	presynaptic	neuron,	 the	presynaptic	 trace,	 ,	 is	 set	 to	1,	and	on	a	spike	

from	a	postsynaptic	neuron,	the	postsynaptic	trace,	 ,	is	set	to	1.	Both	exponentially	decay	towards	
zero	otherwise,	as	given	by:	

,	 ,	

where	 ,	 are	time	constants	given	as	1ms	and	2ms,	respectively.	

The	online	STDP	rule	without	presynaptic	weight	modification	is	given	by	the	following	equation,	where	
denotes	the	relative	weight	change	on	the	affected	synapse,	 denotes	a	learning	rate	(typically	set	

to	0.01),	 indicates	 the	maximum	value	a	weight	can	attain,	and	 denotes	a	weight	dependence	
term,	which	is	set	to	1	for	best	results:	

	

	

This	learning	rule	is	illustrated	below	(Figure	2).	



	 3	

	

Figure	2:	STDP	without	presynaptic	modification	

The	 online	 STDP	 rule	 without	 presynaptic	 weight	 modification	 and	 exponential	 weight	
dependence	is	given	by	

,	

where	 determines	the	strength	of	the	weight	dependence,	and	is	typically	chosen	to	be	1.	The	online	
STDP	rule	with	presynaptic	weight	modification	is	given	by	the	following	two	rules:	

,	

where	 and	 are	 post-	 and	 presynaptic	 learning	 rates	 typically	 set	 to	 0.01	 and	 0.0001,	
respectively.	Finally,	the	online	STDP	rule	which	is	a	combination	of	the	second	and	third	STDP	rules	is	
given	by	the	following	two	rules:	

,	

After	each	training	step,	the	synaptic	weights	of	each	excitatory	neuron	are	normalized	so	that	they	do	
not	grow	so	large	as	to	fire	indiscriminately	for	every	possible	input	sample.	Furthermore,	the	network	is	
run	for	150ms	(300	computation	steps	with	0.5ms	simulation	time	step)	after	each	input	sample	to	allow	
the	activations	of	the	excitatory	neurons	to	decay	back	to	their	resting	potential.	We	also	implement	an	
adaptive	membrane	threshold	potential	for	each	excitatory	neuron,	which	stipulates	that	the	neuron’s	

threshold	is	not	only	determined	by	a	fixed	threshold	voltage	 ,	but	by	the	sum	 ,	where	
increases	 by	 a	 small	 fixed	 constant	 each	 time	 the	 -th	 neuron	 fires,	 and	 is	 decaying	 exponentially	
otherwise.	

On	the	next	page,	we	show	a	plot	of	the	activations	of	a	spiking	neural	network	as	above,	with	only	4	
excitatory	and	inhibitory	neurons,	and	a	plot	of	the	change	in	the	weights	of	the	synapses	from	the	input	
to	the	“0”-indexed	excitatory	neuron,	both	over	a	single	 input	presentation	and	rest	period	(500ms	or	
1000	time	steps	are	0.5ms	simulation	time	step).	As	you	may	observe,	during	this	iteration,	only	the	“0”-



	 4	

th	neuron	ever	 reaches	 its	 threshold	and	spikes,	 laterally	 inhibiting	all	other	excitatory	neurons	 in	 the	
process.	

Notice	that	the	increase	in	synaptic	weight	corresponds	in	time	to	the	firing	of	the	excitatory	neuron	(in	
this	 case,	 the	 postsynpatic	 neuron),	 and	 are	 larger	 when	 the	 difference	 between	 presynaptic	 and	
postsynaptic	spikes	is	smaller.	Those	synaptic	weights,	which	do	not	change	correspond	to	presynaptic	
neurons	that	haven’t	fired;	i.e.,	their	mean	firing	rate	is	either	zero	or	close	enough	to	zero	so	that	they	
hadn’t	 emitted	 a	 spike	 during	 the	 training	 iteration.	 Thanks	 to	 the	 adaptive	 membrane	 potential	
mechanism,	one	can	also	observe	the	increase	in	the	threshold	parameter	each	time	the	“0”-th	neuron	
fires	 a	 spike.	 After	 the	 350ms	 training	 portion	 (or	 700	 timesteps),	 the	 150ms	 resting	 portion	 (or	 300	
timesteps)	allows	the	activations	of	each	of	the	excitatory	neurons	to	settle	to	their	resting	potential.	

	

Figure	3:	Neuron	activations	(left)	and	corresponding	weight	changes	(right)	

We	proposed	the	training	techniques	of	 input	smoothing,	 in	which	the	mean	firing	rate	of	each	of	the	
input	Poisson	spike	trains	was	averaged	with	each	of	its	neighbors’	to	the	immediate	left,	right,	top,	and	
bottom,	 and	 weight	 smoothing,	 in	 which,	 during	 the	 training	 phase,	 after	 each	 input	 example	 was	
presented	to	the	network	and	network	weights	had	been	modified,	we	averaged	the	weights	from	the	
input	to	a	single	neuron	in	the	excitatory	layer	using	the	neighborhood	smoothing	described	above.	

To	compare	the	 four	STDP	rules	and	the	smoothing	operations,	we	trained	a	400	excitatory-inhibitory	
neuron	 SNN	 on	 the	 MNIST	 handwritten	 digit	 training	 dataset	 (60K	 examples),	 and	 tested	 it	 on	 the	
corresponding	 test	 dataset	 (10K	examples),	 for	 all	 possible	 combinations	of	 STDP	 rule	 and	 smoothing	
operation.	The	results	are	below	(Table	1).	

Table	1:	Classification	results:	ETH	model	and	modifications	

	
	

Standard	Online	
STDP	

Exponential	
Weight	

Dependence	

With	Presynaptic	
Weight	

Modification	

Both	

Diehl	&	Cook	
Algorithm	

89.35	 89.28	 90.54	 88.51	

With	Input	
Smoothing	

88.42	 88.75	 90.23	 89.23	

With	Weight	
Smoothing	

88.90	 89.85	 90.02	 89.54	



	 5	

	

3.	Novel	Approaches:	Convolutional	Spiking	Neural	Networks	

3.1	-	Proposed	Network	Architecture	

To	 extend	 the	 spiking	 neural	 network	 (SNN)	 model	 from	 [1],	 we	 first	 implemented	 a	 single	 layer	 of	
convolution	“features”	or	“patches”.	This	layer	is	adopted	from	the	widely-adopted	convolutional	neural	
network	originating	from	deep	learning	research	[2].	To	accomplish	this,	we	use	convolution	windows	of	
size	 ,	with	a	stride	of	size	 .	 In	our	case,	a	convolution	window	corresponds	to	a	function	which	
maps	a	section	of	input	to	a	single	excitatory	neuron.	A	single	convolution	feature	maps	regularly	spaced	
subsections	of	the	input	to	a	“patch”	of	excitatory	neurons,	all	via	shared	synaptic	weights	(a	single	set	
of	weights	 is	 learned	for	a	single	convolution	feature).	We	use	multiple	of	 these	convolution	features,	
mapping	to	distinct	excitatory	neuron	patches,	in	order	to	learn	multiple	different	features	of	the	input	
data.	Our	goal	 is	 to	 learn	a	setting	of	 these	weights	such	that	we	may	separate	the	 input	data	 (in	 the	
current	study,	the	MNIST	handwritten	digit	dataset)	into	salient	and	frequent	categories	of	features,	as	
evidenced	by	the	firing	pattern	of	the	excitatory	neurons,	so	that	we	might	later	compose	them	in	order	
to	classify	the	digits	with	their	respective	categorical	labels.	

As	with	the	SNN	from	[1],	the	weights	from	input	(convolution	windows)	to	excitatory	layer	(subdivided	
into	 convolution	 patches)	 are	 learned	 in	 an	 unsupervised	 manner	 using	 spike-timing	 dependent	
plasticity	 (STDP)	 in	 the	 training	phase.	 In	 the	 test	phase,	 these	weights	are	held	constant,	and	we	use	
them	 to	 predict	 the	 labels	 of	 a	 held-out	 test	 dataset.	 The	 labels	 of	 new	data	 are	 determined	 first	 by	
assigning	labels	to	the	excitatory	neurons	based	on	their	spiking	activity	on	training	data,	and	then	using	
these	labels	in	a	majority	“vote”	for	the	classification	of	new	data	samples.	

The	number	of	excitatory	neurons	per	convolutional	patch	can	be	determined	via	the	constants	 and	
,	and	is	given	by	

,	

where	 is	the	dimensionality	of	the	input,	assuming	 is	a	square	number.	The	number	of	convolution	
features	is	the	network	designer’s	choice,	which	we	denote	by	 ,	but	with	more	features	come	greater	
representation	 capacity	 and	 computational	 cost.	As	 a	 first	 pass,	we	 chose	 to	use	 exactly	 inhibitory	
neurons,	each	of	which	correspond	to	a	single	convolution	patch.	Each	neuron	 in	a	convolution	patch	
connects	to	this	inhibitory	neuron,	which	is	connected	to	all	other	neurons	of	all	other	patches	but	the	
one	 it	 receives	 its	 connections	 from.	 This	 has	 the	 effect	 of	 allowing	 a	 particular	 convolution	 patch	 to	
spike	while	damping	out	the	activity	of	all	others,	creating	competition	to	represent	certain	features	of	
the	input	data.	Below,	we	have	provided	a	diagram	of	the	network	architecture	(Figure	4).	



	 6	

	

Figure	4:	Convolutional	Spiking	Neural	Network	(Single	Convolutional	Layer)	

	

3.2	-	Experiments	

We	experiment	with	different	choices	of	 and	 and	observe	how	the	classification	performance	of	the	
network	degrades	from	that	of	the	SNN	model	from	[1].	We	use	the	same	training	and	test	procedure	
from	[1],	but	use	only	a	single	iteration	through	the	entire	training	dataset	(60,000	examples),	because	
training	the	network	is	rather	slow.	We	chose	to	set	 =	27	and	 =	1	for	our	first	experiments,	causing	
the	 convolution	 windows	 to	 cover	 almost	 the	 entire	 input	 space,	 and	 we	 therefore	 expect	 that	 the	
classification	 performance	 of	 the	 network	will	 not	 degrade	 too	much	 from	 the	model	 from	 [1]	 given	
sufficient	 .	We	 then	gradually	decreased	 ,	 keeping	 and	 constant,	expecting	 to	 see	a	gradual	
degradation	 in	 classification	 performance.	 The	 results	 are	 below	 in	 Figure	 5;	 for	 reference,	 the	 test	
classification	performance	of	the	SNN	model	from	[1]	with	100	excitatory	neurons	is	also	plotted.	

	

Figure	5:	Classification	accuracy	by	convolution	size,	number	of	convolution	patches	



	 7	

	

3.3	-	Weight	Smoothing	

We	experimented	with	 a	weight	 smoothing	 technique,	which	 can	be	described	 as	 follows:	After	 each	
training	sample	has	been	run	through	the	network	(for	the	500ms	or	1,000	time	steps	at	0.5ms	each),	
for	each	convolution	patch,	we	take	a	weighted	sum	of	the	weights	of	the	neuron	which	spiked	the	most	
during	the	training	iteration	and	its	neighbors	in	a	horizontal	/	vertical	lattice	in	the	convolution	patch,	
and	 copy	 this	 across	 all	 neurons	 in	 the	 same	 patch.	 For	 example,	 if	 the	 -th	 neuron	 is	 the	 “winner”	
(having	the	most	spikes	within	its	patch),	we	compute	

,	

where	 denotes	the	set	of	weights	connected	a	convolution	window	(a	portion	of	the	input)	to	the	
-th	neuron	in	the	convolution	patch,	and	 	is	the	set	of	indices	of	neighboring	neurons	of	 -

th	neuron	in	the	lattice,	in	the	same	convolution	patch.	See	Figure	6	for	an	illustration	of	this	procedure.	
This	 approach	 does	 not	 appear	 to	 improve	 the	 algorithm’s	 performance,	 indeed,	 it	 often	 harms	 the	
classification	performance	of	the	original	algorithm,	so	we	do	not	report	performance	results	from	the	
networks	 we	 tested.	
	

	

Figure	6:	Weight	smoothing	after	each	training	example	
	

3.4	-	Convolutional	Spiking	Neural	Network	With	Between-Patch	Connectivity	

We	describe	a	modification	to	our	convolutional	spiking	neural	network	(SNN)	model	which	 includes	a	
lattice	connectivity	between	pairs	of	neighboring	convolutional	patches.	The	weights	connectivity	pairs	
of	 convolutional	patches	are	 learned	via	 the	 same	STDP	 rule	which	 is	used	 to	 learn	 the	weights	 from	
input	to	the	patches.	We	also	describe	a	new	procedure	for	inhibiting	excitatory	neurons	and	assigning	
labels	to	new	data	which	allows	for	the	network	to	quickly	learn	features	of	input	data.	

Added	Connectivity	



	 8	

Suppose	 there	 are	 convolutional	 patches	 (or	 “features”)	 of	 convolution	neurons,	 and	 let	 be	 the	

patch	 indexed	by	 the	 integer	 .	 If	 is	even,	 then	we	connect	 to	 ;	otherwise,	we	connect	 it	 to	

.	 The	 connectivity	 pattern	 is	 as	 follows:	 for	 every	 neuron	 in	 a	 patch,	 we	 connect	 it	 to	 all	
neurons	 in	the	neighboring	patch,	as	long	as	the	indices	remain	within	
the	 patch.	 This	 gives	 a	 horizontal	 and	 vertical	 lattice	 connectivity	 pattern	 between	 neighboring	

convolution	 patches.	Note	 that	 there	 are	 only	 such	 lattice	 connections;	 and	 are	 connected,	

and	 are	 connected,	 up	 to	 and	 .	 The	 connectivity	 pattern	 is	 illustrated,	 for	 a	 single	
neuron	 in	 a	 single	 pair	 of	 patches,	 in	 Figure	 7.	 The	 rest	 of	 the	 synapses	 are	 omitted	 for	 ease	 of	
visualization.	

	

	
Figure	7:	Connectivity	between	convolutional	patches	(“i”	is	even)	

	

This	is	a	first	attempt	at	adding	connectivity	between	patches.	We	may	experiment	with	different	lattice	
neighborhoods	 (to	 encompass	 more	 of	 the	 nearby	 input	 space),	 and	 with	 a	 different	 overarching	
connectivity	 pattern;	 e.g.,	 instead	 of	 connectivity	 certain	 neighboring	 patches,	 we	 could	 connect	 all	
neighboring	patches,	or	connect	each	patch	to	all	others.	

Inhibition	

Since	we	wish	to	learn	weights	between	neighboring	neurons	in	neighboring	patches,	it	no	longer	makes	
sense	for	a	single	inhibitory	neuron	to	be	fired	by	all	neurons	in	a	single	patch,	which	would	then	inhibit	
all	 other	 patches	 totally.	 Instead,	 to	 allow	 for	 the	 learning	of	 correlations	between	 the	patches,	 each	
excitatory	 neuron	 projects	 to	 its	 own	 inhibitory	 neuron.	 This	 inhibitory	 neuron,	 when	 it	 reaches	 its	
threshold	and	spikes,	will	inhibit	the	excitatory	neuron	in	all	other	excitatory	patches	which	reside	in	the	
same	spatial	location	as	the	neuron	from	which	it	receives	its	synapse.	This	inhibition	scheme	is	depicted	
in	Figure	8.	

	



	 9	

	

Figure	8:	Convolutional	SNN	with	between-patch	connectivity	
	

Labeling	New	Data	

For	this	architecture	modification,	we	implemented	a	different	labeling	scheme	for	the	classification	of	
new	input	data.	Recall	that,	for	the	original	SNN	model,	we	label	a	new	input	datum	with	the	label	which	
corresponds	to	the	high	number	of	spikes	from	the	excitatory	layer.	The	neurons,	in	turn,	are	assigned	
digit	labels	based	on	the	digit	class	for	which	they	spike	the	most.	Since	each	convolution	patch	learns	a	
single	 “feature”	 of	 the	 input	 (the	weights	 on	 the	 connections	 from	 input	 to	 all	 neurons	 in	 the	 same	
patch	are	identical),	we	choose	to	include	only	the	counts	of	spikes	on	a	new	input	datum	from	only	the	
neuron	in	each	patch	which	spiked	the	most	while	it	was	presented	to	the	network.	The	justification	for	
this	was	that	many	of	the	neurons	in	the	network	would	spike	infrequently	on	any	given	input,	but	only	
a	 few	 neurons	would	 spike	 consistently.	 Removing	 the	 counts	 from	 the	 infrequently	 spiking	 neurons	
allows	us	to	remove	the	“junk”	counts	from	the	labeling	scheme.	

3.5	-	Preliminary	Results	

We	 are	 currently	 running	 a	 number	 of	 simulations	 of	 the	 above	 described	 network,	 for	 a	 variety	 of	
settings	of	convolution	size,	stride	size,	and	number	of	convolution	patches.	We	include	in	Figure	9,	10,	
and	 11	 plots	 of	 the	 accuracy	 of	 the	 network	 with	 the	 added	 pairwise	 lattice	 connectivity,	 evaluated	
every	100	training	examples.	We	set	the	 labels	of	 the	neurons	using	the	spikes	resulting	 from	the	 last	
100	examples,	and	use	these	labels	to	classify	the	next	100	examples.	Since	we	are	evaluating	on	so	few	
data	 at	 each	 iteration,	 the	 accuracy	 curve	 exhibits	 high	 variance.	 Each	 of	 these	 networks	 have	 50	
convolution	features.	

	



	 10	

		

Figure	9:	27x27	convolutions,	stride	1,	50	features	

(62.3%	average	accuracy	vs.	61.4%	without	lattice	connections)	

	

Figure	10:	18x18	convolutions,	stride	2,	50	features		

(50.3%	average	accuracy	vs.	43.25%	without	lattice	connections)	

	

Figure	11:	10x10	convolutions,	stride	6,	50	features		

(40.1%	average	accuracy	vs.	21.08%	without	lattice	connections)	



	 11	

	

4.	Discussion	on	SNN	Computational	Complexity	

We	describe	the	computational	requirements	of	our	spiking	neural	network	models	and	compare	 it	to	
that	 required	 by	 a	 convolutional	 neural	 network	 in	 the	 deep	 learning	 literature.	 Our	 spiking	 neural	
network	models	are	programmed	in	Python,	using	the	BRIAN	neural	network	simulator	[3].	

4.1	-	Spiking	Neural	Network	Computation	-	MNIST	

We	consider	a	 single	 training	 “iteration”	of	 the	 spiking	neural	network	model	 from	 [2]	 (see	Figure	1).	
Recall	 that,	 for	 each	 input	 example,	we	 “present”	 the	 input	 to	 the	 network	 for	 350ms	 and	 allow	 the	
network	to	relax	back	to	equilibrium	for	150ms,	for	a	total	of	500ms	per	iteration	(or	1,000	integration	
steps	 with	 a	 0.5ms	 time	 step).	 The	 input	 is	 encoded	 as	 Poisson	 spike	 trains	 [3],	 as	 described	 the	
document	“Spiking	Neural	Network	Model	and	STDP	Rules”,	and	each	are	connected	to	every	neuron	in	
an	 arbitrarily-sized	 layer	 of	 excitatory	 neurons.	 These	Poisson	 spike	 trains	 emit	 a	 spike	with	 a	 certain	
probability	at	each	time	step,	which	increases	with	the	time	elapsed	since	it	last	emitted	a	spike.	So,	for	
the	MNIST	digit	dataset,	we	consider	28	*	28	=	784	independent	Poisson	processes,	each	of	which	must	
be	solved	for	in	each	time	step	of	each	training	iteration.	

The	 neurons	 in	 the	 excitatory	 and	 inhibitory	 layers	 of	 the	 network	 are	 modeled	 with	 leaky	
integrate-and-fire	neurons,	whose	membrane	potentials	are	described	by	

,	

Where	 is	 the	 resting	 potential	 of	 the	 neuron,	 and	 are	 the	 equilibrium	 potentials	 of	

excitatory	and	inhibitory	neurons,	respectively,	 is	a	biologically	plausible	time	constant,	and	 and	
are	 the	conductances	of	excitatory	and	 inhibitory	synapses,	 respectively.	The	excitatory	and	 inhibitory	
conductances	update	rule	is	given	by	

,	 ,	

Where	 ,	 are	biologically	plausible	time	constants.	For	each	excitatory	and	 inhibitory	neuron,	we	

solve	 the	 above	 equations	 at	 each	 time	 step.	 Assuming	 there	 are	 excitatory	 neurons,	 and	

inhibitory	neurons,	we	must	solve	 equations	at	each	time	step,	accounting	for	all	 input	
Poisson	 spike	 trains	 spikes	 and	 excitatory,	 inhibitory	 neurons’	 membrane	 potentials	 and	 synapse	
conductance.	

At	the	beginning	of	the	training	phase,	the	weights	on	the	synapses	from	input	to	the	 layer	of	
excitatory	neurons	are	chosen	uniformly	at	random	in	the	range	[0.01,	0.3],	and	throughout	the	training	
phase,	these	are	updated	using	our	chosen	STDP	rule.	For	each	input	Poisson	spike	train	and	excitatory	
neuron,	a	“trace”	tells	us	how	soon	in	the	past	this	neuron	has	fired.	It’s	general	form	is	given	by	

,	



	 12	

where	 is	 the	 trace,	which	 is	 set	 to	1	when	the	neuron	 fires,	and	updates	according	 to	 the	equation	

above	otherwise,	and	 is	a	time	constant,	which	may	be	chosen	to	be	different	for	presynaptic	(input	
Poisson	spike	trains)	or	postsynaptic	(excitatory	layer)	neurons.	When	an	input	spike	train	emits	a	spike,	
we	update	the	synapse	conductance	of	those	neurons	it	is	connected	to	(all	excitatory	neurons)	by	the	
weight	along	its	connection	to	it.	When	an	excitatory	neuron	emits	a	spike,	we	apply	the	STDP	update	
rule	 to	 the	 connections	 from	 the	 input	 layer	 to	 itself,	 and	 update	 the	 synapse	 conductance	 of	 the	
inhibitory	 neuron	 to	 which	 it	 connects.	 Since	 there	 are	 approximately	 15	 spikes	 emitted	 from	 the	
excitatory	layer	per	training	iteration,	there	are	approximately	 weight	updates	per	iteration.	

All	together,	over	one	training	iteration	(in	which	a	single	training	example	is	presented	to	the	network),	
there	is	on	the	order	of	 	operations	to	compute	(we	only	
calculate	weight	updates	during	the	active	 input	period;	 the	network	 is	at	“rest”	 for	 the	 last	300	time	
steps).	For	example,	with	a	network	of	400	excitatory	and	inhibitory	neurons	(which	gives	approximately	
90%	classification	accuracy,	depending	on	 the	STDP	 rule	utilized),	 this	amounts	 to	approximately	10.6	
million	operations	per	training	example.	

Since	the	STDP	learning	rule	is	only	applied	locally	(i.e.,	between	any	two	given	neurons),	we	don’t	have	
to	wait	 to	 propagate	 signals	 through	 the	 network	 before	 computing	 a	 backward	 pass	 in	 order,	 as	 in	
gradient-based	 deep	 learning	methods.	 Additionally,	 very	 little	memory	 is	 required	 to	 simulate	 these	
networks.	 We	 keep	 track	 of	 matrices	 of	 weights,	 membrane	 potentials,	 synapse	 conductances,	 and	
synaptic	 traces	 only,	 and	 even	 with	 large	 networks,	 the	 memory	 overhead	 for	 the	 network	 is	
manageable	on	laptop	machines.	

4.2	-	Convolutional	Neural	Network	Computation	–	MNIST	

We	estimate	the	computational	burden	imposed	by	a	simple	convolutional	network	used	to	classify	the	
MNIST	 handwritten	 digit	 dataset.	 The	 described	 network	 achieves	 approximately	 99%	 classification	
accuracy	on	the	test	dataset	after	training	on	some	500,000	images	(we	subsample	50	images	from	the	
training	dataset	10,000	times).	All	convolutional	 layers	of	the	network	utilize	zero-padding	of	size	2	on	
all	edges	of	the	images.	The	network	consists	of	a	convolutional	layer,	with	patch	size	5x5	and	stride	1,	
with	32	convolution	features	(giving	28x28x32	dimensionality),	then	a	max-pooling	layer	with	patch	size	
2x2	and	stride	2	(giving	14x14x32	dimensionality),	another	convolutional	layer,	again	with	patch	size	5x5	
and	stride	1,	with	64	convolution	features	(giving	14x14x64	dimensionality)	another	max-pooling	layer,	
again	 with	 patch	 size	 2x2	 and	 stride	 2	 (giving	 7x7x64	 dimensionality),	 a	 fully-connected	 layer	 of	 size	
1024,	and	a	logistic	regression	classifier	of	dimensionality	10,	from	which	we	extract	the	digit	label	using	
the	softmax	function.	

For	a	single	training	example,	the	first	convolutional	 layer	of	this	network	requires	the	computation	of	
28*28*32	 ReLU()	 (rectified	 linear	 unit)	 functions,	 each	 on	 the	 sum	 of	 5*5	 entries	 in	 the	 input	 layer	
multiplied	by	their	connection	weights,	for	a	total	of	on	the	order	of	627,200	operations.	The	first	max-
pooling	 layer	 simply	 requires	 computing	 the	max	 operation	 over	 some	 14*14*32	 2x2	matrices,	 for	 a	
total	 of	 6,272	operations.	 Similarly,	 the	 second	 convolutional	 layer	 and	 the	 second	max-pooling	 layer	
require	some	313,600	and	3,136	operations,	respectively.	The	fully-connected	layer	requires	computing	
1,024	ReLU	 functions,	 each	on	 the	 sum	of	products	of	 the	entries	 in	 the	previous	 layer	by	 their	 edge	
weights,	resulting	in	on	the	order	of	 operations.	Finally,	the	logistic	regression	
requires	 another	1024*10	operations,	 and	 then	 simply	 takes	 the	argmax()	 function	of	 the	output	 10-



	 13	

dimensional	 vector.	 Therefore,	 the	 forward	 pass	 of	 the	 network	 takes	 approximately	 operations.	 The	
backward	pass,	on	the	other	hand,	requiring	computing	partial	derivatives	for	each	parameter	in	each	of	
these	functions,	but	its	complexity	is	the	same	as	the	complexity	of	the	forward	pass.	To	underestimate,	
we	 say	 that	 the	 backward	 pass	 requires,	 again,	 4,171,712	 operations,	 and	 so	 we	 estimate	 that	 this	
network	requires	approximately	8.3	million	operations	per	training	example.	

4.3	-	Classification	Results	

We	 include	 a	 plot	 of	 the	 performance	 of	 the	 spiking	 neural	 network	 model	 from	 [1]	 on	 the	 MNIST	
handwritten	digit	 test	dataset	 in	Figure	2.	This	plot	gives	 the	classification	accuracy	of	 the	model	as	a	
function	of	the	number	of	excitatory	and	inhibitory	neurons	in	the	network.	Each	network	was	trained	
using	 a	 single	 pass	 through	 the	 entire	 60,000	 digit	 dataset.	 We	 have	 also	 include	 the	 classification	
accuracy	of	the	above	described	convolutional	neural	network,	also	on	the	test	dataset.	We	trained	and	
tested	the	SNN	model	using	excitatory,	inhibitory	layer	sizes	of	25,	50,	100,	200,	400,	800,	1600,	3200,	
6400.	The	classification	accuracies	for	these	particular	runs	increase	monotonically,	as	can	be	seen	in	the	
figure.	

	

Figure	12:	Classification	accuracy	of	ETH	SNN	model	by	network	size	

	

4.4	-	Possible	Improvements	-	Spiking	Neural	Network	
One	simple	way	to	reduce	the	time	complexity	of	the	spiking	neural	network	model	from	[1]	is	to	reduce	
the	number	of	time	steps	used	per	iteration	of	the	training	and	test	phases.	Currently,	we	“present”	the	
network	with	an	input	for	350ms	(700	time	steps	at	a	0.5ms	time	increment),	and	then	“turn	off”	the	
input	for	150ms	(300	time	steps),	allowing	the	membrane	potentials	and	synapse	conductances	of	the	
excitatory	and	inhibitory	neurons	to	decay	back	towards	their	resting	values.	Reducing	the	number	of	
time	steps	would	require	adjusting	the	parameter	of	the	equations	which	govern	the	neurons	in	the	
network	in	order	for	the	neurons	to	respond	to	the	input	data	more	quickly.	



	 14	

A	current	severe	limitation	of	the	BRIAN	neural	network	simulation	software	(using	version	1.4.3)	is	that	
it	works	most	 efficiently	 as	 a	 single-core	 process.	 Upgrading	 to	 version	 2.2.x	 should	 allow	 us	 to	 take	
advantage	 of	multi-core	 and	GPU	 processing	 in	 order	 to	 speed	 up	 our	 experiments,	 but	we	must	 be	
careful	to	replicate	the	code	correctly	and	consider	all	the	parallel	processing	options	available.	

	

5.	References	

[1]	Diehl,	P.	&	Cook,	M.	(2015).	Unsupervised	learning	of	digit	recognition	using	spike-timing-dependent	
plasticity.	Frontiers	In	Computational	Neuroscience,	9.	doi:10.3389/fncom.2015.00099	

[2]	Krizhevsky,	 A.,	 Sutskever,	 I.,	&	Hinton,	G.	 (2012).	 ImageNet	 Classification	with	Deep	 Convolutional	
Neural	Networks.	Papers.nips.cc.	

[3]	 Goodman	 DF	 and	 Brette	 R	 (2009).	 The	 Brian	 simulator.	 Front	 Neurosci	
doi:10.3389/neuro.01.026.2009	

[4]	http://www.cns.nyu.edu/~david/handouts/poisson.pdf	

	
	

	
	

	


