DARPA Quarterly Report - Biologically inspired efficient learning
algorithms

Daniel Saunders Pegah Taheri Hananel Hazan

December 15, 2017

1 Introduction

It has been recently established that deep learning (DL) is the preferred approach to machine learning
problems in domains in which large amounts of data, computational power, and time are available [1].
However, in the presence of little data or time, this approach may fail. Motivated by these shortcomings,
and inspired by brain computation, we are developing unsupervised learning algorithms which learn robust
representations of data with few training examples, and whose training has the potential to be massively
parallelized to scale with the dimensionality of the input data and number of computational nodes. Building
on the spiking neural network (SNN) model introduced in [2], we make several architectural modifications
in hopes to improve the learning procedure and consequent test dataset error rate. Our model is tested on
the MNIST dataset [4], and we show how our modifications change error rates and modify the behavior of
the SNN network models.

Realizing that the brian spiking neural networks simulation is ill-equipped to handle large networks
needed to learn mappings from high-dimensional data, we are converting our SNN models to other program-
ming frameworks. We have successfully implemented a simple SNN in the PyTorch (http://pytorch.org/)
neural networks package, and are working towards TensorFlow (https://www.tensorflow.org/) and NEST
(http://www.nest-simulator.org/) implementations as well. We show some learned filters and demonstrate
the scaling capability of our SNNs in PyTorch.

All networks are trained on one pass through the MNIST training data (60K) examples.

2 Methods

Previously, we modified the inhibition mechanism used in [2] such that neurons, arranged in a 2D lattice,
are inhibited more if they are further away from a spiking neuron. As a result, with certain settings of
the inhibition constant ¢iypnib, the learned filter map smoothly varied between different digit classes (cipnib
small) or arranged themselves into tight, similar clusters (cinnip large). In both cases, filters were clustered
spatially, giving a useful visualization of the training data. An example (with cippp, = 0.5) is shown in
Figures 1a and 1b. Although visually appealing, we found that this scheme only reduced the accuracy from
our SNN baseline [2]. When ¢iyhib = ¢max = 17.5 (the inhibition level of [2]), the network achieved maximum
classification accuracy, developing individualized, rather than clustered, filters.

2.1 Growing the inhibition level over the training phase

We wanted to produce individualized filters as learned by the SNN presented in [2], yet retain the
clustering of filters achieved by our increasing inhibition modification. To that end, we implemented another
modification to the inhibition scheme, in which the inhibition constant ¢ grows on a linear schedule from
a small cpin, &~ 0.5 to a large cpmax & 17.5. The increasing inhibition is used as before; however, by the
end of the training, the inhibition is equivalent to that of [2]. In this setting, the filters self-organize into
smoothly-varying clusters, and then individualize as the inhibition level becomes large. We also considered
growing the inhibition level to cmax for some percentage of the training (pgrow) and holding it fixed for
the rest (1 — pgrow). Shown in Figures 2a and 2b are example filters and corresponding class assignments

CENNNELLLCCOO0O000UNNN
CENNNYCLLLLO000DATINNN
CENNLLLLLLOO00AINININ
INOVRYVYELLLLLDO00IIIIddIY

9
8
7
6
5
a4
3
2
1
0

G G Lo o 9 (0 () (D 00 B0 B B S S = = o 0 O O
St o L U9 (0 (0 () 0V M DG B0 B9 " "= = 08 O\ 0N O
LPEOGCOOMUIOIMNNNNYNS ™~ % % e
SRS EO N0 Uy kit o)t og og oo = =
165 66~ 6 & 1y Uy 1y o 1L U B) LY LY LY B0 = =
RN LLLODDOUVN V) =
NNV YLLLOOOWVNV V) ™= e

1
{
|
|
|
1
7
¥
g
¥
g
3
3
3
3
3
3
3
3
3

COO@WWWW I P P D D000 DD DWW
Or Or G G W W) 0 B0 30 D <8 ~0 ~D <D =D =B i W W
OO W W W) 0 60 60 80) D D B B e e

3
3
5
5
9
7
q
q
q
q
q
]
17
y
¢
q
q
o0
o
) 0

[N N N I T I I JO IO . T, [[N)
OO0V PPPRPDLOOODLDOOIDD

£
£
é
f
[}
/
/
/
/
pd
2
Z
2
5
5
5
5
B
P
2
fi

= o W WD o 00 6 B O = == e e o 0 0

a) 20x20 attice of

—

euron filters (b) Corresponding neuron class assignments

Figure 1: Inhibition increasing with distance - filter map and class assignments

007999999900002229777779979
C0719994490000002299777999
0079724499000000299977444Y
CO79927£55000000002072444¢6
ALLYP7225500050000001L666¢6C¢6
AL2X6F20553355300000L266¢6E¢6
1766425053%¢65000888222/7 57
176660003366 00005532332F855
111845¢333%8835533332¢705/ 16
IV 1248¢9722%855565%333¢2/117/
LV 1 19999772655550000311 11/ 15
ll1l4yY4y99970006500000c¢881 11
334uyyyg700bbec20008881 11
33364U4y0 9006666000088 81 11 14
333 U4YYbLbLLILLOLLLEBDESETL LTI
323349Q4LLGLLLLLELE66SS881 11 3
/112222006b6bL6L666EEEFN 99 |
/1 2222222252%88222/8811494
/1 /2222323228558 889022844444
/1222222230088 19998544444
/PP 5R22233300555§599988 444449
F88553333333555499999%999¢9
L5553233333388554999997977
L65500333338881177277777177
bb530003333382%817177222777727
(a) 25x25 lattice of neuron filters (b) Corresponding neuron class assignments

Figure 2: Growing inhibition over training phase - filter map and class assignments

learned by this scheme, with cpin = 0.1, cmax = 17.5, Pgrow = 0.25. The filters shown have clearly organized
into clusters based on similarity (with a few exceptions), yet have largely individualized so as to avoid a
redundant data representation. Test accuracy results for networks of size 400, 625, and 900 are shown in
Table 1.

2.2 Two-level inhibition

Going one step further, in order to reduce the computational requirement of re-computing inhibitory
synapse weights continually throughout network training, we implemented a simple two-level inhibition
scheme: For the first pgrow proportion of the training, the network is trained inhibition level cyiy; for the last
1 — pgrow Proportion, the network is trained with cmax. The inhibition level is not smoothly varied between
the two levels, but jumps suddenly at the pgrow mark. Example learned weights and corresponding class
assignments are shown in Figures 3a and 3b. Clearly, the filter clustering is somewhat more fragmented, but
subjectively, filter quality and diversity seem to have been maintained. Test accuracy results are given in

Table 1: Growing inhibition test accuracy

Ne, i | Pgrow | Lest accuracy

400 25% 91.48%
400 50% 91.32%
400 75% 89.63%
400 | 100% 89.83%
625 25% 91.71%
625 50% 91.41%
625 75% 91.51%

625 100% 90.63%
900 25% (seizure)
900 50% 93.06%
900 5% 92.95%
900 100% 92.53%

D000000C0DOOsrs55F 555787858
0500200000005 ¢6655558858¢8 8% 9
OBO0OC0O00OOOIOOIOESSSESSEEE
DO0O0O0O0OOVOOOLOOLOVYLSESTS5S558288 68 8
200000002000 00055555888¢ 38
ARAALA0000000000005555%888¢%
2222260L66002000085558888¢% 7
222326666 6000000555528///7
22323666664 0000055535¢8/77/7]
2222266666666 000%8%33T3/717/7/
223226666666088383335 /1 /111
22232266666 b6b8gss323% 111/ =
$A2222L66006060683388% 110111117
YYgyg223bblblblbbbgqgrgsl I -4
9492222 b6622994949 V111111
Yy 4y Fa22222233344949v1101111
F4f Y 2222288539499 9V 011111 "3
4449222353333 9949991 11177
7944653365533 99944999497¢7 2
A4 LLL5233553332371999999999
QUQqQY44Y4L33533353377799999997%
499444>5352333377777779777 1
394449333333331117777771177
9994904523533 377777777727 0
9994594333323 1177272727272
(a) 25x25 lattice of neuron filters (b) Corresponding neuron class assignments

Figure 3: Growing inhibition over training phase - filter map and class assignments

Table 2. All networks are comprised of 625 excitatory and inhibitory neurons.

2.3 Comparing baseline SNIN and two-level inhibition

To get a feeling for how our best system to date compares with the baseline SNN of [2], we present in
Figure 3 a comparison of their accuracies across several settings of excitatory, inhibitory neurons, including
the confidence, all, and distance voting schemes. All networks are trained for 60K iterations (a single pass
through the training data) and evaluated on all 10K examples from the test data. 10 independent experiments
with different initial configurations and input Poisson spike trains were run, and their results are averaged
and reported along with a single standard deviation. Note that some experiments failed to finish due to
numerical instability or out-of-memory errors. In this case, the number reported in parentheses next to the
accuracies in each cell corresponds to the number of successful experiments.

One may notice a downward trend in the results after n.,n; = 1,225; we believe that these networks
are underfitting to the data, and their test performance should improve given more passes over the training
data. Consult Figure 4 for example filter maps learned by the two-level inhibition scheme while training on
only one pass through the MNIST training data. Compare with Figure 2a.

Notice also the clear superiority of the confidence classification scheme to the all classification scheme,

Table 2: Two-level inhibition test accuracy (ne,n; = 625)

DPgrow Clow Chigh TeSt% Pgrow Clow Chigh TeSt% Pgrow Clow Chigh TeSt%
25% 0.1 15.0 | 92.21% 50% 0.1 15.0 | 90.91% 5% 0.1 15.0 | 89.88%
25% | 0.1 | 17.5 | 91.18% 50% | 0.1 | 17.5 | 91.37% || 75% | 0.1 | 17.5 | 91.05%
25% | 0.1 | 20.0 | 91.87% 50% | 0.1 | 20.0 | 90.9% 75% | 0.1 | 20.0 | 90.41%
25% | 1.0 | 15.0 | 90.84% 50% | 1.0 | 15.0 | 91.74% | 75% | 1.0 | 15.0 | 89.31%
25% | 1.0 | 17.5 | 91.44% 50% | 1.0 | 17.5 | 90.64% | 75% | 1.0 | 17.5 | 89.8%
25% | 1.0 | 20.0 | 92.71% 50% | 1.0 | 20.0 | 91.32% || 75% | 1.0 | 20.0 | 90.12%
25% | 2.5 | 15.0 | 91.26% 50% | 2.5 | 15.0 | 90.96% | 75% | 2.5 | 15.0 | 90.25%
25% | 2.5 | 17.5 | 91.04% 50% | 2.5 | 17.5 | 91.24% || 75% | 2.5 | 17.5 | 90.18%
25% | 2.5 | 20.0 | 92.78% || 50% | 2.5 | 20.0 | 91.55% || 75% | 2.5 | 20.0 | 90.44%

and the distance scheme to the confidence scheme. Whereas both the confidence and all schemes use the
activity of the network in order to classify new data, the distance scheme simply labels new inputs with the
label of the neuron whose filter most closely matches the input.

Table 3: baseline SNN vs. Two-Level Inhibition SNN (60K train / 10K test)

Ne, N; ETH Two-level (confidence) Two-level (all) Two-level (distance)
100 | 80.71% = 1.66% (10) | 82.94% =+ 1.47% (10) | 81.12% = 1.96% (10) | 85.11% + 0.74% (10)
225 | 85.25% £ 1.48% (10) | 88.49% =+ 0.48% (10) | 87.33% =+ 0.59% (10) | 89.11% =+ 0.37% (10)
400 | 88.74% + 0.38% (10) 91% =+ 0.56% (10) 90.56% =+ 0.67% (10) | 91.4% =+ 0.38% (10)
625 | 91.27% + 0.29% (10) | 92.14% + 0.50% (10) | 91.69% =+ 0.59% (10) | 92.37% =+ 0.29% (10)
900 | 92.63% £ 0.28% (10) | 92.36% =+ 0.63% (10) | 91.73% + 0.7% (10) | 92.77% =+ 0.26% (10)
1,225 | 93.20% + 0.65% (7) | 91.38% = 0.89% (10) | 90.93% = 0.88% (10) | 92.73% % 0.36% (10)
1,600 | 91.99% =+ 0.32% (4) | 89.59% = 0.98% (10) | 89.26% =+ 0.94% (10) | 92.45% =+ 0.33% (10)
2,025 (crashed) 88.33% + 0.63% (6) | 88.05% + 0.54% (6) | 91.96% =+ 0.33% (6)

2.4 Sparse input

Instead of connecting the input one-to-one with the layer of excitatory neurons, we experiment with
varying degrees of random sparse connectivity. We are interested in whether small amounts of sparsity
might make our network more robust to outliers in the MNIST data, therefore increasing the chance of good
test performance. We also hope that our system will still perform well in the event of missing features,
degrading in performance gracefully as the input data becomes less clear. We use sparsity levels of 10%,
25%, 50%, 75%, and 90%, and include the fully-connected case in order to compare. We using the growing
inhibition scheme as discussed in section 2.1. The results are shown in Table 4, in which the results from
10 independent training and test phases are averaged and reported along with their standard deviations.
Interestingly, small amounts of sparsity do not degrade network performance much at all, and even with
nearly all connections removed (90%), the network maintains 58% accuracy. Unfortunately, this did not
produce an improvement in network classification performance. See Figure 5 for a visualization of learned
filters in a network with 90% sparsity.

3 PyTorch Implementation

The brian (http://briansimulator.org/) spiking neural networks package used for our experiments was
not designed to simulate large-scale networks, nor was it meant to solve machine learning problems. Although

T rroTmuoN MM A=A TN O =~S~0OrTOI Lol ~rfomoe =000 —m kN~
CTITITROOENMNNNHOIOENVeONNVONNRNON =Y BN SNND=% 0D\
TANVQAOOO®WEENMUMMITIITIVOIRIMACOI™N=GNITTRNLTIINONY
VAVVOOCORRARNONVLITTCOTIRNHYARTTTMONANOJ0O~-QYONAILO—=tO
TV VVQA0ORDRENONVNTTNANMTEIOYTHITRAENNI DI o= 0O Y o=
RUAVVAXNDRFEANONTCETIACONITIANRTRRR == BONONNT DO g =
MHAVOXNMMOEWADRENNNY YNNI TVHEXNARNN === A DS NS T Y|
QOO0F0=9® AN YANNNSERAARNLL U I NOQO— === I N O m=2
QOQO0 RO NNNNANNNTFrANADNNAN SN RN rrmm=)OmMmEDI\NOO
D000 ®NWVRONYXANNNINENOVAVERNAO MmN ®0hm e d0nd N o
COO0Q=®uLRNMIVLVIVINRBQAVAMMNOHMIQONTEEN™N M ST DT RS
===~ NINDTOVIDVINYRAVVMMMAMOOO NN e e DX AN Tl BN MO
ON=rTUNLLATTOIIVVSRMAVN®NDODVOIY NN G @i\ f T30
Co =NV OWTERPTNAVVIYBHPAdMOOONITOALI-~rTOMRNY =<\ T
0w P d VhH O XN A NN NRLPINNYALYIVTTCT W% & o o —|
O S D RO ONON NS~ MM MR ORNONOVNMNO=P =SV T LTITIVANF e~ ~nQ O
VY Pr0wNSsS—=men® MY d BNV T T TAV M ~ENAOY
MND B0 emHalSS=~===00MNLNANRNNE =N dIONTVOA T NO M T
NSV MG =0~~QRFYmd U ENRNRTErLeNOeNNONO M Tmod
NNV W AQUN—=OMCONNONMNABNNNNCKEEN~—0MO—~=NT >IN Ly
P TOEIFTAVNRNINTNETOAVNNONMONRNANTCTCITII U~V rk)yIno
FrOAANTAOSXI0ONACOIVOMORIARNARIINTEFICPHORIFRr=A &GN OMm
FEANA AN el LM UNNIRNAIIISIVINTSI=NIOD IV OSD T
DRV F ATV RIS VO ONNOIV D009 TIMmmIFr~—=rd NI 0o\ o
NANSRSOENSENOTIO—0IXVOVE VDT ROONAT =NV ITNNMES > S8
NNQONQO=T =9 =09wO0=~nrd00000TI= 0 eadimesIFanddh oy
BNINOVVINMPIMMANOXOONMmMVOI 0 0N=90mMOVA®mINIWVWOOGRN®DD > N
NOASEN TEMNYMINCANTEATNYOMbe = ror NN VI =3P D o -
PINA O[O rRUTINENITMOLIANYTIAPNTENIMOOemIUIVARr NI =]
AN TNP L NS =G e=X AANINITNI b AND O TNOOA M~ MO
M= 0~ SACVI =00V RO O NONCDEFI MO TIEMANT T ==
ODOANTONNLICOTIATAORNOCOTV LI P=IJINN LW TAAQWV TV QY= @
PLCYVOANMN=VNIONTMNRANSOANL FO~TAMMOMSDTMROV T W@ NN T N
PEXRrONCOTrdHNeelQV®@RIANCOSTI=LHOAUNNAMOND LA XS N
NOGNeTOINMALAINTANNANOANOOMMIcTOUOVLOMNMSINONO VN2 [
RO R r=0MecOmMMmIeThnOANVMAN=rBV YOI NN LY XMNMY LOS Y > RT O
N =0 O RN NS AVINEARNOSRNIOSNARNNI AN IMIEV[TouNNONOI © N0
LN IF 2N=rPQY=NAOARA DS FICVICNOTONOLOCE~O N FE QN ROMN QD b
Q00N TN —INQVOINMI=rN=0c—aombLIINMANHEOm=om~)
ONAQVERNCI ATV I rFrAONOTUAAUNTFMUNRISINNOEN N T QNN~M
Co by TO= T =NV =eFTOIND AN =GO R0 =0 IV W WO NT =00V
VAFQCIQITOORQUO = A rad QR ANIUOAQIUVITIINOMT DN A
LLNONMNQ=ANMNSdONARNPII UMD~ P ==~ TV 0I0laa NI m|
oI NVMI T EOVEVrEO>QANTABVOMETUNAE TV NCN=T O NS N~~~
P=O0FTPONUNILLLICHFOAVOPTIMINIONTATFTNNTIMI Pl Q) T o)

NeTITOMMIONSI=QRrO0m0WhemereOoQ00==0%%0w 00 N 0mN]
O CLO™NRNAPOIVNVLHLAVOVH GNP O T ==~ 000003 (B Q>N
AN TORNDMNORYTNILOVAVNWREXROOVN=SNNTFANQ O
FOCYO~ONA=NAORNIVAVQVNITONN OV === T T ORI
NN ONAOOIC0ARNTSO00VVNOTFr~QAN O~ o>lgonoe
N0 AdcINOALINLINIIVATIOVE=OLANETTOIS TV Nm
=NFIFO0TAADOMAONMIFLONMIIAAISN AN I DY awe N W
MYl rn=QuUMAQVO Y~ ToL=-CONMIVAANHHENSoYH o T >
CXOINMPFIVVI N0 TOMVTO~THI MM T NNDDHoase ko QQS
MoeNNertd W =TEOTMANSNENT VAWV ERRT QMM oo s =
IMNA=0=NONLOVT®INVNTOVITIITITNAMIM=0N OO ™k wNew
MIOOFTMVNFORTVOIVRLIAIXITOOMONMAJINOIVVOV=—-wwh]
NONI=ROh=ON="MT=SrCORNTTIMMNANTOOO00erN==00 10
MONMAONOANNNNCTITOYINAXNRPFUNANNXNSOOON === & >
NOX=LI S CYMAN MY =U N TANCY VO RNANNTE T T —==——=n 0] QO
%00 WLNMNOOWMTEIMONIFTFF=NerBNOIIRNLENETTCEN—=—=00Q 0
QO TSPV T TVNROXNMMNNIQr=Y T VORI NET e~ o000 Q
NIVOORNELAN=AOOAARNDIMN T~V IIVN~ToeTFTraN0000
PO UAN O =l ONrmII =N EAYANINLORNLIT I VUL Y NnOONO
dAAQIVDIUMAe=Q 2N ONYSE~GhoererrraaNLLOSNINNQ S
=IOV NMBIOMIXNANLEMNTOrREeIUAAMEONHRNNSNRD
NMO=GFrT0 =0 rSFTUMNHIYMONVOLFFHATVMHMMHOI M O™ N NN
AN VNEM TV ===V NI TVAOQF—VOAVNAmO AN NT
NTPTETIN=hOXd el AN DNRTRONPOOOMONOD DN S~
N IR rNCOTHNEFMOOVIVTNTWAWYN I TVONNNO®Tem~oT
NO=DANMNBFTEORATOMOND PO=NDNE I SNNNNNNOO R M=~
PBONITOTFEPAMNrLHO® VI COMIVMARNNITAUNSSNNNNDD M) N~ =~
NI==TONNRIASNOY LIRS DDV N NS0 W~ —e
= A I MOETNOAC 0T SNSNNSRU SNV Y &Y N=m=CQ
DNNVer =0 0=3NNNWVNIN~-MOITFARIANCRITVII T LI~ O
MY = D QU I~NY M=y, TONIVONAERNNY I ARSI IRXICORN=] ~Y
VOIVL=VEMNY NI INRNCEOVIDVLE DRI IT VORI NOLQ
NOSNOTIFrON P~ L= AR_RFNOIVI T T ==Y INDRH®ENN=] O
M=% 00 rOrNFdroyempaAN®ecrhiANAdNMMOeheaQY O Ny~
CROYINTRI DM FOA AP TCTrTrOd =0y MNMNaoQOV 0 NN
POXT=AXMNMA O TOTOPORCTOTPIIMNAIIINN=TTOV0H 1N
Y TIONNTILEHLT=ARAVEIOOALITOOLNAN=ad =4\ T o rr
ATFANSDSNOTNEIVAEINRPANAABANOSOOOWQUQR==NNNNOT
INRNNANTMASNOTEOUANNASBIAIACCQUONNPO=NNNN2N
NMIORTO~0 QWO V== 0ad AN dAd0OMONMRONNST =~

2,025

2.00
175
1.50
125
1.00
0.75
0.00

40.50
40.25

@)nmni

t test accuracy
Test accuracy
91.71% + 0.23%
91.48% =+ 0.31%
89.79% =+ 0.66%
85.83% + 0.95%
75.71% + 1.20%
58.60% + 1.31%

inpu

Sparse

0%

10%

25%

50%

75%

90%

Network weights - 90% sparsity

% sparsity

Table 4

625
625
625
625
625
625

Large SNNs trained with two-level inhibition scheme
Ne, T

Figure 5

1,600

Figure 4

(a) ne,n;

O
6
/
5
7
5

SN UWODIOI R YRQAN
W LY el UL N
OWLBEHKLVNNDYD

IO woawel L
SN W LYW eSO W
WO ULULINSNN WYy

&
6
6
7

LoaLALLSNDOON
SR RNBUNINW
2N N DUVl Ny

v

x25 lattice of neuron filters (b) Corresponding neuron class assignments

Figure 6: PyTorch 100-neuron SNN - learned filters and class assignments

it was successfully used to solve the MNIST digit classification task, we expect that the software would not
be able to handle larger networks used to classify more complex image datasets; e.g., CIFAR-10 or ImageNet.
We re-implemented the SNN from [2] in PyTorch (http://pytorch.org/), performing calculations with the
strongly GPU-accelerated torch.Tensor. We use the simplified leaky integrate-and-fire (LIF) neuron, and
tweak network hyper-parameters to produce learning behavior similar to that reported in [2].

3.1 Learned filters

We want our networks to learn filters similar to those learned the SNNs from [2]. Using the simpler neuron
model requires that our simulation hyper-parameters (e.g., time constants, maximal weight values, etc.) be
re-tuned to produce similar learning behavior. We show example filters and corresponding class assignments
for networks of 100 and 400 excitatory and inhibitory neurons in Figures 6, 7, and 8. On inspection, the
filters resemble the digit class with which they are labeled; however, filter quality and individuality appear
to be somewhat reduced from those of the baseline SNN [2]. Some of the filters in the 900-neuron network
have yet to settle on a representation of a digit: we believe this is again due to underfitting, and should be
remedied with additional passes through the training data.

3.2 Performance comparison

While we want to use a more powerful and flexible programming framework, we must also keep in
mind our goal of creating accurate unsupervised machine learning algorithms implemented by spiking neural
networks. Due to lack of time, we were unable to perform large-scale experimentation, in order to find the
best setting of network hyper-parameters and to provide a result average over 10 independent trials. For
now, we report in Table 5 the result of training a 100-, 400-, and 900-neuron SNN training on one run over
all 60K training iterations and evaluated on the entire 10K test dataset, alongside accuracy results from the
baseline SNN [2].

References

[1] Lecun, Yann, Yoshua Bengio, and Geoffrey Hinton. ”Deep Learning.” Nature 521.7553 (2015): 436-44.

[2] Diehl, Peter U., and Matthew Cook. ”Unsupervised Learning of Digit Recognition Using Spike-timing-
dependent Plasticity.” Frontiers in Computational Neuroscience (2015)

cQMeTFOIONNTOTry Qo T~
NNV YMoeaTrO TSI
NoWN=mMToMoNI NN T TaTaTmbo
TN~ CE~OMNMNYN NN TOQY D
MEYFVMM=NLMINIDNONQe O
=IO NI MedNann O
AN POTVAENQYQOT—O0HVINYITIMO
WHINOTINETMEEQA VO RQ =g NI
N d SOTVOVARTTORIDMQALCN
NI QPANQVIroT=QHONA o o
M= O 3 O NS0T 0o 00 o~
I LALLM ONWo 0 O ooy
NI NONN IS O Twwoem
AN NN T MOMGN N [~
NMMIT NN\ TREMIOQN TN NS
NONTNHNAQVUIOQE= QM >
IWVERIHQI VTN RONINNI QoI
MAUNONTOITFravYmMmMobWnowhym>» >
ONVQYrOoNTEN QMR MNO QYD 00 oy
O=TWVoeUrNYSmMOLaO0YmMmIa Ny

(b) Corresponding neuron class assignments

(a) 25x25 lattice of neuron filters

Figure 7: PyTorch 400-neuron SNN - learned filters and class assignments

R T N ol R WL T W T D NN (S N T R ("
Imihmosthemarrhed oy —rerreebnOo0 e
M =TI BNAN ~tm &M IY~TO macTwl
NONI =W eErm a0 VWNROVIOQmnA TN
Rt N oTF Co T Oy m ~TTINNMQ Moty O Wn o
FMmrIraog o ~ S=nnlm NO o FROAN BRI T m
TOUTRNETOMONRBIVOI T =Tl PO
M FHhWSL0r =TOMIOTerNIS SmM®
WYV etnRd DN ~T0mey MNITAVTT
TOIMOO0OMNNwODmMeErrSNyoadNdesnhads ey
N Wy o QoIMGEPNONO o PEmRANONMEGD O g
NI M TORIITNO YN TD NI 0d Hhd~
DN ~ENINTY R eEITTNA N Sno Qg o~ T
TOUANQoe VOO NeTONRNRTINNENQANNT TT.
QNS OM%eQmMAQENIOMEtTMmm ffeQmoy O
NS INIVIIENNS DT QW WD NN Q
QecIFNNYer W FTIA0wTomYPeaonm WY %Wy
NeTd—=muemboc(Q NNNSRQOREY NN TO
Go\d 7y QNOTe OTRTOMO OAT=DNNTNS%SWAG
Qo VRm o O Frerdne N3 N~ T 1y 00 Oo Oy
WoadrereQ9O CHTTN QNI ORI NN
Moy O Fe— —0r g W Owm Q=0 m T
RSN S IR o 20 ra RS EGERN o o Wa N e R
TOFT OB OV TOOFRYOmMmT BN XIS Ne@wI
LWy m Oumom—-mretearread~r~dad9~edWn
LR N CNTRRN] Nag Q QMo Q %D Q= roe-nd o=
D~ Q=M &NoO0MNAONM e Mol ~co% 0 =
e~ e =N Q~ Qw e oy X] oM QI ey

N AO0EMVONTOTeMAME-QQM0In Lol T |

MO Qa0 0aanumMAS SJdmmm=ly

(b) Corresponding neuron class assignments

(a) 25x25 lattice of neuron filters

Figure 8: PyTorch 900-neuron SNN - learned filters and class assignments

Table 5: PyTorch vs. baseline SNN

ISR
Z, |© 0 ©
z, e an A
n— OO
miii
ERSESE
®n |~ <t M
< |y o
e (=

0 0 &
Z.

Z
SRS
S |= o ©
gm0~
O |0 & <
T788
>
[
flooo

1SS D

ne149

[3] Markram, H., W. Gerstner. ” Spike-Timing-Dependent Plasticity: A Comprehensive Overview.” Frontiers
in Synaptic Neuroscience (2012)

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. ” Gradient-based learning applied to document recog-
nition.” Proceedings of the IEEE, 86(11):2278-2324, November 1998.

