
DARPA Quarterly Report - Biologically inspired efficient learning

algorithms

Daniel Saunders Pegah Taheri Hananel Hazan

December 15, 2017

1 Introduction

It has been recently established that deep learning (DL) is the preferred approach to machine learning
problems in domains in which large amounts of data, computational power, and time are available [1].
However, in the presence of little data or time, this approach may fail. Motivated by these shortcomings,
and inspired by brain computation, we are developing unsupervised learning algorithms which learn robust
representations of data with few training examples, and whose training has the potential to be massively
parallelized to scale with the dimensionality of the input data and number of computational nodes. Building
on the spiking neural network (SNN) model introduced in [2], we make several architectural modifications
in hopes to improve the learning procedure and consequent test dataset error rate. Our model is tested on
the MNIST dataset [4], and we show how our modifications change error rates and modify the behavior of
the SNN network models.

Realizing that the brian spiking neural networks simulation is ill-equipped to handle large networks
needed to learn mappings from high-dimensional data, we are converting our SNN models to other program-
ming frameworks. We have successfully implemented a simple SNN in the PyTorch (http://pytorch.org/ )
neural networks package, and are working towards TensorFlow (https://www.tensorflow.org/ ) and NEST
(http://www.nest-simulator.org/ ) implementations as well. We show some learned filters and demonstrate
the scaling capability of our SNNs in PyTorch.

All networks are trained on one pass through the MNIST training data (60K) examples.

2 Methods

Previously, we modified the inhibition mechanism used in [2] such that neurons, arranged in a 2D lattice,
are inhibited more if they are further away from a spiking neuron. As a result, with certain settings of
the inhibition constant cinhib, the learned filter map smoothly varied between different digit classes (cinhib
small) or arranged themselves into tight, similar clusters (cinhib large). In both cases, filters were clustered
spatially, giving a useful visualization of the training data. An example (with cinhib = 0.5) is shown in
Figures 1a and 1b. Although visually appealing, we found that this scheme only reduced the accuracy from
our SNN baseline [2]. When cinhib = cmax = 17.5 (the inhibition level of [2]), the network achieved maximum
classification accuracy, developing individualized, rather than clustered, filters.

2.1 Growing the inhibition level over the training phase

We wanted to produce individualized filters as learned by the SNN presented in [2], yet retain the
clustering of filters achieved by our increasing inhibition modification. To that end, we implemented another
modification to the inhibition scheme, in which the inhibition constant cinhib grows on a linear schedule from
a small cmin ≈ 0.5 to a large cmax ≈ 17.5. The increasing inhibition is used as before; however, by the
end of the training, the inhibition is equivalent to that of [2]. In this setting, the filters self-organize into
smoothly-varying clusters, and then individualize as the inhibition level becomes large. We also considered
growing the inhibition level to cmax for some percentage of the training (pgrow) and holding it fixed for
the rest (1 − pgrow). Shown in Figures 2a and 2b are example filters and corresponding class assignments

1



(a) 20x20 lattice of neuron filters (b) Corresponding neuron class assignments

Figure 1: Inhibition increasing with distance - filter map and class assignments

(a) 25x25 lattice of neuron filters (b) Corresponding neuron class assignments

Figure 2: Growing inhibition over training phase - filter map and class assignments

learned by this scheme, with cmin = 0.1, cmax = 17.5, pgrow = 0.25. The filters shown have clearly organized
into clusters based on similarity (with a few exceptions), yet have largely individualized so as to avoid a
redundant data representation. Test accuracy results for networks of size 400, 625, and 900 are shown in
Table 1.

2.2 Two-level inhibition

Going one step further, in order to reduce the computational requirement of re-computing inhibitory
synapse weights continually throughout network training, we implemented a simple two-level inhibition
scheme: For the first pgrow proportion of the training, the network is trained inhibition level cmin; for the last
1 − pgrow proportion, the network is trained with cmax. The inhibition level is not smoothly varied between
the two levels, but jumps suddenly at the pgrow mark. Example learned weights and corresponding class
assignments are shown in Figures 3a and 3b. Clearly, the filter clustering is somewhat more fragmented, but
subjectively, filter quality and diversity seem to have been maintained. Test accuracy results are given in

2



Table 1: Growing inhibition test accuracy

ne, ni pgrow Test accuracy

400 25% 91.48%
400 50% 91.32%
400 75% 89.63%
400 100% 89.83%
625 25% 91.71%
625 50% 91.41%
625 75% 91.51%
625 100% 90.63%
900 25% (seizure)
900 50% 93.06%
900 75% 92.95%
900 100% 92.53%

(a) 25x25 lattice of neuron filters (b) Corresponding neuron class assignments

Figure 3: Growing inhibition over training phase - filter map and class assignments

Table 2. All networks are comprised of 625 excitatory and inhibitory neurons.

2.3 Comparing baseline SNN and two-level inhibition

To get a feeling for how our best system to date compares with the baseline SNN of [2], we present in
Figure 3 a comparison of their accuracies across several settings of excitatory, inhibitory neurons, including
the confidence, all, and distance voting schemes. All networks are trained for 60K iterations (a single pass
through the training data) and evaluated on all 10K examples from the test data. 10 independent experiments
with different initial configurations and input Poisson spike trains were run, and their results are averaged
and reported along with a single standard deviation. Note that some experiments failed to finish due to
numerical instability or out-of-memory errors. In this case, the number reported in parentheses next to the
accuracies in each cell corresponds to the number of successful experiments.

One may notice a downward trend in the results after ne, ni = 1, 225; we believe that these networks
are underfitting to the data, and their test performance should improve given more passes over the training
data. Consult Figure 4 for example filter maps learned by the two-level inhibition scheme while training on
only one pass through the MNIST training data. Compare with Figure 2a.

Notice also the clear superiority of the confidence classification scheme to the all classification scheme,

3



Table 2: Two-level inhibition test accuracy (ne, ni = 625)

pgrow clow chigh Test% pgrow clow chigh Test% pgrow clow chigh Test%

25% 0.1 15.0 92.21% 50% 0.1 15.0 90.91% 75% 0.1 15.0 89.88%
25% 0.1 17.5 91.18% 50% 0.1 17.5 91.37% 75% 0.1 17.5 91.05%
25% 0.1 20.0 91.87% 50% 0.1 20.0 90.9% 75% 0.1 20.0 90.41%
25% 1.0 15.0 90.84% 50% 1.0 15.0 91.74% 75% 1.0 15.0 89.31%
25% 1.0 17.5 91.44% 50% 1.0 17.5 90.64% 75% 1.0 17.5 89.8%
25% 1.0 20.0 92.71% 50% 1.0 20.0 91.32% 75% 1.0 20.0 90.12%
25% 2.5 15.0 91.26% 50% 2.5 15.0 90.96% 75% 2.5 15.0 90.25%
25% 2.5 17.5 91.04% 50% 2.5 17.5 91.24% 75% 2.5 17.5 90.18%
25% 2.5 20.0 92.78% 50% 2.5 20.0 91.55% 75% 2.5 20.0 90.44%

and the distance scheme to the confidence scheme. Whereas both the confidence and all schemes use the
activity of the network in order to classify new data, the distance scheme simply labels new inputs with the
label of the neuron whose filter most closely matches the input.

Table 3: baseline SNN vs. Two-Level Inhibition SNN (60K train / 10K test)

ne, ni ETH Two-level (confidence) Two-level (all) Two-level (distance)

100 80.71% ± 1.66% (10) 82.94% ± 1.47% (10) 81.12% ± 1.96% (10) 85.11% ± 0.74% (10)
225 85.25% ± 1.48% (10) 88.49% ± 0.48% (10) 87.33% ± 0.59% (10) 89.11% ± 0.37% (10)
400 88.74% ± 0.38% (10) 91% ± 0.56% (10) 90.56% ± 0.67% (10) 91.4% ± 0.38% (10)
625 91.27% ± 0.29% (10) 92.14% ± 0.50% (10) 91.69% ± 0.59% (10) 92.37% ± 0.29% (10)
900 92.63% ± 0.28% (10) 92.36% ± 0.63% (10) 91.73% ± 0.7% (10) 92.77% ± 0.26% (10)

1,225 93.20% ± 0.65% (7) 91.38% ± 0.89% (10) 90.93% ± 0.88% (10) 92.73% ± 0.36% (10)
1,600 91.99% ± 0.32% (4) 89.59% ± 0.98% (10) 89.26% ± 0.94% (10) 92.45% ± 0.33% (10)
2,025 (crashed) 88.33% ± 0.63% (6) 88.05% ± 0.54% (6) 91.96% ± 0.33% (6)

2.4 Sparse input

Instead of connecting the input one-to-one with the layer of excitatory neurons, we experiment with
varying degrees of random sparse connectivity. We are interested in whether small amounts of sparsity
might make our network more robust to outliers in the MNIST data, therefore increasing the chance of good
test performance. We also hope that our system will still perform well in the event of missing features,
degrading in performance gracefully as the input data becomes less clear. We use sparsity levels of 10%,
25%, 50%, 75%, and 90%, and include the fully-connected case in order to compare. We using the growing
inhibition scheme as discussed in section 2.1. The results are shown in Table 4, in which the results from
10 independent training and test phases are averaged and reported along with their standard deviations.
Interestingly, small amounts of sparsity do not degrade network performance much at all, and even with
nearly all connections removed (90%), the network maintains 5̃8% accuracy. Unfortunately, this did not
produce an improvement in network classification performance. See Figure 5 for a visualization of learned
filters in a network with 90% sparsity.

3 PyTorch Implementation

The brian (http://briansimulator.org/ ) spiking neural networks package used for our experiments was
not designed to simulate large-scale networks, nor was it meant to solve machine learning problems. Although

4



(a) ne, ni = 1,600 (b) ne, ni = 2,025

Figure 4: Large SNNs trained with two-level inhibition scheme

Table 4: Sparse input test accuracy

ne, ni % sparsity Test accuracy

625 0% 91.71% ± 0.23%
625 10% 91.48% ± 0.31%
625 25% 89.79% ± 0.66%
625 50% 85.83% ± 0.95%
625 75% 75.71% ± 1.20%
625 90% 58.60% ± 1.31%

Figure 5: Network weights - 90% sparsity

5



(a) 25x25 lattice of neuron filters (b) Corresponding neuron class assignments

Figure 6: PyTorch 100-neuron SNN - learned filters and class assignments

it was successfully used to solve the MNIST digit classification task, we expect that the software would not
be able to handle larger networks used to classify more complex image datasets; e.g., CIFAR-10 or ImageNet.
We re-implemented the SNN from [2] in PyTorch (http://pytorch.org/ ), performing calculations with the
strongly GPU-accelerated torch.Tensor. We use the simplified leaky integrate-and-fire (LIF) neuron, and
tweak network hyper-parameters to produce learning behavior similar to that reported in [2].

3.1 Learned filters

We want our networks to learn filters similar to those learned the SNNs from [2]. Using the simpler neuron
model requires that our simulation hyper-parameters (e.g., time constants, maximal weight values, etc.) be
re-tuned to produce similar learning behavior. We show example filters and corresponding class assignments
for networks of 100 and 400 excitatory and inhibitory neurons in Figures 6, 7, and 8. On inspection, the
filters resemble the digit class with which they are labeled; however, filter quality and individuality appear
to be somewhat reduced from those of the baseline SNN [2]. Some of the filters in the 900-neuron network
have yet to settle on a representation of a digit: we believe this is again due to underfitting, and should be
remedied with additional passes through the training data.

3.2 Performance comparison

While we want to use a more powerful and flexible programming framework, we must also keep in
mind our goal of creating accurate unsupervised machine learning algorithms implemented by spiking neural
networks. Due to lack of time, we were unable to perform large-scale experimentation, in order to find the
best setting of network hyper-parameters and to provide a result average over 10 independent trials. For
now, we report in Table 5 the result of training a 100-, 400-, and 900-neuron SNN training on one run over
all 60K training iterations and evaluated on the entire 10K test dataset, alongside accuracy results from the
baseline SNN [2].

References

[1] Lecun, Yann, Yoshua Bengio, and Geoffrey Hinton. ”Deep Learning.” Nature 521.7553 (2015): 436-44.

[2] Diehl, Peter U., and Matthew Cook. ”Unsupervised Learning of Digit Recognition Using Spike-timing-
dependent Plasticity.” Frontiers in Computational Neuroscience (2015)

6



(a) 25x25 lattice of neuron filters (b) Corresponding neuron class assignments

Figure 7: PyTorch 400-neuron SNN - learned filters and class assignments

(a) 25x25 lattice of neuron filters (b) Corresponding neuron class assignments

Figure 8: PyTorch 900-neuron SNN - learned filters and class assignments

Table 5: PyTorch vs. baseline SNN

ne, ni PyTorch SNN baseline SNN

100 78.31% 80.71% ± 1.66%
400 82.80% 88.74% ± 0.38%
900 84.16% 92.63% ± 0.28%

7



[3] Markram, H., W. Gerstner. ”Spike-Timing-Dependent Plasticity: A Comprehensive Overview.” Frontiers
in Synaptic Neuroscience (2012)

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. ”Gradient-based learning applied to document recog-
nition.” Proceedings of the IEEE, 86(11):2278-2324, November 1998.

8


