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1. Design Principles of Network Architectures with the Capability
of Serving as Massive Dynamical Memories

We study networks architectures with recurrent (feedback) connections and the
propagation of activity patterns over these networks. We build on our results
in Phase 1, where we identified lattice architectures with feedback connections
between excitatory and inhibitory units producing spatio-temporal oscillations of
varying complexity. We observe critical behaviors and phase transitions between
fixed points when oscillations die out after some number of iterations; limit cycles
when spatial patterns are repeated after a fixed number of time steps; and chaos-like
dynamics when the spatial patterns keep on changing without repetitions within
the observed time window, which may extend up to millions of time steps. We
studied design principles of architectures that give rise to very long cycles and
derived conditions to control the length of the oscillations exhibiting metastable
spatial activity patterns. We demonstrate how input data can be stored and con-
secutively retrieved, which is the illustration of the capability to use these networks
as associative memories.

We characterize the oscillations using phase portraits with time-delayed embed-
ding. We evaluated phase portraits of locally smoothed activity patterns using
smoothing window starting from small window limited to the direct neighbors of
a pixel, and increase it until the window covers the whole lattice (mean-field). To
visualize the complex dynamics in the case of very long cycles and when no cycles
were observed cycles (chaos-like dynamics), we determined the Poincare section and
Poincare maps. We also draw recurrence plots that exhibited high mixing proper-
ties with trajectories densely filling in the state space. The results showed behavior
resembling strange attractors, possibly chaotic dynamics, although the presence of
chaos cannot be shown rigorously under the given experimental conditions. These
results show the potential of the dynamic regimes to maintain quasi-periodic os-
cillations that are key ingredients of the implementation of powerful dynamical
memories.

2. Spiking Processes on a Neural Network
with Excitatory and Inhibitory Nodes

2.1. Introductory Remarks. Previously we introduced a neural networkN(E, I).
The excitatory layer of the network E has nodes and connections that are defined
by the vertices and edges of the graph GZ2

N ,pd
respectively. The inhibitory layer I

has N2

4 nodes that are connected in an all to all fashion and can be thought of as a
fully connected graph KN2

4

whose vertices are the nodes. Moreover, each inhibitory
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node is connected to four excitatory nodes at random in such a way that no two in-
hibitory nodes share any excitatory neighbors. Due to the convenient parallel with
graph theory we occasionally borrow notation, and so by V (E), V (I) we mean the
set of excitatory and inhibitory nodes, etc.

Each node in both E and I can take on one of two states: active or inactive.
Let χv(t) define the potential function for node v in either layer at time t such that
χv(t) = 1 if v is active and χv(t) = 0 if v is inactive at time t. The state of a node
is completely determined at every time step by the state of its neighbors. To define
this more formally, let AE(t) denote the set of active vertices in E at time t and
similarly AI(t) denote the set of active inhibitors at time t. Furthermore, define
AE(0) as a random subset of excitatory nodes that became active with probability
p independently of all others and AI(0) = ∅. Then for a vertex in E we say its
state at time t+ 1 is

χv(t+ 1) = 1

 ∑
u∈N(v)∩V (E)

χu(t) ≥ k


Similarly, for a vertex in I we have

χv(t+ 1) = 1

 ∑
u∈N(v)∩V (E)

χu(t) ≥ `


In both cases 1 is the indicator function and N(v) denotes the subset of nodes in
the closed neighborhood of v (i.e the node v and its neighbors). Both k and ` are
nonnegative integers that specify the number of active neighbors any given vertex
needs to become active on the next time step in E and I respectively.

We conclude our review of N(E, I) by presenting the inhibitory firing function

we had introduced that causes all of the inhibitors to fire together once m ∈ [0, N
2

4 ]
inhibitory vertices are active during a time step. In other words an inhibitory node
v ∈ V (I) fires at time t+ 1 if

Fv(t+ 1) = 1

 ∑
u∈N(v); u,v∈V (I)

χu(t) ≥ m


but v did not fire at time t. Notice that active inhibitory nodes fire simultaneously
since they are in all to all connection with each other. At the time of firing, the
inhibitory node sets the activity of all excitatory nodes connected to it and itself
to 0. That is to say, in a firing step the following nodes become inactive: (i) all
inhibitory nodes, and (ii) those excitatory nodes which were connected to an active
inhibitory node that was firing at that step. After the inhibitory firing occurs
both layers carry on by propagating activity (or the lack thereof) with whichever
excitatory nodes were left in tact.

Before this network architecture, we had also shown that assuming there is no
inhibition, for any λ ≥ 0 with the k = 2 activation rule, E has an asymptotic
critical probability pc = 0. Therefore there always exists a system large enough
such that for any choice of pin > 0, regardless of how arbitrarily small, with high
probability (whp) all of the vertices in E will eventually become active when the
inhibitors are not allowed to fire. When we introduce the inhibitory firing rule,
with a proper choice of parameters, periodic behaviour became a possibility. By
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choosing parameters in such a way that the firing process extinguishes vertices while

maintaining
|AE|
N2 > pc in the specified network, the activation in both layers likely

begins growing once more until the next firing. For the sake of specificity

Definition 1. Let ∆t be a lapse in time such that there exists finite t where
∣∣AI(t)

∣∣ =

0,
∣∣AI(t+ ∆t)

∣∣ = 0, and @∆t′ ∈ [0,∆t) such that
∣∣AI(t+ ∆t′)

∣∣ = 0. We will call

the sequence {AE(t), AE(t+ 1), . . . , AE(t+ ∆t)} a spike of length ∆t.

As we saw in previous reports this the ability to produce spikes indicates os-
cillatory behaviour in this dynamical system for a certain parameters. We defined
plowc (λ, `,N) and phighc (λ, `,N) as lower and upper critical probabilities respectively.
It was proved in previous reports that these values exist and when the initial activa-
tion pin < plowc or pin > phighc then the system cannot exhibit oscillatory dynamics.
These dynamics were also shown to impossible when we choose ` and m such that
`m > phighc (λ, `,N). Furthermore, we showed that N(E, I) has an intriguing prop-
erty we dubbed “memorylessness”; when the system is inside of the oscillatory
region its periodic behavior is does not depend on initialization density.

3. Oscillatory Regimes and Chaos in N(E, I)

3.1. Definitions & Recapitulation of Findings. Our computer simulations re-
vealed that, within the oscillatory region of parameter space, as m increased the
length of the periods of N(E, I) did too until m ≈ 1750 at which point the system
underwent a phase transition and began acting in a way that can be described as
chaotic. Though strictly speaking chaotic regimes are impossible in any finite sized
network, the behaviors displayed by parametrizations with m ≥ 1750 can take so
long (> 10, 000, 000 time steps) to repeat themselves that by all practical standards
they are chaotic and behave chaotically. With this in mind

Definition 2. Suppose there exists mutually unique spikes {S1, S2, . . . , Sn} of length

{∆t1,∆t2, . . . ,∆tn} such that for some t ∈ [0,∞), Sk = {AE(t +
∑k−1

j=1 ∆tj +

y(
∑n

j=1 ∆tj)), . . . , A
E(t +

∑k
j=1 ∆tj + y(

∑n
j=1 ∆tj))} for all integers y ≥ 0 and

k ∈ [1, n]. We say our system is n-periodic if such a sequence of spikes exists and
if there doesn’t exist a sequence of less than n spikes that satisfy this property.

We found that for a majority of parameters, n is finite and relatively small but,
when m becomes larger than ≈ 1750, for practicality’s sake we must define

Definition 3. We say our system is chaotic if for some very large T , there does
not exist a time t ≤ T for which our system is n−periodic.

During the previous report we began a thorough analysis of this behavior when
λ = 0. A method for counting the number of chaotic parametrizations was pre-
sented (given that the initialization is seeded). By steadily increasing the time for
which we ran the system, we began seeing the rate at which the number of chaotic
oscillations fell into a limit cycle. Through this we showed that, if the trend con-
tinues, we will have chaotic values of m until we run the system for over a hundred
trillion time steps; this is strong evidence that these regimes are not just some
transient. In this report we continue our analysis of these chaotic regimes.

In the discussion that follows, the reader should assume N = 100, k = 2, and
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` = 4 unless it is explicitly stated otherwise. Also it should be assumed that any
figures shown were created with an initialization dictated by a random seed.

3.2. Continuation of Phase Space Analysis. As we have witnessed in previous
reports, the dimensionality of N(E, I) grows incredibly fast with the size, N , of the
network. This has made it difficult for us to create convincing visualizations of
the system. For this reason we introduced the notion of a time-delay embedding
for attractor reconstruction. The intuition behind this technique is that N(E, I)
is too high dimensional for us to both capture and visualize everything at once.
On the other hand, we can create a time series {|AE(t)| : t ∈ T} of some telling
summary statistic of the system’s state during the time interval T . By creating
the vector [|AE(t)|, |AE(t+ τ)|, |AE(t+ 2τ)|, . . . , |AE(t+nτ)|] we are mapping this
time series into a higher dimensional space and effectively “unfolding” the series’
trajectory by carefully choosing τ and n. Therefore, by taking this embedding
we have summarized the complicated original system into a one dimensional time
series, then we have taken the time series and lifted it into a higher dimension,
and finally we hope this lifted version of the series is representative of the original
system’s movement through phase space while also easy to visualize. Due to the
fact that N(E, I) does not travel through phase space in a smooth nor continuous
way, the guarantees normally associated with time-delay embeddings do not apply.
Regardless this technique can still provide insights into N(E, I)’s dynamics with a
careful choice of τ . We saw evidence of this in the previous report using the time
series {|AE(t)| : t ∈ T} where T was the interval [0, 10000000], but our visualizations
were limited by the fact that it took meticulous observation to notice the difference
between a long period and a chaotic regime.

Taking inspiration from the shortcomings in this application of time-delay em-
beddings, we first embedded {|AE(t)| : t ∈ [950000, 10000000]} into three dimen-
sional space and treated the resultant vectors as if they were a form of step function
in phase space. From this we were able to take what is known as a Poincaré section.
We see this in Figure 1, where we plot the Poincaré section taken from embeddings
of m = 600, 1180, 1550, and1860 when τ = 5. Similar plots has been built for τ =
10, and 20, but not shown here for compactness of the presentation. The intuition
behind Poincaré sections comes from the notion that, as they move in time, dynam-
ical systems with interesting regimes travel through lower dimensional manifolds in
a ordered manner. Therefore by choosing a lower dimensional manifold in a tactful
way and then keeping track of exactly where on the manifold this system passes in
one direction, we have gathered a tremendous amount of information about the dy-
namic regime. In our case we have summarized N(E, I) into 3 dimensions, placed
a plane about halfway down the diagonal from (1, 1, 1) to (0, 0, 0), and observe how
it passes through this plane in the backwards direction assuming it travels like a
step function.

Notice that the 1-period appears as 1 point, a 2-periodic point appears as 2
points, and so on. This is because as the system travels in phase space a 1-period
by definition only fires in one way, a 2-period in two ways, and so on for n-periods.
Although still leaving much to be desired, this visualization already makes rather
clear that the behavior of a chaotic-like regime differs tremendously from typical,
short periodic oscillations. Part of what makes this picture hard to interpret has
to do with something mentioned above during the description of embeddings, i.e.
we should create the time series from a good summary statistic of the network’s
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Figure 1. Poincaré Section for m = 600, 1180, 1550, 1860; τ = 5

state. The time series we are using naively reports the number of active nodes at
each time step. Though we are looking at these as a series, and so there is more
implicit information, each individual datum in the series is equivalent to any other
configurations of the network with the same number of active nodes. Therefore, we
have in one sense captured too little by leaving out all of the topological information
and we have simultaneously captured too much by obscuring away our knowledge
of what portion of the network is active at any given point.

As a remedy to this we decided to toss out some information about the global
activity in the system to instead capture more spatial information. To do this we
focused on three kxk blocks of nodes that are each situated as far from one another
as possible. We then captured the activity in all three blocks as a time series
already in three dimensions and created Poincaré sections of this. To understand
the importance of this spatial information we captured the activity in each block
in one of two ways: (i) we simply summed the number of active nodes as before
and (ii) we took a weighted sum of the activity in such a way that a node’s weight
exponentially decays with distance from the center-most node in the block. We see
the Poincaré section for (i) in Figure 2 and for (ii) in Figure 3. Here the blocks
are of size k = 5, 10, 20, 25, 50, m = 1860 and Top Left refers to the top left of the
network when represented on a plane while the Farthest and Middle are relative to
the top left.

By considering both of these side by side, we can see that in both the blocks
of the same size capture the same general trend to varying degrees. This tells us
some information about the trends in the local blocks which are spatially apart
from one another. Even though we have gleaned some new insight into the dynam-
ics of the system we have lost our ability to interpret this information globally in
the network. Regardless, note the fact that just one block, though lacking most
of the information, still captures something impossible to distinguish in the mean
field by reporting local spatial activation. Furthermore we have blocks of gradu-
ally increasing size overlapping the same spatial location. By accounting for this
spatial redundancy we are able to visually extract a huge amount of topological
context while also being able to use the entire network’s activity. We therefore
took Poincaré sections of the time-delay embedding for the Top Left block of size
k = 5, 10, 20, 25, 50 and compared it to the Poincaré section of the embedding of
the entire system’s activity. We did not use the exponential decay weighted sum
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Figure 2. Comparison of Poincaré Section for blocks’ of size k =
5, 10, 20, 25, 50 using simple sum.

Figure 3. Comparison of Poincaré Section for blocks’ of size k =
5, 10, 20, 25, 50 using exponential weighted sum.

to avoid having the blocks of different sizes report biased information due to where
activity happens to be in the block1 (e.g. if most of the activity is far from the
center of big blocks it is hard to interpret between block sizes). Figure 4 shows us
this progression with a time delay of τ = 5, Figure 5 shows us this progression with
a time delay of τ = 10, and Figure 6 shows us this progression with a time delay of
τ = 20. All three figures were created with a time series from a chaotic trajectory
with m = 1860.

1We intend to treat this more carefully in the future
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Figure 4. Comparison of Poincaré Section for Top Left Blocks’
of size k = 5, 10, 20, 25, 50 and the mean field (i.e k = 100). Here
τ = 5

Figure 5. Comparison of Poincaré Section for Top Left Blocks’
of size k = 5, 10, 20, 25, 50 and the mean field (i.e k = 100). Here
τ = 10

The difference in the shape being plotted and which (x, y) pairs, when considering
these plots as a package, reaffirm what we know about average spike lengths and
the standard deviation. However by seeing it in this context, we get a better notion
of whether the deviations tend to be above or below the average; in some sense, this
gives us an idea of where space gets distorted by the reset rule. This is demonstrated
by the triangular shapes with a peak around the center of the x axis of the Poincaré
plane. Unfortunately, because we are assuming the system is a step function and
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Figure 6. Comparison of Poincaré Section for Top Left Blocks’
of size k = 5, 10, 20, 25, 50 and the mean field (i.e k = 100). Here
τ = 20

we are placing the plane somewhere in the middle of all the trajectories, the actual
number being reported on each axis is hard to interpret and do not correspond to
any specific time-delay axis. The actual shape shown in the plot however is typically
accurate up to scaling and symmetries since we are looking at the plane “from the
front”. When we consider the Poincaré sections in order of increasing block size we
begin to understand how the dynamics work within E itself; this process can almost
be thought of as adjusting the focus on a camera. Notice that from the 5x5 block
to the mean field the dynamics slowly gain more degrees of freedom as the space
of possible densities grows. By considering where the points start to “appear” (i.e
not overlap anymore) from one block size to the next we can see that certain parts
of the network are where the excitatory layer differs between spikes. The different
embeddings also reveal to us different information about this. For example notice
that when τ = 5 from the 5x5 block to the mean field there is a good difference but
the structure of the shape stays the same. This implies that that general part of the
lattice in this delay, though slightly more varied, had the same type of dynamics.
On the other hand, when τ = 20 from the 5x5 to the 25x25 block this is the case,
but then from the 25x25 block to the mean field the dynamics underwent a rather
fundamental change in their trajectory. This is likely because the larger value of
τ has vectors that spans multiple spikes and reveals to us that where these spikes
really begin to vary is somewhere between the 25x25 block to the mean field. In all
of these cases, we see that the system has strong basins of attraction in the phase
space.

These basins of attraction that are evident in the figures just discussed only
become more interesting once understand how the system moves from one to the
other. Unfortunately, without taking anything else into account, simply the points
passing through the section do not have any insight into how this movement hap-
pens. However by treating those points as a new series {P (i)} that captures the
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order in which the trajectory crosses the plane and plotting (P (i), P (i+ 1))2, we
get a glimpse as to how the system moves from one basin into the next. This tech-
nique is referred to as a Poincaré map and is shown in Figure 7 for τ = 5, in Figure
8 for τ = 10, and in Figure 9 for τ = 20.

Figure 7. Comparison of Poincaré maps for Top Left Blocks’ of
size k = 5, 10, 20, 25, 50 and the mean field (i.e k = 100). Here
τ = 5.

Figure 8. Comparison of Poincaré maps for Top Left Blocks’ of
size k = 5, 10, 20, 25, 50 and the mean field (i.e k = 100). Here
τ = 10

2This is in some sense another two dimensional embedding delay
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Figure 9. Comparison of Poincaré map for Top Left Blocks’ of
size k = 5, 10, 20, 25, 50 and the mean field (i.e k = 100). Here
τ = 20

It is immediately clear that regardless of block size and τ , the blocks are just in
general less informative. The reason for this will literally be shown below but from
these Poincaré maps we can already see that because the blocks do not have all of
the information different basins overlap. Therefore the movement from one basin
into the next looks almost random at times and so the huge number of crossing
lines in the plots make things hard to see. The mean field on the other hand
captures all of the basin’s rather precisely and so they appear in the Poincaré map
as concentrated clusters connected by differentiable bundles of lines. We can now
be rather certain that the chaotic regimes of N(E, I) behave in a very principled
way. By comparing the Poincaré maps of different block sizes as we did above,
we also get a glimpse of where these different basins live in the phase space and
how they divide up this space in the actual configurations of the lattice. It is often
noted that these Poincaré maps almost create a sense of three dimensions. This
is because they are recreating the trajectory of the three dimensional system used
to create them. Since we can see that N(E, I) is travelling from one basin to the
next in a well groomed manner we will look at the time-delay embedding in three
dimensions without using the Poincaré sections. Furthermore, because looking at
these figures in three dimensions makes a side-by-side comparison sensitive to the
perspective by which we look at a trajectory anyway, we are no longer concerned
with a biased comparison and will use data from the weighted block sum because
it provides more spatial information than a regular sum. To help us establish a
notion of orientation, which is not intuitive since we are treating time as a spatial
dimension, we have colored the edges in the figure based on which time axis is firing
from one moment to the next. The color corresponding to each direction is in the
legend at the top of the figure. Though we have these figures for every sized box, we
only include here a couple of telling examples. In Figure 10 we see the trajectories
for the 25x25 block and in Figure 11 we see the mean field. Both are made with
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τ = 5. It should be mentioned that the mean field is also captured as a weighted
sum based on the center-most node.

Figure 10. Three dimensional time-delay embedding with tra-
jectory colored based on axes firing. For blocks of size 25x25 with
exponential weighted decay sum on the nodes.

Figure 11. Three dimensional time-delay embedding with tra-
jectory colored based on axes firing. For the entire lattice with
exponential weighted decay sum on the nodes.

This confirms everything we’d seen in the Poincaré map and then some. In the
Poincaré map we saw the basins overlap, but now due to the inclusion of a sense of
depth we can see that in fact there is ordered movement in the blocks too. In the
mean field a similar conclusion is reached. Previously we could see that in fact one
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basin led to the next in a neat way, now we can confirm that this goes beyond that
and is moving from one basin into the next in a morphologically repetitive way that
requires a huge amount of detail to properly describe (i.e. it moves chaotically).
Both of these points are further reinforced when we compare the trajectory for the
different spike lengths.

Looking at these Poincaré section and delay embeddings we have caught glimpses
into the spatial behavior of our network N(E, I) in phase space. Considering all
that we have seen in conjunction paints a rather vivid picture of how the system
moves. Though we can understand the behavior and know what to expect it is by
no means intuitive. As has been mentioned, this is because in a spatio-temporal
context the trajectory takes sharp turns due to the discontinuous nature of the
system coupled with its high dimensionality. Both of these difficulties arise in the
spatial dimension and so by focusing on temporal representations, though we lose
insight into the trajectory itself, we may get a clear view of the regime.

With that said, we continue to use the idea from the Poincaré section to capture
some temporal information. All we do is have our plane run parallel to the time
axis. This produces a figure such as Figure 12. Note that in this visualization it is
as clear as can be whether the regime is periodic or not. Furthermore, because it
still accounts for the density along one axis, we can also see the individual number
of spikes. It does however present a new problem; chaos looks almost like noise.
By completely removing the spatial axis we can avoid this.

Figure 12. Temporal Poincaré section of meanfield time series

To accomplish this, we use what is known as a recurrence plot. Define our time
series from the time-embedding delays as

x(t) =
{[
|AE(t)|, |AE(t+ τ)|, . . . , |AE(t+ nτ)|

]
: t ∈ T

}
This series, at the very least partially, recreates the network N(E, I)’s movement.
Let t and t′ be any two points in time. By plotting (x(t), x(t′)) whenever x(t) ≈ (t′)
we have a recurrence plot. As will be shown, this plot completely loses information
about the individual spikes (including how many there are) but reports the length
of time in a period. This is acceptable because our goal is to make absolutely
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Figure 13. Recurrence Plot of 1-period from m = 600. Note 0
here represents the 9500000th time step.

Figure 14. Recurrence Plot of 2-period from m = 1180. Note 0
here represents the 9500000th time step.

clear the general type of dynamic regime, which it does, and we already have
visualizations that can show us this information. In Figure 13 we see a 1-period
gathered from m = 600, in Figure 14 we see a 2-period gathered from m = 1180,
in Figure 15 we see a 24-period gathered from m = 1550, and lastly in Figure
16 we see chaotic spiking gathered from m = 1860. We created these plots using
t, t′ ∈ [9500000, 10000000] and a ten dimensional embedding delay with τ = 1. To
capture some more information about the basins of attraction and also to make the
plot less spare and easier to see, we plot (x(t), x(t′)) when both are within a ball
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Figure 15. Recurrence Plot of 24-period from m = 1550. Note 0
here represents the 9500000th time step.

Figure 16. Recurrence Plot of chaotic spiking from m = 1860.
Note 0 here represents the 9500000th time step.

of radius that minimally contains 10 points. We note that every one of these plots
loses details due to the extremely fine lines borne from having them made with
≥ 10000 time steps. Regardless, these plots still make clear the regime. For this
reason we unfortunately cannot do a proper analysis on the entirety of the plot,
but we would have noticed that periodic regimes form stripes while chaos is messy
but structured. To see this we include Figure 17 as an example.
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Figure 17. Recurrence Plot of chaotic spiking from m = 1860
zoomed in to only account for the first 5000 time steps

4. Summary

We studied various network architectures with inherent oscillatory dynamics
defined over these network structures. We implemented recurrent networks with
feedback loops. Recurrent networks allow complex dynamics, such as oscillations
in narrow and broad bands. We have observed very long oscillations, which have
periods exceeding the monitoring window of 10,000 time steps. There is an inti-
mate link between network structure and dynamics. Namely, we documented very
complex (chaos-like) dynamics based on phase diagrams, Poincare sections, and
recurrence plots. The produced spatio-temporal oscillations are self-sustained, thus
they are very useful in the implementation of the the energy-efficient computing
and learning tasks developed in other tasks of the project. These results, combined
with learning rules developed in other tasks, have the potential of drastically in-
creased memory capacity when these networks are used as associative memories to
implement a machine learning task.


