
 1

DARPA Report on Project: Superior AI Study, HR0011-16-0006

Task 4: Super-Turing Analog Hardware

Edward Rietman, U. Mass., Amherst

The following few pages describe work done associated with Task 4, Super-Turing
analog hardware. The students involved in those subtasks wrote each main subsection.

One full-time grad student (Adam Kohan) has been working on simulating quasiperiodic
oscillators for control of a robot (a simulated robot).

A second student, Harikrishnan Sreedharan Pillai in the EE department has been
working with his professor, Sandip Kundu, in designing a chip to for neuromorphic
computing and security applications. The chip is scheduled for manufacturing in
September and should be ready for evaluation early in ’18.

A third student, Hia Ghosh, has previously reported on numerical simulations, now
reports on initial work of comparing SPICE simulations with hardware. Her report, at this
point is preliminary.

Project 1: Simulation of Robot(s) with Quasiperiodic Oscillators as Computational
Engines

Adam Kohan

We developed a realistic and sophisticated genetic, or evolutionary, algorithm for online
construction of organized complex networks possessing intrinsic topological
organizations of the brain for capturing the representational power of neuron
populations from the brain in artificial neural networks. The greater than Turing
computational power of neural networks has long been shown [1][3][4]. However, we
believe it is the architecture of the network that lends itself to the representational
efficiency of that computational power (computational complexity) [2][5][6][7]. The
architecture of the brain provides efficient computational power and is correlated with
the complex interactions of functions represented by neuron populations in the brain
that support higher-level intelligence [8][9][10][11]. For this reason, we devised an
algorithm from relevant models in genetics, neuroscience, and computational
neuroscience that elucidate the underlying processes of topological organizations in the
brain. We matched the models with their corresponding time-line in the development of
the brain across generations and in individual lifespans.

The time-line separates the algorithm into three distinct stages that overlap through time
in the lifespan of the neural module or reservoir. The algorithm designs, constructs, and
continuously shapes a reservoir of spiking neurons, wherein the brain is modeled as a

 2

network graph with neural units as nodes linked by structural and functional connectivity
as the edges. In the design stage, the neuron types, connectivity types, spatial
organizational, and functional groups are determined, fine tuned, and revised. In the
construction and shaping stages, the reservoir is grown by laying down scaffolding, and
then by iterations of neuron proliferation, neuron migration, synapse formation, and
synapse pruning during semi-supervised training of the reservoir. The construction
stage focuses on learning the structures of the reservoirs. Conversely, and in
complement, the shaping stage primarily directs functional learning and is defined by
activity and resource dependent local learning rules mediated by reinforcement
learning.

We implement a model of the spiking neuron using Leaky Integrate and Fire (LIF)
dynamics with conductance based synapses whose decay is an exponential function.
The dynamics of the membrane potential, V, is:

 (1)

where Cm is the capacity of the membrane, and there are three currents. The equation
of the leak current, Ileak, is:

 (2)

where Vrest, is the resting membrane potential and tm is the membrane time constant.
The conductance based synaptic current is described by:
 (3)

where Vk, is the reversal potential. The sum is over the set k of synapses: the excitatory
synapses (e), the inhibitory synapses (i), and the external synapses (x). External
synapses may be inputs into the network, noise, or an offset. The exponential decay of
the synapse is:

 (4)

where tk is the decay time of the synaptic conductance. Finally, the spiking current, Ispike
, is controlled programmatically such that when the membrane potential at time t, V(t),
reaches the threshold Vthresh, the neuron spikes and the membrane potential is reset to
Vreset for a refractory period of tref.

We chose the conductance based LIF model because it is the simplest possible
biophysical representation of the neuron that captures many common features
biological neurons share. In the sub-threshold regime, the membrane acts as a leaky
capacitor whose potential decays to a resting voltage level. However, as soon as the
membrane potential reaches the threshold, a critical value, the membrane potential
spikes to a higher amplitude, propagates the corresponding short voltage pulse along
the axon, and resets to a hyperpolarized voltage level for a refractory period.

!
Cm
dV
dt

= −Ileak − Ispike − Isyn

!!
Ileak =Cm

(V(t)−Vreset)
tm

!!
Isyn = Gk(t)(V(t)−Vk)

k=e ,i ,x
∑

!!
dGk(t)/dt =

−Gk(t)
tk

 3

The addition of the conductance based synaptic current models transmitter-activated
ion channels involved in transmission across the synaptic cleft that results in an
excitatory or inhibitory postsynaptic current. The current depends on the difference
between the reverse potential Vk and the value of the membrane potential V(t). The
reverse potential adjusts the direction of current across the cell membrane to maintain
the equilibrium voltage of the synapse. The time dependent conductivity, Gk(t), is a
superposition of exponentials, of which an exponential decay is a simple representative
choice. The result is a better model of the neuron's integrative properties as effected by
several fold conductance increases from synaptic activity, in contrast to increased
current. The neuron can be induced to fire through increasing the excitatory presynaptic
rate, decreasing the inhibitory presynaptic rate, and unbalanced changes in the
variance of the excitatory and inhibitory presynaptic rate.

Figure: Example of “evolved” complex neural network, or artificial neocortex. The
network on the left is one example of the many network modules comprising the overall
structure. The entire system is built from models of spiking neurons.

At this point we have completed the software for “evolving” a complex cortical tissue-like
artificial neural network. The Figure above shows an example of the overall network and
one of the modules. Tests are currently underway to train it on NIST data, speech
identification, and object recognition. To complement this we have designed a training
regiment resembling environmental complexity in nature by providing data with variation
in problem domains (vertical complexity) intermixed with periods focusing on data from
a single problem domain (horizontal complexity). This is important, because the
generalization and functionality of the overall system is dependent on the breadth and
depth of training data processed early in the construction and shaping stages. That is to
say, the neural system is then inherently multi-objective.

 4

Results
The network design portion of the algorithm is in progress. The network design portion
is responsible for the underlying organization of the network. Without an underlying
organization, the networks are being generated using random fundamental units and
settings. They have many of the properties of brain networks, but no underlying
organization matching the problem domain.

The network construction portion of the algorithm is being tested using the datasets
below.Accuracy varies widely depending on the random configuration of a generated
network. This indicates that network organization is a considerable factor in learning. As
such, accuracy should greatly improve once the network design portion of the algorithm
is complete. In addition, the full training set has not yet been utilized for any of the
datasets. Increasing the number of training samples has been shown to increase the
accuracy by 5-10 percent.

The networks are treated as reservoirs with lasso regression used to assign output
nodes to class labels. (Note that the network will not use lasso regression once the
network design portion of the algorithm is ready for testing as the network will learn the
response itself.) If the spiking network is viewed as filter, then the output nodes are
indicators of class labels, either individually or as a group vote. Using lasso regression,
the features (output nodes) for each class may be selected from the network and used
to make a predication.

Alternatively, lasso regression was replaced with spike time dependent plasticity
(STDP) in all the edges connected to output nodes. After training with STDP, the
network is run on the training data with STDP disable, and output nodes for each class
label are identified. The weight is updated on a postsynaptic spike event by the rule

Δw=l(x pre−xcon)(wmax−w)u

where x_pre is the presynaptic trace, which increases by one for each presynaptic
spike. The learning rate is l. The maximum weight is w_max. The dependence on the
previous synaptic weight is determined by u. Finally, x_con controls the disconnection of
presynaptic neurons that rarely fire.

The networks are tested both on the MNIST dataset and the Spoken Digit Dataset
without modification. However, lasso regression is retrained for each dataset.

MNIST
With 10,000 to 30,000 out of 60,000 training samples and only a single iteration
showing the training to the networks, the networks mean performance is between 35 to
50 percent accuracy on a test set of 10,000 samples.

Spoken Digit Dataset
With 100 out of 900 training samples and only a single iteration, the network mean
performance is between 30 to 50 percent accuracy on a test set of 100 samples.

 5

Future Work

During development, constructed networks are tested without modification on each of
the testing datasets to ensure its capability to generalize. Our goal is for the networks to
generalize to different problem domains without reconstruction. Finally, the networks will
drive robots in 2D and then 3D environments.

The simulated environments will include multiple problem domains with which the
networks must interact in a complex manner to survive. While there is no explicit goal in
the simulated environments, the networks must manage multiple goals intertwined with
their intrinsic needs. Intrinsic needs are initially driven by a lack of system resources.

References
1. Cybenko., G. (1989) "Approximations by superpositions of sigmoidal functions",
Mathematics of Control, Signals, and Systems, 2 (4), 303-314
2. Kurt Hornik (1991) "Approximation Capabilities of Multilayer Feedforward Networks",
Neural Networks, 4(2), 251257. doi:10.1016/0893-6080(91)90009-T
3. Siegelmann, H. T. and E. D. Sontag (1991). Turing computability with neural nets,
Applied Mathematics Letters, 4, 77-80.
4. Siegelmann, H. and E. Sontag (1995). On the computational power of neural nets, J.
Comp. Syst. Sci., 132 – 150
5. D. Srinivasan, A.C. Liew, C.S. Chang, A neural network short-term load forecaster,
Electric Power Systems Research, 28 (1994), pp. 227234
6. X. Zhang, Time series analysis and prediction by neural networks, Optimization
Methods and Software, 4 (1994), pp. 151170
7. D.L. Chester, Why two hidden layers are better than one? Proceedings of the
International Joint Conference on Neural Networks, 1990, pp. 12651268.
8. Daniel P. Kennedy, Eric Courchesne, The intrinsic functional organization of the brain
is altered in autism, NeuroImage, Volume 39, Issue 4, 15 February 2008, Pages 1877-
1885
9. C.J. Stam, E.C.W. van Straaten, The organization of physiological brain networks,
Clinical Neurophysiology, Volume 123, Issue 6, June 2012, Pages 1067-1087
10. M.P. van den Heuvel, C.J. Stam, M. Boersma, H.E. Hulshoff Pol, Small-world and
scale-free organization of voxel-based resting-state functional connectivity in the human
brain, NeuroImage, Volume 43, Issue 3, 15 November 2008, Pages 528-539
11. E. Bullmore and O. Sporns, "The economy of brain network organization", Nature
Rev. Neurosci., vol. 13, no. 5, pp. 336-349, 2012

 6

Project 2: Neuromorphic Chip for Pattern Recognition and Security Applications

Harikrishnan Sreedharan Pillai and Sandip Kundu

In this research project, we are designing an ASIC chip, which would function as a
Quasi Periodic Oscillatory Machine for pattern recognition and as a security chip for
authentication purposes.

Introduction

The ASIC chip being designed in this project would function as a Quasi Periodic
Oscillatory Machine(QPOM) for pattern recognition and as a security chip for
authentication purposes.

The spiking neural network based Quasi Periodic Oscillatory Machine (Q-POM) would
perform real-time computations on continuous streams of data. The information is
stored as spatio-temporal patterns inside the recurrent neural network during training
phase. This can be used like an associative memory for pattern recognition based
applications. We will also be exploring possible computational properties from the
oscillations of Q-POM.

Neuromorphic Chip

The neurons of our chip are based on Integrate and Fire model. It has the capability to
have a memory of accumulated weighted sum in case the they did not fire. It can also
decay that sum based on specified decay rate. The neurons have the capability to
remain idle for specified refractory period after it fires.

Shift	 Register	 Chain	 –	 160	 	 	 (128	 will	 act	 as	 Neuron	 State)

8	 	 x	 (4Input	 5	 Bit	 Accumulators	 and	 Thresholding	 Circuit)

Background	 	 Block	 (Calculate	 Decayed	 Sum	 Or	 Refraction	
Target	 of	 8	 Neurons)

128	 Refractory	
Registers

``

`128	 x	 128	 x	 5	 Weight	 Matrix	 SRAM	 Array

SRAM	 2
Decay	 and	
Threshold

SRAM	 3
Decayed	 Sum/
Refractory	

Cycle

I/O	 from	
Raspberry	

Pi

 7

Block Diagram of Neuromorphic Chip

The fully digital chip being designed has 128 neurons. Each neuron can have its own
programmable threshold for firing and one among the 16 decay rates. The chip can
have up to 16 iterations. The SRAM array will store the 128 x 128 weight matrix that
defines the connections between neurons. The weights are stored in 2’s complemented
representation to support both excitatory and inhibitory connections and are of 5 bits. All
neurons will have the same refractory period and it can be up to 16 iterative cycles.

The chip has a 160-register long shift register chain to which the inputs are driven from
a Raspberry Pi. The weights are stored in the main SRAM array which is 128*(128 *5)
cells big. Threshold (12 bits) and decay rate (4 bits) of each neuron will be stored in
SRAM 2. If the neuron does not fire, the accumulated sum decayed by the specified
rate, is stored in SRAM 3. Else, the iteration cycle up to which the neuron will be
refracting is stored in SRAM3. The chip processes 8 neurons at a time in the 8
accumulators and thresholding circuitry. Background Block calculates the decayed sum
based on decay rate simultaneously. It also calculates the target iterative cycle till which
neuron would refract in case neuron does fire. This block will also have the comparator
to check if current iterative cycle is the one till which the neuron refracts. The chip has
another 128 registers to store the refractory information of each neuron.

Neuromorphic Chip as QPOM

While using the chip as Quasi Periodic Oscillatory Machine, we will first give a weight
matrix based on training data. Then we drive in the decay rate and threshold of each
neuron and configure the iteration count and the refractory period. 24 of the 128
neurons are kept aside as the input neurons. We drive in the 24 bit first input and iterate
for specified number of cycles to get the first output. This is read out. For the music
application simulated, this itself is the next input. In simulation, we generated 1 bar of
music from a single note.

Neuromorphic Chip for Pattern Recognition (Hopfield Network)

SRAM3, background block and refractory registers are not used when chip is used in
this mode. The iteration count is configured and trained weight matrix is driven in from
Raspberry Pi. The thresholds for all 128 neurons are set. Then the input which is 128-bit
messed up pattern is driven in. The chip would iterate for specified number of iterations.
After the iterations are over, the output can be read out and is the correct pattern. We
also plan to store more patterns in the matrix than the theoretical limit of Hopfield
network and is planning to explore the oscillations for possible computations.

Neuromorphic Chip for Hardware Security

 8

Physically Unclonable Functions (PUFs) have been successfully used for authenticating
hardware modules at a low cost. The main advantage of using PUFs is that, the secret
key used for authentication is a function of process variations of individual chips.
Invasive attempts to decipher such a key would affect the characteristics of the chip and
would effectively alter the key.

Weak PUF generally have only one response which is dependent on process variation
and is used for key generation. Strong PUFs have many challenge response pairs
(CRPs) and can be used for authentication. SRAM PUF is a weak PUF wherein the
power on state of the SRAM provides unique signature to a chip. In this work, we
combine the weak SRAM PUF with spiking neural networks to form a Strong PUF with
multiple challenge response pairs (CRPs).

 + =

When the chip is used as Strong PUF, we do not drive in any weight matrix into the
array. The power on State of the SRAM (fingerprint) will be the weight matrix. We drive
in the decay rate and threshold of each neuron. Then we should configure the iteration
count and the refractory period. Now we could give the challenge, and let the chip
iterate for the specified iteration count and read out the response. We can have up to
2128 challenges. This PUF is expected to be machine learning resilient as it has 80kbits
of states of weight matrix to be learned. Another hypothesis is that this PUF would not
require denoising circuitry since the spiking neural network would be resilient to faults
(unexpected ‘power on states’ of some of the bit cells).

Project Status

We have simulated the music application in software and could play the whole Daisy-
Daisy song from a single music note and 4 weight matrixes. The Hopfield network
based pattern recognition was also simulated in software wherein weight matrix was
trained with 8 patterns each of 128 bits. The chip was able to successfully detect
messed up patterns. Based on these simulations, the specifications for neuromorphic
chip were finalized. The architecture of chip was then finalized after considering
different design alternatives with minimum area and power in mind. The RTL design and
behavioral simulation of the chip is completed except for the interface module. Design
libraries for chip have been procured from MOSIS. The memory compilers were
obtained from ARM. The chip is expected to be given to fab for fabrication in October.

Power On State
Based Weak

PUF

Spiking Neural
Network

Power On State
Based Strong

PUF

 9

Project 3: Hardware Construction of Neuromorphic Systems Based on
Oscillators.

Hia Ghosh

As shown in the above graph our goal is to demonstrate in simulations (SPICE or
numerical) and in hardware the usefulness for massive content addressable memory
based on oscillatory computing. This will have clear applicability in advanced AI.
Quantitatively we will achieve results similar to the graph above, i.e. 3 to 5 orders of
magnitude more memory states than a Hopfield network.

From prior experiments we have demonstrated that the number of states in a 14-node
machine is capable of 64 stable states.

Theoretically, the number of stable states follows a 2-ary necklace function.

 ∑
=

++−=
)(

1
)]1()1()[(1)2,(

nv

i
iii dFdFd

n
nN φ , [1]

 10

where id are the divisors of n with ndd nv ==)(1 ,1 ;)(nv is the number of divisors of n;
)(nφ is the totient function, F(.) is the Fibonacci sequence (see mathworld.wolfram.com

for details). The totient function is also called the Euler Totient function is given as the
number of positive integers less than n, which are relatively prime to n (Rietman, et al.
2003).

We also know from previous work that connecting ring circuits together results in
computation that can be interpreted as Boolean logic. Indeed much of the ground work
for applications of these oscillatory circuits have been developed by Izhikevich and his
colleagues.

PSPICE simulation results:

Previously we reported on preliminary numerical results for quasiperiodic oscillators.
Now we extend that with PSPICE simulations and preliminary hardware experiments.
Basically our findings are that SPICE simulations do not behave as the hardware
experiments. Though these results are preliminary, it appears that the simulated circuits
do not even oscillate. This non-oscillatory behavior in SPICE of simulations of theses
circuits has been discussed with personnel in the EE department and we will be
following up on this.

The figure above shows a schematic of the circuit for a four-node machine. There were
two initial problems.

1) Initial conditions for capacitor: Since this is a feedback circuit, the simulator
returned errors thinking the capacitor wasn’t fully connected. Setting an initial
voltage to the capacitors didn’t help. As a result, we added resistors of large
value in parallel to the capacitors to “complete” the circuit.

 11

2) There is no way to manually toggle switches for input to the network in spice
simulations. Once a switch is turned on, it remains on for the entirety of the
simulation. As a result there could be no real time changes observed with
triggering voltages in the circuit. To deal with this problem, we used pulse voltage
sources instead of switches. We sent a short duration pulse as an input and then
the pulse source would remain at zero voltage for 100 seconds. The parameters
of these sources are shown as follows:

In the above graph there is an initial pulse, the input signal to the neural oscillator, of
duration 8 seconds. The system is allowed to then “free run”. As can be seen, no
oscillations are observed. This is ongoing research.

 12

Hardware results
We built a similar circuit, without the added 1GOhm shunt resistor on the capacitor and
observed oscillations in the four-node machine. These are the results of triggering a 4-
node circuit and observing the changes in oscillation and the stable states thereafter. In
the screen dump from the digital analyzer the first trace is the group of all. The next four
traces are for each of the individual neurons. The following 12 traces are ground. (The
logic analyzer has probe sets of 16 channels. Unconnected channels are ground.)

Conclusion:

These preliminary results indicate that the dynamics in the hardware is richer than in the
SPICE simulations. We expect to, in the future, observe real interference in pulse trains
of connected quasiperiodic oscillators. One of our main goals, as pointed out above, is
to demonstrate 3 to 5 orders of magnitude in memory storage. We also plan to
demonstrate that with a programmable resistor array (similar to the chip we are having
manufactured through MOSIS) spike time dependent plasticity or similar analog
behavior. This, however, is a little way into the future yet.

 13

Our next tasks are to finalize the PSPICE/hardware discrepancy and to outline a
method to analyze these circuits using group theory.

References

Hopfield (1982), “Neural Networks and Physical Systems with Emergent Collective
Computational Abilities,” Proc. Natl. Acad. Sci. USA, 79, 2554-2558.

Hopfield (1984), “Neurons with Graded Response have Collective Computational
Properties like those of two-state Neurons,” Proc. Natl. Acad. Sci. USA, 81, 3088-3092.

Hoppensteadt and Izhikevich (1999), “Oscillatory Neurocomputers with Dynamic
Connectivity,” Physical Rev. Lett. 82, 2983-2986.

Hoppensteadt and Izhikevich (2000), “Pattern Recognition via Synchronization in
Phase-Locked Loop Neural Networks,” IEEE Trans. on Neural Networks, 11, 734-738

Rietman, et al. (2003), “Analog Computation With Rings of Quasiperiodic Oscillators:
The Microdynamics of Cognition in Living Machines,” Robotics and Autonomous
Systems, 45, 249-263.

