
	
 1	

DARPA Report Task1 for Year 1 (Q1-Q4)

Task 1: Machine Learning with Spike-Timing-Dependent Plasticity (STDP)

1. Shortcomings of the deep learning approach to artificial intelligence

It has been established that deep learning is a promising approach to solving certain problems in
artificial intelligence (AI) for which large amounts of data and computation are readily available
[1]. On the other hand, tasks which require quick yet robust decisions in the face of little data, or
a reasonable response despite the presence of an anomalous event are ill-suited for such an
approach [2]. While it is true that deep learning has accomplished groundbreaking new baselines
on many tasks in the domains of image processing [3], sequence learning [4], and others, these
success stories have necessarily been accompanied by large, labeled datasets and increasingly
powerful computers. Massive computation, and therefore energy expenditure, is required for the
training of the increasingly complex models

To circumvent some of these shortcomings, we take inspiration from the energy efficient,
massively parallel, and unsupervised brain. Mammalian brains are especially capable at complex
reasoning, long-term planning, and other high-level functionalities, some that seem to be far out
of the scope of deep learning systems. For this reason, taking advantage of the biological
mechanisms employed by the brain (e.g., learning through plasticity, incorporating the relative
timing of events, and massive parallelization) may enable the development of AI programs with
similarly useful behaviors or properties.

2. Spiking neurons and spike-timing-dependent plasticity (STDP)

2.1 Spiking neuron and synapse models

The first step towards designing a more robust approach to machine learning with neural
networks is to incorporate more powerful computational units. In a typical deep neural network
(DNN), the basic computational operations include simple weighted sums, nonlinear activation
functions, convolutions, pooling, and normalization layers, among others. A common feature of
these computations is that they do not incorporate a sense of time, and unlike biological neurons,
which demonstrate an all-or-nothing response via an action potential, they communicate by
sending precise floating-point numbers downstream to the next layer of processing units.

A natural choice for a biologically inspired unit of computation is the leaky integrate-and-fire
neuron, a simplified model of a neuron. In our models, we use a network of these units, some of
which are excitatory (exciting the neurons to which it connects), and some of which are
inhibitory (inhibiting the units to which it connects). The membrane voltage V is given by

Here, 𝐸!"#$ is the resting membrane potential, 𝐸!"# and 𝐸!"! are the equilibrium potentials of
excitatory and inhibitory synapses, respectively, and 𝑔! and 𝑔! are the conductance of excitatory
and inhibitory synapses, respectively. The time constant tau is chosen to be longer for excitatory

	
 2	

neurons than for inhibitory neurons, as observed in biology. When a neuron’s membrane
potential exceeds its membrane threshold 𝑣!!!"#!, it fires an action potential and resets back to
𝑣!"#"$. The neuron then undergoes a few-milliseconds refractory period, during which time it
cannot spike. The values of the remaining variables of the neuron equations are also chosen to lie
in a biologically plausible range, expect for that of the excitatory membrane potential. Increasing
this time constant to from the experimentally observed 10-20ms to 100ms greatly increased the
classification accuracy of the spiking neural network model introduced in [5], which we retain in
the models we have developed.

Synapses are modeled by conductance changes; that is, a synapse increases its conductance at the
moment a presynaptic action potential arrives by its synaptic weight 𝑤 [6]. Otherwise, the
conductance is decaying exponentially. The dynamics of the synaptic conductance (for an
excitatory synapse) are given by

Again, the associated time constant lies in a biologically plausible range. If the presynaptic
neuron is instead inhibitory, the same update equation is applied, albeit with a different
associated time constant.

2.2 Spike-timing-dependent plasticity

In our network models, we used spike-timing-dependent plasticity (STDP) to modify the weights
of the synapses between certain designated neurons. For the sake of computational efficiency, we
use online STDP, in which each synapse keeps track of a value 𝑥!"# (the synaptic trace), a
simplified model of its recent presynaptic spike history. Each time a presynaptic spike arrives at
the synapse, 𝑥!"# is set to 1; otherwise, it decays exponentially towards zero. When a
postsynaptic spike arrives at the synapse, the weight change Δ𝑤 is calculated using a STPD
update rule, the simplest of which we use is given by

The term 𝜂 denotes a learning rate, 𝑤!"# the maximal allowed synaptic weight, and 𝜇 a
parameter which governs the dependence of the weight update on the value of the previous
weight. We also tested three other STDP rules in our models, where the first introduces
exponential dependence on the weights prior to the update, the second uses both a presynaptic
trace and a postsynaptic trace, where postsynaptic spikes trigger a decrease in the corresponding
synaptic weight, and the fourth uses a combination of these last two mechanisms. Consult Figure
1 for a schematic of the online STDP scheme.

	
 3	

Figure 1: Illustration of STDP operational principles

There may be many more STDP rules worth testing in our networks, but as these rules are
conceptually and computationally simple, they are a good starting point from which to develop
our learning algorithms further. Moving forward, testing more empirically validated STDP rules
will be a crucial step in developing a more complete framework for our network models.

3. Network models

3.1 The MNIST dataset

Currently, all experiments with our spiking neural network models are on the MNIST
handwritten digit dataset [7], which contains 28x28 pixel grayscale images of digits scanned
from tax records, and their corresponding numeric labels; e.g., an image of the digit “1” is paired
with the label 1. Each pixel is given by an integer in the range [0, 255], with 0 and 1
corresponding to completely white and completely black pixels, respectively. There are 60,000
training and 10,000 test examples, which are used to train and test a machine learning model.
This problem is widely considered to be solved in the domain of supervised learning, as
relatively shallow convolutional neural networks able to obtain test dataset classification
accuracies greater than 99%. However, we chose to continue to develop our networks on this
dataset before moving onto the more challenging CIFAR-10 or ImageNet image datasets for its
manageable dimensionality and complexity, as we lack an efficient parallelized software
implementation of spiking neural networks.

3.2 Baseline spiking neural network (SNN)

Our spiking neural network models are based on the network described in [1], which we will
abbreviate as SNN. The network’s architecture is comprised of three layers: an input layer, a
layer of excitatory neurons, and a layer of inhibitory neurons. The input layer has a number of

	
 4	

neurons equal to the dimensionality of the input (784 in the case of the MNIST digit dataset),
each of which is a Poisson spiking neuron [8] whose expected average firing rate is determined
by the intensity of the input pixel which it corresponds to.

The input is connected to the excitatory layer with excitatory synapses in an all-to-all fashion,
whose weights are learned during network training using one of the described STDP rules. The
number of neurons in the excitatory layer is arbitrary, but equal to the number of neurons in the
inhibitory layer. The excitatory neurons are connected in a one-to-one fashion with the inhibitory
neurons, and each inhibitory neuron connects to the all neurons in the excitatory layer, except for
the one from which it receives an excitatory synapse. Consult Figure 2 for a schematic of this
network architecture.

Figure 2: Baseline spiking neural network (SNN)

The weights of the synapses from excitatory to inhibitory layers are fixed such that a spike from
an excitatory neuron will trigger a spike in the corresponding inhibitory neuron, which will in
turn inhibit all other inhibitory neurons by a fixed amount, leading to competition between the
neurons of the excitatory layer. While training the network, we set the input of the network to
each data sample, one at a time, for 350ms each, solving the neuron and synapse equations with a
time step of 0.5ms, after which we let the network settle back to equilibrium over a 150ms rest
period, before running the next sample. After the training phase is complete, one thousand
samples from the training data (split evenly between all digit classes) are used to set the labels of
the neurons in the excitatory layer; e.g., a neuron is assigned the label ‘7’ if it spiked the most
overall for the data samples labeled 7. These labels are used in turn to classify the test data; i.e., a
new data point is labeled ‘1’ if the number of spikes attributed to class ‘1’ (counted by summing
all spikes from neurons labeled with ‘1’) is greater than the number of spikes associated with any
other class. We call this the “all” voting scheme.

3.3 Convolutional spiking neural networks (CSNNs)

	
 5	

Our first modification to the SNN architecture was loosely based on the widely utilized
convolutional neural networks (CCNs) found in the deep learning literature [9]. Instead of
connected all neurons in the input layer to each neuron in the excitatory layer, such as with the
SNN model, we connect regularly-sized and spaced chunks of the input neurons to specific,
spatially arranged neurons in the excitatory layer, populations which we call patches. Each
neuron in an excitatory patch connect to a unique inhibitory neuron, which in turn inhibits all
spatially similar neurons in all other excitatory patches; e.g., if the upper-left neuron in the first
excitatory patch fires, its corresponding inhibitory neuron will inhibit the upper-left neuron in all
other patches.

This modification was introduced in part because the SNN model tends to memorize prototypical
images from the dataset by storing their pixel values as a particular excitatory neuron’s synaptic
weights. Although these stored digits tend to smooth out irregularities present in the image data,
this scheme clearly does not achieve a compact compression.

Figure 3: Example convolution filters following STDP learning process; (a) top plot: with
employing weight sharing; (b) bottom plot: no weight sharing.

We define a convolution size 𝑘, covering a square region of size 𝑘 𝑥 𝑘, stride length 𝑠, which
determines the number of neurons we shift by, horizontally and vertically, across the input, and
number of convolution patches 𝑚, which allows us to control the capacity of the model; i.e., how

	
 6	

many features of the input to learn. The convolution window, which covers the upper-left corner
of the input connects to the upper-left neuron in each excitatory patch; likewise, the window
which covers the bottom-right corner of the input connects to the bottom right neuron in each
excitatory patch. We call the set of weights on the synapses, which connect a convolution
window to a neuron in the excitatory layer a filter, two collections of which we’ve included in
Figure 3a and 3b.

The implementation of CNNs typically includes a mechanism called weight sharing, in which all
neurons within a patch learn and share a common set of weights. This drastically reduces the
number of learned parameters in the convolutional layer, and gives rise to translational
invariance, a property, which allows a convolutional layer to detect a single feature at any given
location in its input. We implemented our CSNN model both with and without this feature, and
discovered that in general, our networks accomplished much greater accuracy without it. This is
due in part to the shallowness of the models we’ve tested, the relatively few parameters involved
in the training process, and the difficulty in designing a weight-sharing mechanism with spiking
neurons whose behavior is determined by ordinary differential equations.

We introduced a few new voting schemes to achieve a better classification accuracy with this
model’s architecture in mind. The first, which we refer to as the “most-spiked per patch”, counts
only the spikes from the neuron in each excitatory patch, which spikes the most out of all other
neurons in the patch. This mechanism was designed with weight sharing in mind: If a neuron in a
patch detects the filter it has learned, there is a good chance that feature does not appear
elsewhere in the input, especially for large convolution window size. Another voting scheme,
called “top-percent”, counts only the spikes from the neurons whose spike count over the
iteration lies in a certain top percentile; e.g., the top 10th percentile. Neither of these voting
schemes greatly improved the training and test accuracy of the spiking network models, but
under certain conditions, we may prefer one voting scheme to another.

3.4 Convolutional spiking neural network with between-patch connectivity (CSNN-PCs)

A further modification of the baseline SNN architecture added excitatory synapses between
neurons in separate patches in the layer of excitatory neurons. These weights are also modified
by STDP, typically with the same rule and parameters as with the synapses from the input to the
excitatory layer. We tested several connectivity schemes between excitatory patches, and
connectivity schemes between the constituent neurons in the patches. For example, we
experimented with connectivity between all patches and between adjacent pairs of patches, and
connected neurons to those in other patches whose receptive fields lay adjacent to its receptive
field. See Figure 4 for an example of the latter connection scheme, and Figure 5 for a diagram of
the network architecture, also useful for understanding the CSNN architecture.

	
 7	

Figure 4: 8-Illustration of lattice connectivity in the proposed CNN with lateral patch
connections; connections are shown from patch i to i+1; reciprocal connections from i + 1
to i are omitted for clarity.

Figure 5: Convolutional spiking neural network with between-patch connectivity

4.

	
 8	

5. Accuracy of the results

5.1 SNN Baseline

We trained and tested the SNN architecture from [5] using the four STDP rules described above.
We averaged their accuracies on the MNIST test data averaged over three trials after training on
a single pass through the training data, long after their accuracies had converged. The results are
reported in Table 1.

Table 1: SNN model accuracy by STDP rule

Since the STDP rule which included presynaptic modification was the clear victor in these
experiments, we use this rule in the rest of the experiments described in this report.

We trained and tested the SNN architecture with 25, 50, 100, 200, 400, 800, 1600, 3200, and
6400 excitatory and inhibitory neurons, running three trials per model, and averaged their results.
We plotted the results of these experiments in Figure 6, along with a deep convolutional neural
network baseline, depicted in orange. We note that, as the number of excitatory and inhibitory
neurons increases, the network’s capacity increases and approaches the accuracy of the CNN.
The larger networks are able to memorize more prototypical digit patterns than their smaller
counterparts due to their larger capacity.

Figure 6: SNN test accuracy vs. number of excitatory neurons

5.2 CSNNs and CSNN-PCs

We trained and tested a number of CSNN and CSNN-PC models. Notice that a CSNN is a
CSNN-PC in the special case that the connectivity scheme between patches includes no

	
 9	

connections. We include results for a number of networks trained on a single pass through the
MNIST digit dataset in Tables 2 and 3. Here, the abbreviations “WS” and “NWS” correspond to
weight sharing and no weight sharing, “None”, “Pairwise”, and “All” refer to the connectivity
scheme between patches, and “All”, “Most-spiked”, “Top percent”, and “Corr. clustering” refer
to different excitatory neuron voting schemes. We found that convolution size 𝑘 = 12, 14, 16, no
weight sharing, and the “All” voting scheme produced the best results reliably, and plan to
continue our experiments with these parameters in mind.

Table 2: 8-lattice connectivity, 50 patches, stride 2 (except stride 1 for k = 26, 27)

	
 10	

Table 3: 4-lattice connectivity, 50 patches, variable stride

	
 11	

6. Comparison – Deep neural networks vs. spiking neural networks

An important motivation for this work was to circumvent some of the drawbacks, which are
typical to the deep learning approach to AI. Here, we include remarks of the relative
computational efficiencies of our spiking neural network models and those used in deep learning.
We note that these comparisons are necessarily incomplete and crude approximations, as our
approach with SNNs is largely untested and there does not yet exist software frameworks for the
fast, parallel simulation of comparably sized models.

6.1 Memory

In order to run the training phase of the spiking network models, we must record synaptic traces
(for modifiable synapses) and conductance, neuron membrane potential, and elapsed time
between Poisson spiking neuron spikes. This amounts to 2 ∗ 784𝑛! values stored for pre- and
post-synaptic traces, 784𝑛! + 𝑛!! values stored for synaptic conductance, and 784 values stored
for the elapsed time between Poisson spiking neuron spikes. Empirically, we found that
simulations of various size were able to run on laptop machines with 8Gb of memory without a
problem.

The spiking neural network models have the potential advantage of being more memory efficient
then their deep learning counterparts. Deep neural networks must cache the results of its layer-
wise computation produced during its forward pass, and use these cached results to compute its
backward pass. This effect is again proportional to the number of layers utilized in the deep
neural network.

6.2 Convergence speed

While training the CSNN and CSNN-PC models, we observed that the number of data samples
needed to train the model to its optimal accuracy was much fewer the number of samples needed
for a CNN. We include a plot of the training accuracies over time of both a CSNN and and a
CNN, both selected from their respective class of models to be particularly high performing, in
Figure 7. Our spiking neural network models converge faster than typical deep learning networks
to reasonable classification accuracy levels, partly because they have to train less parameters. For
a comprehensive performance evaluation, extensive experimentation is in progress.

Figure 7: Training accuracy of CSNN vs. CNN models

	
 12	

7. Conclusions and Future Work

Our convolutional spiking neural network models with lateral patch connectivity introduce a
novel approach to machine learning and pattern recognition. They show great potential because
of their ability to scale to large problem instances with modest increase in computational demand
and memory use, their biologically inspired computation units, architecture, and learning
mechanisms, and their ability to learn good representations of data without the need for labels.
With our convolutional spiking networks, it is straightforward to explain classification decisions
by inspecting the filters corresponding to the most active excitatory neurons, once the network
has reached a somewhat steady-state activation.

Our approach aims at a tradeoff between the decreased classification performance inevitably due
to the unsupervised nature of the model, and the advantage provided by the distributed nature of
the local training architecture. We plan to test different STDP rules, connectivity patterns from
input to excitatory or between excitatory patches, inhibition schemes, neuron and synapse
equations, and excitatory neuron labeling and voting schemes.

References

[1] Lecun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep Learning." Nature 521.7553
(2015): 436-44. Web.

[2] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining And Harnessing
Adversarial Examples". Arxiv.org.
[3] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image
Recognition. Arxiv.org.
[4] Sutskever, I., Vinyals, O., & Le, Q. (2014). Sequence to Sequence Learning with Neural
Networks. Arxiv.org.
[5] Diehl, Peter U., and Matthew Cook. "Unsupervised Learning of Digit Recognition Using
Spike-timing-dependent Plasticity." Frontiers in Computational Neuroscience 9 (2015): n. pag.
Web.

[6] Markram, H., W. Gerstner. "Spike-Timing-Dependent Plasticity: A Comprehensive
Overview." Frontiers in Synaptic Neuroscience 4 (2012): n. pag. Web.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to
document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.

[8] Averbeck, Bruno B. "Poisson or Not Poisson: Differences in Spike Train Statistics between
Parietal Cortical Areas." Neuron 62.3 (2009): 310-11. Web.

[9] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet Classification with
Deep Convolutional Neural Networks." Communications of the ACM 60.6 (2014): 84-90. Web

See Report part on Q4 next

DARPA Task1 Report Supplement on Q4

Leaky integrate-and-fire neuron

In order to reduce the computational demands of our SNNs, we removed some complexity from their
computational units; i.e., the neuron and synapse models. In [3], the authors chose a leaky integrate-and-fire
(LIF) neuron along with modeling excitatory and inhibitory conductances. The next simplest choice is to
use the plain LIF neuron, which removes the neurons’ state’s dependence on the synaptic conductances as
well as the modeling of synapse state variables. The membrane potential v is therefore given by

τ
dv

dt
= vrest − v,

where τ and vrest are defined as above, and the neuron spiking and resetting behavior are the same.
In the event of a spike from a presynaptic neuron, the membrane potential v of the postsynaptic neuron is
updated by the value of the weight w of the synapse which connects them. We are currently working to
match the behavior of SNNs with the more complex neuron and synapse models, but we are confident that
this is possible with some fine-tuning of network hyper-parameters.

LM-SNN Network Architecture

We implemented a new inhibition scheme in order to mitigate the total inhibition characteristic of the
SNN from [3], and from our convolutional spiking neural network (CSNN) models (between neurons who
share the same receptive field). Inspired by the self-organizing map (SOM), we arrange the excitatory
neurons in a 2D lattice (requiring a square number of excitatory and inhibitory neurons) and introduce two
new mechanisms which operate during the learning:

1. Instead of inhibiting all other neurons at a large constant rate, we vary the level of inhibition with
distance between any two neurons. As a first attempt, we chose to increase the inhibition in proportion
to the square root of the Euclidean distance. This requires a parameter cinhib which determines the
rate at which the inhibition increases, as well as a parameter cmax inhib that gives the maximum
allowable inhibition. With proper choice of cinhib, in the event that an excitatory neuron reaches
its firing threshold, instead of preventing all other neurons from firing for the rest of the iteration,
a neighborhood of nearby neurons will be weakly inhibited and may have the chance to fire. This
encourages neighborhoods of neurons to fire for the same inputs and, therefore, learn similar filters.
See Figure 1 for plots of the effects of constant inhibition (introduced in [?, eth snn] and our new
scheme. Note that neurons do not inhibit themselves upon firing, as illustrated in the figure.

2. As with the training of an SOM, on every training iteration we update the values of a neuron’s
neighbors’ weights by a fraction of the weights learned over the iteration. This mechanism requires a
parameter cstrengthen ∈ [0, 1] which determines the fraction of learned weight which are shared between
neighboring neurons. If we denote the weight learned by neuron indexed on the lattice by (i, j) on
some iteration k as ∆wk

(i,j) = wk
(i,j) −w

k−1
(i,j), and the set of neurons neighboring the (i, j)-th neuron as

N (i, j) = {(i′, j′) : max(|i− i′|, |j− j′|) = 1 ∧ ¬((i, j) = (i′, j′))}, then, at the end of the iteration, we
set wk

(i′,j′) = wk
(i′,j′) + cstrengthen × wk

(i,j) ∀(i
′, j′) ∈ N (i, j).

These two mechanisms together allow the excitatory neurons to learn groups of similar filters which may
vary smoothly between input classes over the 2D lattice. We call this family of SNNs Lattice Map Spiking
Neural Networks (LM-SNN).

There are a number of ways to define the inhibition (and excitation) as a function of the distance between
two neurons. It is possible to use other distance measures; for example, Manhattan and Box distance, and we
may want the inhibition to increase as linearly or with the square of the distance between neurons, regardless
of distance measure used. We are also interested in investigating the usefulness of Mexican hat inhibition
[6] in our networks, in which nearby neurons are excited by a spiking neuron, and farther away neurons are
inhibited, yet the inhibitory effect decays to zero with increasing distance. See Figure 2 for a plot of the form
of Mexican hat inhibition strength with distance. Note that this magnitude of the excitation and inhibition
and the rate of decay of this function may be controlled with scaling hyper-parameters.

1

(a) Constant inhibition (b) Increasing inhibition with distance

Figure 1: Inhibition as a function of Euclidean distance

Figure 2: Form of Mexican hat-style inhibition

2

(a) Constant large inhibition (b) Inhibition increasing with distance

Figure 3: Constant inhibition vs. increasing inhibition

(a) 2D lattice of neuron filters (b) Corresponding neuron class assignments

Figure 4: LM-SNN filter map and class assignments

We are experimenting with these modified inhibition schemes using fully-connected networks (as in [3])
in order to better analyze the network learning dynamics and develop a corresponding classification scheme.
In Section 3.1, we list preliminary accuracy results using fully-connected networks with a lattice of 20× 20
excitatory and inhibitory neurons. We plan to extend our experiments with the LM-SNN and use the
convolutional structure implemented in the CSNN architecture. See Figure 3 for a 2D diagram of how the
modified inhibition scheme works. See Figure 4a for an example filter map from a LM-SNN consisting of
20× 20 excitatory and inhibitory neurons, and 4b for the corresponding neuron label assignments calculated
by a neuron labeling algorithm.

3

Table 1: LM-SNN Test Dataset Classification Accuracy

cinhib cstrengthen all confidence weighting most spiked neuron top 10% spiking

0.5 0.05 74.69 75.38 72.72 73.61
0.5 0.075 73.02 73.82 71.06 72.65
0.5 0.1 73.66 73.99 72.02 72.75
0.5 0.125 72.96 73.29 71.14 71.68
0.5 0.15 71.18 72.07 69.07 70.67
0.75 0.05 75.85 75.89 74.22 74.96
0.75 0.075 72.58 72.95 71.95 72.11
0.75 0.1 72.49 72.98 72.29 72.71
0.75 0.125 75.38 75.50 73.18 74.96
0.75 0.15 73.58 73.92 71.78 72.85
1.0 0.05 72.48 72.44 70.67 70.44
1.0 0.075 75.93 76.13 73.82 75.05
1.0 0.1 75.02 75.43 72.84 74.21
1.0 0.125 73.38 74.12 72.05 71.81
1.0 0.15 75.08 75.52 73.65 74.44
2.0 0.05 76.50 76.80 75.60 75.00
2.0 0.075 75.64 76.00 74.35 74.96
2.0 0.1 75.04 74.95 72.95 73.74
2.0 0.125 76.50 76.90 74.64 75.35
2.0 0.15 77.02 77.68 74.94 75.80
3.0 0.05 77.92 77.44 76.13 77.09
3.0 0.075 77.08 77.40 75.21 76.30
3.0 0.1 78.34 78.35 76.94 76.88
3.0 0.125 76.88 76.65 74.34 75.43
3.0 0.15 76.56 76.55 74.50 75.46

Results

LM-SNN Accuracy Results

We ran a number of experiments using the LM-SNN networks while searching over a grid of values of the
hyper-parameters cinhib and cstrengthen. We trained and tested networks using settings of these parameters
on 30K / 10K, training / test examples from the dataset, respectively. For some voting schemes, neurons
are assigned the label of the input class for which they have fired most, and these labels are used to classify
new data based on network activation. In the confidence weighting voting scheme we implemented, we keep
track of a vector of proportions of times for which a neuron fires for each input class, and used a weighted
average of these to classify new inputs. Each network was trained and tested three times with different
initial conditions and averaged their test dataset classification accuracy. The results are shown in Table 1.
We observe that, with increasing cinhib, the accuracy of the networks increasing as well. The LM-SNN with
cinhib = 3.0, cstrengthen = 0.1 performed the best over all voting schemes, leading us to believe the voting
schemes are somewhat independent of network activation while varying these particular hyper-parameters.

Conclusions and Future Work

We have demonstrated a spiking neuronal network with self-organization and clustering properties in
an unsupervised fashion. We have taken a step back from our study of the convolutional spiking neural
networks in order investigate difference modes of interaction between the inhibitory and excitatory layer of
neurons. Our goal is to combine the self-organizing behavior of the LM-SNN architecture with the efficiency
and scaling benefits of the CSNN architecture, in hopes of improving classification accuracy and learning

4

convergence rate. We hope that slicing up the input space with a convolutional structure will ultimately
allow us to obtain a more robust representation of input data.

Our preliminary work on LM-SNNs will be expanded to include more experiments with larger searches
over hyper-parameters. We aim to find the best inhibition-excitation scheme between neurons in order to
speed the learning of the neuron filters while reaching a higher classification accuracy. Implementing a
simpler model of neuron and synapse will speed network operation and also ease the analysis of the learning
dynamics. Discovering a better neuron labeling and new input classification scheme will be important in
fully utilizing the filters learned by our networks.

References

[1] Lecun, Yann, Yoshua Bengio, and Geoffrey Hinton. ”Deep Learning.” Nature 521.7553 (2015): 436-44.

[2] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. ”Explaining And Harnessing Adversarial
Examples”

[3] Diehl, Peter U., and Matthew Cook. ”Unsupervised Learning of Digit Recognition Using Spike-timing-
dependent Plasticity.” Frontiers in Computational Neuroscience (2015)

[4] Markram, H., W. Gerstner. ”Spike-Timing-Dependent Plasticity: A Comprehensive Overview.” Frontiers
in Synaptic Neuroscience (2012)

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. ”Gradient-based learning applied to document recog-
nition.” Proceedings of the IEEE, 86(11):2278-2324, November 1998.

[6] H, v. (2017). Chaos in neuronal networks with balanced excitatory and inhibitory activity. - PubMed -
NCBI . Ncbi.nlm.nih.gov.

5

