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1. Spiking Processes on a Neural Network
with Excitatory and Inhibitory Nodes

1.1. Introductory Remarks. Previously we introduced a neural networkN(E, I).
The excitatory layer of the network E has nodes and connections that are defined
by the vertices and edges of the graph GZ2

N ,pd
respectively. The inhibitory layer I

has N2

4 nodes that are connected in an all to all fashion and can be thought of as a
fully connected graph KN2

4

whose vertices are the nodes. Moreover, each inhibitory

node is connected to four excitatory nodes at random in such a way that no two in-
hibitory nodes share any excitatory neighbors. Due to the convenient parallel with
graph theory we occasionally borrow notation, and so by V (E), V (I) we mean the
set of excitatory and inhibitory nodes, etc.

Each node in both E and I can take on one of two states: active or inactive.
Let χv(t) define the potential function for node v in either layer at time t such that
χv(t) = 1 if v is active and χv(t) = 0 if v is inactive at time t. The state of a node
is completely determined at every time step by the state of its neighbors. To define
this more formally, let AE(t) denote the set of active vertices in E at time t and
similarly AI(t) denote the set of active inhibitors at time t. Furthermore, define
AE(0) as a random subset of excitatory nodes that became active with probability
p independently of all others and AI(0) = ∅. Then for a vertex in E we say its
state at time t+ 1 is

χv(t+ 1) = 1

 ∑
u∈N(v)∩V (E)

χu(t) ≥ k


Similarly, for a vertex in I we have

χv(t+ 1) = 1

 ∑
u∈N(v)∩V (E)

χu(t) ≥ `


In both cases 1 is the indicator function and N(v) denotes the subset of nodes in
the closed neighborhood of v (i.e the node v and its neighbors). Both k and ` are
nonnegative integers that specify the number of active neighbors any given vertex
needs to become active on the next time step in E and I respectively.

1.2. New basic results on criticality over random graphs and their mean
field models. Our new results (obtained after the March report) on limiting crit-
ical percolation values are indicated by bold entries in the following table. The
entries of this Table are defined similarly to the ones of Table 1 in our previous
report. The rather technical proofs to be published in a mathematical journal are
omitted.

Table II
Critical Probabilty in Random Graphs

1
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Neighborhood RM RM MF MF

size (k) λ = 0 λ > 0 λ = 0 λ > 0

0 0 0 0 0
1 0 0 0 0
2 0 0 ∼ 0.131 x2(λ)
3 1 1 0.5 x3(λ)
4 1 1 ∼ 1− 0.131 x4(λ)

5 1 1 1

{
1 for λ ≤ ln(5)

x5(λ) for λ > ln(5)

1.3. A fire together process. We conclude our review of N(E, I) by presenting
the inhibitory firing function we had introduced that causes all of the inhibitors to

fire together once m ∈ [0, N
2

4 ] inhibitory vertices are active during a time step. In
other words an inhibitory node v ∈ V (I) fires at time t+ 1 if

Fv(t+ 1) = 1

 ∑
u∈N(v); u,v∈V (I)

χu(t) ≥ m


but v did not fire at time t. Notice that active inhibitory nodes fire simultaneously
since they are in all to all connection with each other. At the time of firing, the
inhibitory node sets the activity of all excitatory nodes connected to it and itself to
0. That is to say in a firing step the following nodes get inactive: (i) all inhibitory
nodes, and (ii) those excitatory nodes which were connected to an active inhibitory
node that was firing at that step. After the inhibitory firing occurs both layers
carry on by propagating activity (or the lack thereof) with whichever excitatory
nodes were left in tact.

Before this network architecture, we had also shown that assuming there is no
inhibition, for any λ ≥ 0 with the k = 2 activation rule, E has an asymptotic
critical probability pc = 0. Therefore there always exists a system large enough
such that for any choice of pin > 0, regardless of how arbitrarily small, with high
probability (whp) all of the vertices in E will eventually become active when the
inhibitors are not allowed to fire. When we introduce the inhibitory firing rule,
with a proper choice of parameters, periodic behaviour became a possibility. By
choosing parameters in such a way that the firing process extinguishes vertices while

maintaining
|AE|
N2 > pc in the specified network, the activation in both layers likely

begins growing once more until the next firing. For the sake of specificity

Definition 1. Let ∆t be a lapse in time such that there exists finite t where
∣∣AI(t)

∣∣ =

0,
∣∣AI(t+ ∆t)

∣∣ = 0, and @∆t′ ∈ [0,∆t) such that
∣∣AI(t+ ∆t′)

∣∣ = 0. We will call

the sequence {AE(t), AE(t+ 1), . . . , AE(t+ ∆t)} a spike or a cycle of length ∆t.

As we will highlight this indicates oscillatory behaviour in this dynamical system
for a certain, wide range of parameters.

2. Discussion of the spiking process over N(E, I)

To precisely uncover where this oscillatory regime lives in the parameter space,
we begin with an analysis of what it means for the system to fire. This reveals
strict bounds between the excitatory activation density and the system’s potential
to fire.
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Proposition 1. Given a network N(E, I), ` = 1, . . . , 4, and m ∈ [0, N
2

4 ].

• If |AE(t)| > N2 − (5− `)(N2

4 −m+ 1) then the system will necessarily fire

• If `m ≤ |AE(t)| ≤ N2−(5−`)(N2

4 −m+1) then the system has the potential
to fire
• and if |AE(t)| < `m then the system will not fire.

Proof. The lower bound, `m, follows by definition. To see the upper bound we first
note that the system will fire regardless of whether inhibitors are active from exactly
` neighbors or more. It follows that if every active inhibitor had all four excitatory
neighbors active and every inactive inhibitor had (`−1) active excitatory neighbors
(i.e the maximum number of active excitatory neighbors possible while the inhibitor
remains inactive) then this is the maximal |AE(t)| possible for each value of |AI(t)|.
We know the system will fire when |AI(t)| ≥ m. As such |AI(t)| = m − 1 is the
maximum number of active inhibitors allowable without the system firing. By the

above, if
∣∣AI(t)

∣∣ = m − 1 then
∣∣AE(t)

∣∣ ≤ N2 − (4 − x)
(

N2

4 − (m− 1)
)

where

4 − x = ` − 1. A little algebra reveals to us that in such a case
∣∣AE(t)

∣∣ ≤ N2 −
(5 − `)

(
N2

4 −m+ 1
)

. Clearly if
∣∣AI(t)

∣∣ < m − 1 then
∣∣AE(t)

∣∣ can never achieve

the upper bound we just found and the inequality becomes strict. Combining these
observations and taking their contrapositive unravels the fact that if

∣∣AE(t)
∣∣ >

N2 − (5 − `)
(

N2

4 −m+ 1
)

then
∣∣AI(t)

∣∣ > m − 1 and so the system necessarily

fires.
Thus we have seen that by definition if |AE(t)| < `m it can never fire and if

|AE(t)| > N2 − (5− `)(N2

4 −m+ 1) then the system will surely fire. �

We should note that the above proposition gives us a sufficient condition for
firing regardless of λ, but as is made clear in Figures 1 and 2 this barely begins to
address the phenomena that arise from this spiking process. In the discussion that
follows one should assume the case when k = 2 unless explicitly stated otherwise.

All of the data we’ve produced in the spirit of what formed Figures 1 and 2
display variations of the same interesting behaviour: sharp horizontal lines that
split cyclic and acyclic behaviour, a sharp vertical line that corresponds to m where
cycles cannot form, seeming independence of cycle length from pin, and fractal like
acyclic slivers.

We refer to the horizontal line under which no cycles remained in Figure 1 as
plowc (λ, `,N) and the horizontal line over which no cycles remained as phighc (λ, `,N).

Proposition 2. For every λ ≥ 0, ` = 1, . . . , 4 and positive integer N , there exist
lower and upper critical probabilities, plowc (λ, `,N) and phighc (λ, `,N) respectively,
such that for any initial activation pin < plowc or pin > phighc the system cannot
exhibit oscillatory dynamics. Furthermore, for any initial activation plowc ≤ pin ≤
phighc the system may have oscillatory dynamics.

Proof. To show the existence of plowc (λ, `,N) we begin by noting that between
inhibitory firings our network N(E, I) reduces to an instance of the non-monotonic
percolation model we have studied in the past since, when considered on its own,
E is precisely that. As we have previously shown, when k = 2 in such models there
exists a critical probability pc where the system percolates whp when it is initialized
above pc and when it is initialized below pc whp either gets frozen at low activation
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Figure 1. A fine grained heat map of log2(cycle length) after 1000
time steps when k = 2, ` = 4, λ = 0, and |V (E)| = 10, 000. We
ran computer simulations for each value of m ∈ [0, 2500] and every
pin from 0 to 1 in increments of 0.001.

Figure 2. Heat maps much like 1, but λ = 0, 0.5, 1, 2.5, 5 from
left to right and ` = 2, 3, 4 from top to bottom.

density with small active clusters or dies out completely. It follows that when `m
N2

in N(E, I) is greater than pc in an equally sized percolation model, by Proposition
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1 the inhibitors cannot fire and so the existence of pc in non-monotonic percolation
is exactly equivalent to plowc (λ, `,N). In the case when `m

N2 ≤ pc the system either
immediately fires, our network needs to build back up and behaves like percolation,
but clearly is below pc and whp won’t grow or the system does not immediately fire
and is equivalent to percolation, but is below pc and so it doesn’t percolate whp. In
all cases we have seen then that when pin < pc, whp, the system will fire at most
once and thus plowc (λ, `,N) exists.

With this in mind we consider phighc (λ, `,N). Arguing by contradiction, suppose
that there doesn’t exist phighc (λ, `,N). This implies that regardless of what value
of pin we begin the system with it can whp begin building its activation density
back up after an inhibitory firing and exhibit these oscillatory dynamics. Clearly
we have a contradiction since if we choose pin such that the remaining activation
density following the first inhibitory firing is below plowc (λ, `,N) the system will not
be able to create another cycle whp and so phighc (λ, `,N) exists. �

Two things are now worth noting, first the claim in the above proposition that for
any initial activation plowc ≤ pin ≤ phighc the system may have oscillatory dynamics
follows from the negation of what we have just proven. Secondly, Proposition 2
needed to account for asymptotic network sizes where plowc approaches 0 and so of
course phighc in turn must approach 1. In practice with finite network sizes phighc is
sizably less than 1 as is evidenced by Figures 1 and 2 where N = 100.

Remark 1. The following are some properties of plowc (λ, `,N):

• For fixed λ and N , plowc (λ, `,N) does not depend on `
• For fixed N and `, plowc (λ, `,N) is decreasing in λ

Proof. Consider a case where pin < plowc (λ, `,N) and suppose we have pc of an
equivalent percolation model of the same size. When `m > pc then by Proposition
1, since E behaves like percolation when there isn’t inhibitory firing, plowc (λ, `,N)
is not dependant of `. When `m ≤ pc then we might still experience an inhibitory
firing. If the system doesn’t fire, then pc is still equivalent to plowc (λ, `,N). If the
system does fire, then the activation density has only decreased and E still will
likely not be able to increase its activation density because that density is below
pc. Therefore regardless of `, plowc (λ, `,N) will be the same given λ and N .

The second statement follows from the observation that as λ increases, the ex-
pected degree of a vertex does so too. Therefore the average number of active
vertices adjacent to any given vertex is increasing. It follows that any vertex, and
as a result the whole system as well, may get active with higher probability. Thus
as λ increases, plowc (λ, `,N) decreases since E is able to percolate more easily. �

We can see these properties in Figure 2, where if we focus on a single column
(i.e fixed λ and N) we can see that plowc remains fixed and, if we focus on a single
row (i.e fixed ` and N), plowc decreases from left to right as λ increases. For an even
clearer view of the decrease in plowc with λ, consider Figure 3 where we have put
side by side a heatmap generated from λ = 0 and λ = 10 both with N = 100 and
` = 4.

Remark 2. The following are some properties of phighc (λ, `,N):

• For fixed λ and N , phighc (λ, `,N) is increasing in `
• For fixed N and `, phighc (λ, `,N) never increases in λ
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Figure 3. Heatmaps as we have seen above. We plot
log2(cycle length) from data generated using λ = 0 on the left
and λ = 10 on the right.

Proof. We saw above that when pin > phighc and the inhibitors fire, the excitatory
activation density plummets below plowc and is unlikely to be able to pick itself back
up. When we increase ` the affect that this has on the system is to make it harder
for inhibitors to activate by definition. It follows that, when all else is the same, at
a majority of the possible activation configurations of nodes in E fewer inhibitors
will be active at higher values of ` relative to low values of ` and so phighc (λ, `,N)
increases as ` does.

For us to see the impossibility of increasing in phighc with increase in λ, given N
and `, consider networks N(E, I) and N(Ē, Ī) with λ = 0 and λ > 0 respectively
and all else the same. As we increase λ more excitatory vertices, and as a result
more inhibitory vertices, are able to become active during a time step. It follows
that at a time t if AĒ(t) ≡ AE(t) and AĪ(t) ≡ AI(t) we will necessarily see |AĒ(t+

1)| ≥ |AE(t + 1)| and |AĪ(t + 1)| ≥ |AI(t + 1)| before we account for any effects
brought on by an inhibitory firing. As λ grows however, so do the number of
configurations of active excitatory vertices that result in |AĒ(t+ 1)| > |AE(t+ 1)|
and |AĪ(t + 1)| > |AI(t + 1)|. We have seen that when pin > phighc the excitatory
layer whp will experience a short lived growth1 before being over extinguished
from an inhibitory firing and falling below plowc . It follows that, for λ > 0, pin >
phighc (0, `,N) ≥ phighc (λ, `,N) and that for sufficiently large λ we will likely have
phighc (0, `,N) > phighc (λ, `,N). �

Similarly to the previous remark, Figure 2 demonstrates both properties of phighc .
Note the large jumps in phighc between values of ` (i.e rows). The second property
we mentioned about phighc , the effect that λ has given ` and N , are there but much
harder too see without having big jumps in λ side by side; we see precisely this
sharp contrast in Figure 3.

We now turn out attention to what we previously referred to as the seeming
independance of cycle length from pin. Intuitively speaking this phenomenon arises
because, regardless of how densely the system in initialized, if we have chosen
parameters that allow for oscillatory dynamics then once the inhibitors fire and

1This may be exactly the first time step after initialization or a tight rope walk of excitatory
activation for a few time steps where the system is at the cusp of a debilitating firing.
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activity needs to build again the network “forgets” the state it was in prior to firing
and behaves similarly to a system initialized at its new AE(t). It is for this reason
that we call this phenomenon “memorylessness”. Let pinhib = 4m

N2 represent the
density of active inhibitory vertices in I needed for the system to system to fire.

Proposition 3. (Memoryless behaviour.) For every fixed λ ≥ 0, ` = 1, . . . , 4
and positive integer N , the cycle length c(λ,N, `, pinhib) in the oscillatory region of
parameter space depends on pinhib but does not depend on initialization probability
pin.

Proof. The value of pinhib controls the reset; we see this very clearly in all of the
heatmaps above. Notice that as we increase its value the cycles in the oscillatory
region get longer. This follows from the fact that the higher pinhib is, the higher the
number of excitatory vertices that get deactivated are. Thus, the overall density
decreases more sharply with inhibitory firing as we increase pinhib. Clearly the
lower density of active excitatory vertices that the process continues from, the
more activation steps are needed to reach pinhib again. In other words, as pinhib

increases, so too does the length of our cycles. It follows that we achieve maximum
cycle length when pinhib is chosen in such a way that the density of active vertices
the process continues with after the reset is just slightly above ∼ plowc (λ, `,N). If
we increase pinhib too much then the density of active vertices the process continues
with after inhibitory firing will eventually fall below plowc (λ, `,N) and the system
dies out whp.

When we choose values of pin such that plowc ≤ pin ≤ phighc , we only effect the
length of the first cycle. After the first inhibitory firing occurs the system will
continue the activation process with a density of active excitatory vertices that is
determined by the reset parameter pinhib, regardless of pin. �

This behaviour can be clearly seen in Figures 1 and 2. The phenomenon of cycle
length c(λ,N, `, pinhib) depending on pinhib but not pin, for fixed λ and N , manifests
itself here as the vertical stripes in both figures. Also notice that the “very long”
cycle regime that lies on the right border of the oscillatory region undergoes a sharp
transition to acyclic behaviour.

At this point we should note the important (but subtle) distinction about pin
having no sway on the cycle length c(λ,N, `, pinhib) inside of the oscillatory region
of parameter space. It is clear that, for sufficiently high values of pinhib due to the
fractal like “bays” that cut into regions of parameter space that allow for oscillatory
dynamics, pin plays a vital role as to whether we are in the oscillatory region or
not. By considering the bounds derived in Proposition 1, we can begin to draw the
line that divides values of pinhib for which we have long orbits and none at all.

Remark 3. For every fixed λ, `, and N the network N(E, I) cannot display oscil-
latory dynamics for m such that `m > phighc (λ, `,N).

Proof. Suppose that N(E, I) is as we have stated. By Proposition 1 we know that

the system will never fire for |A
E(t)|
N2 < `m

N2 . Therefore the system necessarily must

have activation density above phighc (λ, `,N) before it ever fires. As we have seen,
its activity will fall below plowc (λ, `,N) when it eventually fires and not be able to
pick itself back up. �
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A quick look at Figures 1, 2, and 3 suggests that once we have determined a
maximal m that can produce oscillations in a given network the value `m

N2 can be a

rather good heuristic value for phighc and vice versa.

3. Computer Simulations of the Spiking Process

3.1. Introductory Remarks. The current implementation of generalized boot-
strap percolation is done in python and was designed to offer as much flexibility as
possible so as to allow for unexpected research directions that may arise. As of now
the model allows us to specify the number of excitatory vertices in the lattice N2,
the number of excitatory vertices that should be mapped to any inhibitory vertex2,
the density of excitatory vertices we would like active in the initial time step pin,
the parameter λ that influences the probability of adding a random edge between
excitatory vertices, the constant in the activation rule for excitatory vertices k, the
constant in the activation rule for inhibitory vertices l, and the constant in the fir-
ing rule for the inhibitory vertices m. It additionally offers the option of excluding
some of these parameters by letting us specify whether we want to add random
edges between excitatory vertices, whether we want inhibitory vertices and, if so,
whether to map inhibitory vertices to the excitatory vertices at random or in some
predefined way.

In the discussion that follows, the reader should assume N = 100, k = 2, and
` = 4 unless it is explicitly stated otherwise.

3.2. Findings from Computer Simulations on Variations of λ. Data gath-
ered from simulations as described have matched all of the propositions highlighted
in the mathematical analysis above. However, multiple observations remain open
problems and a rigorous understanding eludes us. This is in part due to the compli-
cated problem of describing the evolution of A(t) for any value of λ. In what follows
we describe some of the facets of the spiking process that remain to be rigorously
understood and provide our findings and intuitions as to why they arise.

In Proposition 3 it was shown that the length of the cycles formed in N(E, I) is
independent of pin and in Remark 4 we give a rough bound on m where cycles can
form. Looking at any of the heatmaps above, this leaves unaddressed the obvious
acyclic fractal like bays that jut into the oscillatory region of our parameter space
and seem to become larger and more pronounced as we increase m and pin.

The presence of these bays are intuitively consolable once we understand the
general behaviour of these cellular systems. First we note that it makes sense that

for small t we can treat a system with activation density |AE(t)|
N2 similarly, but

not exactly, like a system that is initialized with pin = |AE(t)|
N2 and is otherwise

identical. It follows from this that a system initialized inside of the biggest, top-
most bay in Figure 1 may have enough active excitatory vertices to immediately
jump up above a density equal to phighc which as we have seen will likely result in a
firing of too many inhibitory nodes and the system’s density plummets below plowc .
By inductively applying this intuition, it seems plausible that more bays appear at
smaller initialization densities where the system jumps into a bigger bay.

Our simulations of systems initialized inside of different bays supports this in-
tuition because in every instance of the experiment we have noticed the activation

2Note that this also dictates that we have N2 divided said number of inhibitory vertices in

total.
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jumps from its initial bay, to a larger bay, until it eventually jumps above phighc ,
and causes a massive inhibitory firing. It is important to note that we do not neces-
sarily observe a neat skipping from bay to bay in perfect increasing order, we often
observe jumps from a small bay over multiple bays and into a much larger one.

As we can observe in Figure 2, the number of bays and how pronounced they
are changes with λ. Exploring data that resulted in Figure 2, but for many more
values of λ, provides intriguing insights into not only these effects on the behaviour
and presence of bays, but also the effects λ has on multiple facets of the system
such as the lengths of possible cycles and the presence of cycles at higher values of
m.

Figure 4 in conjunction with 2 makes clear the heavy influence λ has on the
bays. We notice that as we increase λ ∈ [0, 1] the bays seem to become gradually
more frequent, as we increase λ ∈ [2.5,∞) the bays become less frequent until they
disappear outright. By the same intuition used to explain the presence of bays, this
behaviour is expected. For small values of λ the system is able to jump into the
larger bay from more initializations in the parameter space. For large values of λ
each active excitatory vertex has a much larger influence over activation in the next
time step, this forces the system to take massive leaps in activation density and so
initializations immediately jump above phighc . As we see in Figure 4, by λ = 10 there
isn’t a single bay left. Furthermore, as we will see in Figure 6, the bays at different
values of λ play functionally the same role and, when increasing λ is thought of as
a chronological process, these bays are all in fact a gradual transformation of one
another.

A great benefit of looking at these heat maps is that they make obvious when
cycles of different lengths move to new locations in the parameter space. As we
steadily increase λ it seems that progressively fewer initialization parameters result
in extremely large cycles, but that the length of the largest observed cycle remains
relatively unperturbed. This can be explained by the same forces that affect the
bays as we vary lambda; in general it takes fewer steps for the activation density
to climb back up to the inhibitory firing threshold. Perhaps more perplexing is the
observation that as lambda increases it seems that the emergence of small cycles of
length ≈ 4 appear in progressively more sets of initialization parameters. We can
see this rather clearly in Figure 4.

Changes in λ also have an effect on the presence of cycles at high values of m.
This effect is clear when we look at large lapses in the value of λ, but are also
present in subtle changes in lambda. We have observed this for ` = 2, . . . , 4, but
demonstrate it with ` = 4 in Figure 5 because it is easiest to see.

In Figure 5 we plotted side by side the highest value of m that display cycles,
at different values of pin, at multiple values of λ. We easily see that from λ = 0 to
λ = 1 the ability to form cycles extended towards higher values of m. Then, from
λ = 1 to λ = 2.5 the ability to form cycles recedes behind even λ = 0 and that
trend continues. Plots like this one but with values of λ3 that lay between any two
outlines shown in Figure 5 further support this, but are cluttered and harder to
read. Though, still difficult to see without being able to interact with the plot, in
Figure 6 we plot on a 3D surface the outline from data on every value of λ that we
have. This demonstrates the gradual receding in cycle formation with respect to m
quite nicely.

3We have made these plots for λ = 0.01, 0.025, . . . , 0.1, . . . , etc.
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Figure 4. Heatmaps arranged like in Figure 2, but with λ =
0, 1, 5, 10 from left to right.

Figure 5. An “outline” of the values ofm that can produce cycles.
These are made by plotting the highest recorded m containing a
spike at each pin.

4. Oscillatory Regimes and Chaos in N(E, I)

We begin this discussion with a disclaimer that strictly speaking, chaotic regimes
are impossible in any finite sized network. This however doesn’t have any negative
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Figure 6. The outline of cycle forming regions on a 3D surface.
Contains the outlines of numerous lambda between 0 and 50.

connotations for our use of these networks because, as will be discussed below, the
regimes we call “chaotic” would take so much time to repeat themselves that, by
all practical standards they are chaotic and behave chaotically.

This calls for a more precise definition of what we are referring to when we
describe a regime as chaotic. To begin, we note that our investigations into the
presence and nature of oscillations in our system has revealed that when the neural
network N(E, I) is left to oscillate unperturbed it settles into perfectly periodic
oscillations–after hundreds of thousands of times steps in certain cases–for a ma-
jority of the parameter space, but that in select regions exact patterns didn’t form
after even 10, 000, 000 time steps. More carefully stated.

Definition 2. Suppose there exists mutually unique spikes {S1, S2, . . . , Sn} of length

{∆t1,∆t2, . . . ,∆tn} such that for some t ∈ [0,∞), Sk = {AE(t +
∑k−1

j=1 ∆tj +

y(
∑n

j=1 ∆tj)), . . . , A
E(t +

∑k
j=1 ∆tj + y(

∑n
j=1 ∆tj))} for all integer y ≥ 0 and

k ∈ [1, n]. We say our system is n-periodic if there doesn’t exist a sequence of less
than n spikes that satisfy this property.

We found that for a majority of parameters n is finite and relatively small.
Extending this further

Definition 3. We say our system is chaotic if for some very large T , there does
not exist a time t ≤ T for which our system is n−periodic.
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Figure 7. Heatmap measuring log10 of the actual amount of time
steps in an n−period after one million time steps when initialized
at that initial density and m. The largest (darkest) values shown
represent parameters where periods didn’t form in 1, 000, 000 time
steps, but we cut the values down appropriately (while remaining
visibly different) so as to not make the information from actual
periods difficult to see.

Figures 7 and 8 contains two heatmaps similar to what we have seen, but instead
of helping us compare the raw length of spikes that form like above, in Figure 7
we are showing in each cell the log10 of the actual time span an n−period takes
and in Figure 8 we have in each cell the actual value of n itself. The former acts
to “update” the heatmaps we have been looking at and gives us a gauge of just
how long periods are with those parameters as opposed to just how long individual
cycles are. The latter begins to give us a glimpse as to how spikes may bifurcate in
the parameter space.

In both of these heatmaps, every experiment is generated using the same random
seed. We checked for periods by comparing the excitatory layer in the last 10, 000
time steps for exactly matching configurations of that layer. Since the system is
deterministic, a matching configuration necessarily means a period. The plot in
Figure 7, along with multiple other heuristics we’ve used, serves to support our
choice in only checking the last 10, 000 time steps for periods on the excitatory
layer since other than “infinite” period length, the next largest period found was
≈ 5, 000 time steps long.

As we would expect from what we have seen above, in Figure 7 as m increases
so do the time steps in each period in general. What is particularly striking is that
there seems to be almost a sharp threshold at m ≈ 1700 at which our system can
produce chaotic oscillations. This is also confirmed in Figure 8 which additionally
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Figure 8. Heatmap measuring log2 of n itself under the same
conditions. The largest (darkest) values shown represent parame-
ters where periods didn’t form in 1, 000, 000 time steps, but we cut
the values down appropriately (while remaining visibly different)
so as to not make the information from actual periods difficult to
see.

informs us that in general, long periods do not mean there were a huge number of
spikes inside of them. We are currently analyzing the raw numbers plotted in this
to try and understand if there is some structure nested within.

Looking at these values more closely, we took our random seed and recorded time
series for the tail end of 10, 000, 000 time steps of the density of active inhibitors at
each time step when p0 = 0.5 and for every value of m ∈ [0, 2500]. By plotting the
last 1000 activation densities in this time series against each m we begin to etch out
a bifurcation diagram for N(E, I); we see this in Figure 9. This is to say, in Figure
9 that approximately when m < 500 the network is stuck at a single density, when
m is between about 500 and 800 it goes from one density to another and then fires,
etc.

To interpret Figure 9 it is worth noting that plotted against each m is every
excitatory density visited by the network in the last 1000 time steps. Therefore, if
there are multiple spikes in a given period, the configuration visited immediately
following each individual spike will appear next to each other, but likely not in
the exact same place. Due to the way the excitatory layer develops, this means
that every step following this until the next spike will also be at roughly a similar
density. This is why we see slight “fuzz” at m as low as 500. This is also why we
see those thick/fuzzy bifurcation points that appear from m greater than roughly
1000. A better way of saying this is that this bifurcation diagram shows us, in
some sense, the “spike doubling” rather than the period doubling and that when
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we experience a bifurcation in the actual period (i.e the actual period doubles and
not just the number of configurations visited by individual spikes) then the diagram
here will become fuzzy since at each spike in a period the figure will plot gradually
more points near one another. Summarizing this, we see in Figure 9 a gauge of
how chaotic our network is by how unable we are to discern the steps taken in the
excitatory layer.

Figure 9. A kind of the bifurcation diagram for N(E, I).

To more accurately see how chaotic a specific trajectory is, we embed these time
series into two dimensions using a delay-time embedding. As we can see in Figure
10, periodic regimes have distinct closed trajectories and chaotic trajectories are
such a tangled mess that we cannot discern one trajectory from the other.

By using metrics such as the delay embedding, or exhaustively checking the
actual excitatory layer4, we are able to get an accurate count of exactly how many
values of m produce chaotic oscillations when we run the system at different time
scales and collect our data accordingly. In Figure 11 we plot this value for when we
run the system for 50000, 100000, 1000000, and 10, 000, 000 time steps. Due to the
large nature of the numbers involved we do this in a log10 vs log10 scale. Notice
that as we run the system for longer periods of time, fewer values of m are chaotic.
To understand the rate at which periodic regimes appear we fit a line to these data
points and see that, if this trend continues, we will have chaotic values of m until
we run the system for over a hundred trillion time steps. We conclude from this
that it is safe to assume that our chaotic regimes are more than just a transient.

As was mentioned above, deriving precise probability distributions for these sys-
tems is not feasible, but we can reinforce these empirical findings about the oscilla-
tory regimes in N(E, I) by first deriving the expected spiking behavior using some
simplifying mean field assumptions. This type of analysis is not suited for making
claims about phenomena that arise from the topology of the network as we would

4We have done both and they yield the same results.
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Figure 10. Comparison of the last 5000 time steps of a 1-periodic
regime, a 2-periodic regime, a 5-periodic regime, and a chaotic
regime. Closed loops represent the trajectory of a spike. In the
chaotic example there are so many in close proximity that it takes
on the appearance of a single, thick, line.

Figure 11. Number of chaotic parameters relative to amount of
time the system is allowed to run. We plot the best fit line to
predict how many parameters will be chaotic after a given time
scale if the trend continues.

have wished above, but they are great when we are making qualitative claims about
the networks dynamic behaviour.

We noted strict bounds in Proposition 1 for when the network is able to fire,
but these bounds left a wide range of excitatory densities that have the potential
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to fire. To shed some light on the probability distribution of firing when excitatory
activation density is between the extremes highlighted above we humor the naive
assumption that the probability of some excitatory vertex being active can be de-
scribed by a Bernoulli trial with parameter pE and that activation of vertices are
mutually independent. Allow this we quickly find that

Pr

(
|AE (t) | = x

∣∣∣∣N2, pE

)
=

(
N2

x

)
pxE (1− pE)

N2−x

for x ∈ {0, . . . , N2}. Furthermore the probability that an inhibitory vertex is active

becomes pI =
∑4

j=`
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4
j

)
pjE (1− pE)

4−j
and so
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By taking the derivative of this probability mass function and finding the value
of pE where the probability of firing is maximized we are able to find a curve that
describes the excitatory densities which are most likely to fire at each m. We then
combine this with our knowledge that our system necessarily loses at least `∗m

N2

excitatory density upon firing to find a curve that describes the maximal density
the network will fall to after firing from the density derived from the mean field
assumptions. We have just predicted a pre-firing curve and a post-firing curve.

Extending this analysis further, by our mean field assumptions we are able to
derive a distribution of the excitatory density on time step t+1 knowing the current
density at t which becomes a particularly potent tool using our derived post-firing
densities. Let IA be the set of vertices that were inactive at time t but active at
time t + 1. Similarly, let AI be the set of vertices that were active at time t but
inactive at time t+ 1. Then clearly |AE (t+ 1) | = |AE (t) |+ |IA| − |AI|.

Notice that for some excitatory vertex to be in IA it needed to be inactive and
also have at least k active neighbors in time t. Let pIA be the probability that an ac-

tive vertex is in IA. Since we know |AE (t) |, then pIA =
∑4

j=k
(|A

E(t)|
j )(N2−|AE(t)|

4−j )

(N2

4 )
.

It follows then that

Pr
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∣∣∣∣N2, |AE (t) |
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)
pxIA (1− pIA)
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We know every variable needed to compute pIA and this is a known distribution so
we easily find that

E (|IA|) = (N2 − |AE (t) |)pIA
In the same vein note that in order for some excitatory vertex to be in AI it

needed to be active and also have at least 4− (k − 2) inactive neighbors in time t.
Note that for k < 2 this shows us that |AI| is always 0. Let pAI be the probability
that an inactive vertex is in AI. Then since we know |AE (t) | we find that, for

k ≥ 2, pAI =
∑4

j=6−k
(N2−|AE(t)|

j )(|A
E(t)|
4−j )

(N2

4 )
. Therefore
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)
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once again using our knowledge of pAI and the above distribution we can find that

E (|AI|) =
∣∣AE(t)

∣∣ pAI



17

Putting what we have found together then, since we know |AE (t) |,

E
(
|AE (t+ 1) |

)
= |AE (t) |+ E (|IA|)−E (|AI|)
= |AE (t) |+ (N2 − |AE (t) |)pIA −

∣∣AE(t)
∣∣ pAI

We then compute these values and overlay the results onto the actual bifurcation
diagram to produce Figure 12.

Figure 12. Results of the above mean field analysis in red. Strict
upper and lower bound on activation density able to fire in blue.
We put this over the actual bifurcation diagram to see how well it
predicts the behavior.

The curves displayed in Figure 12 were computed using N = 24 instead of
the actual size of our excitatory layer due to the machine approximation error
that results from computing these distributions for large N . Regardless, these
approximations fit extremely well and only deviate from our collected data on two
accounts. First, and perhaps the biggest discrepancy in this approximation, is the
fact that it predicts that the system will be unable to produce oscillations earlier
than our empirical data suggests, but this is not surprising due to the fact that
by ignoring topology, as we do in the mean field assumptions, it is in some sense
“easier” to fire. If we suppose that this range of m not accounted for in this
simplified analysis continued in a similar vein, then these results are incredibly
telling. Second our actual data suggests that a single spike will contain more steps
than our simplified model suggests. Again, knowing that we ignored the topology
helps reconcile this, but when we also consider Figures 13 and 14 we see that as m
increases so does the deviation in the individual spikes and the average length.

Couple these observations with the the variance in each time step, the fact that
the post-firing curve is the maximal such curve, and also the fact that pre-firing
curve is found by ignoring the topology of the network, and we can begin to imagine
what this may look like if we managed to plot multiple spikes and we also begin to
see why the chaotic regions of the bifurcation diagram arise where they are.
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Figure 13. Average Spike Length of spikes that occurred in the
final 50, 000 time steps of a 1, 000, 000 time step run.

Figure 14. Standard Deviation of Spike Length of spikes that
occurred in the final 50, 000 time steps of a 1, 000, 000 time step
run.

4.1. Initial Results on External Stimuli. A major motivation in learning to
navigate our parameter space as accurately as possible is to use these networks
for computational memories via chaos control. By putting together the chaotic
behaviour of the system at certain values of m with the observation that a fixed
value of m can undergo significant changes in regime with small changes in λ makes
for a promising application in robust encoding. En route to this goal we have begun
experimenting with the introduction of noise to targeted regions of the excitatory
lattice E.
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In Figure 15 we see side by side the delay-embeddings of the system when p0 =
0.5 and m = 1760. The embeddings are from just before, immediately following,
10, 000 time steps following, and 50, 000 time steps following the injection of stimuli.
We injected additive stimuli to the “top-right” corner of E for 100 time steps after
the system had been given 40, 000 time steps to out grow its first transient and
allowed it to run for a grand total of 100, 000 time steps and settle back down after
the injection. In this example the stimuli took the form of activating an excitatory
vertex that would normally be inactive based on a Bernoulli trial with 0.3 chance
of activating.

Notice in Figure 15 that when we inject the noise, the system is “bumped” out
of chaos and into a more tame period, then quickly returns to its chaotic state.
This system living on the verge of criticality is precisely the behaviour we want.
It implies that we can let it idle in a chaotic state and spur specific oscillations in
response to stimuli. It is important we note that the 0.3 parameter on the Bernoulli
trial nor the region that we injected noise into were chosen for any deep reasons
and that this would still hold for other configurations. As affirmation of this we
include Figure 16 which is produced from exactly the same experiment other than
the fact that we applied stimlui to the “bottom left” corner of E; notice that the
behaviour is virtually the same, but that the system is “bumped” into a different
trajectory than when we inject the same amount of noise into the opposite corner
of E.

Figure 15. Delay-embedding at four time frames relative to the
noise. We injected noise in the “top right” corner of E with m =
1760.
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Figure 16. Delay-embedding at four time frames relative to the
noise. We injected the same amount of noise as in Figure 15 but
in the “bottom left” corner of E for m = 1760.

Explorations into the injection of noise is still in its infantile stages, but we are
optimistic that this will make for even more robust, interesting, and controlled
oscillations throughout the parameter space.


