
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Improved robustness of reinforcement learning policies upon conversion to
spiking neuronal network platforms applied to ATARI games

Anonymous Authors1

Abstract
Various implementations of Deep Reinforcement
Learning (RL) demonstrated excellent perfor-
mance on tasks that can be solved by trained pol-
icy, but they are not without drawbacks. Deep RL
suffers from high sensitivity to noisy and missing
input and adversarial attacks. To mitigate these
deficiencies of deep RL solutions, we suggest
involving spiking neural networks (SNNs). Pre-
vious work has shown that standard Neural Net-
works trained using supervised learning for image
classification can be converted to SNNs with neg-
ligible deterioration in performance. In this paper,
we convert Q-Learning ReLU-Networks (ReLU-
N) trained using reinforcement learning into SNN.
We provide a proof of concept for the conversion
of ReLU-N to SNN demonstrating improved ro-
bustness to occlusion and better generalization
than the original ReLU-N. Moreover, we show
promising initial results with converting full-scale
Deep Q-networks to SNNs, paving the way for
future research.

1. Introduction
Recent advancements in deep reinforcement-learning (RL)
have achieved astonishing results surpassing human perfor-
mance on various ATARI games (Mnih et al., 2015; Hasselt
et al., 2016; Wang et al., 2016). However, deep RL is sus-
ceptible to adversarial attacks similarly to deep learning
(Huang et al., 2017). The vulnerability to adversarial at-
tacks is due to the fact that deep RL uses gradient descent
to train the agent. Another consequence of the gradient
descent algorithm is that the trained agent learns to focus
on a few sensitive areas and when these areas are occluded
or perturbed, the performance of the RL agent deteriorates.
Moreover, there is evidence that the policies learned by the
networks in deep RL algorithms do not generalize well and
the performance of the agent deteriorates when it encounters
a state that it has not seen before even if it is similar to other
states (Witty et al., 2018).

Biological systems tend to be very noisy by nature (Richard-

son & Gerstner, 2006; Stein et al., 2005), but they can still
operate well even under harsh conditions that affect their
internal state and input. Spiking Neural Networks (SNNs)
are considered to be closer to biological neurons due to
their event-based nature; they are often termed the third
generation of neural networks (Maass, 1996). A spike is
the quantification of the internal and external process of the
neuron and is always equal to other spikes. Therefore, the
individual neuron can serve as a small bottleneck that gives
the ability to sustain low intermittent noise and not propa-
gate the noise further. Moreover, spiking neurons as a group
in a network can damp the noise even further due to their
collective effect and their architectural connectivity (Hazan
& Manevitz, 2012). However, SNNs are typically harder to
train using backpropagation due to the non-differentiable
nature of the spikes (Pfeiffer & Pfeil, 2018).

Much of the recent work with SNNs has focused on im-
plementing methods similar to backpropagation (Huh &
Sejnowski, 2018; Wu et al., 2018) or using biologically in-
spired learning rules like spike-timing-dependent plasticity
(STDP) to train the network (Bengio et al., 2015; Diehl &
Cook, 2015; Gilra & Gerstner, 2018; Ferr et al., 2018). One
of the benefits of using SNNs is their potential to be more
energy efficient and faster than rectified linear unit networks
(ReLU-N), particularly so on dedicated neuromorphic hard-
ware (Martı́ et al., 2016).

Using SNNs in a RL environment seems almost natural
since many animals learn to perform certain tasks using
a variation of semi-supervised and reinforcement learning.
Moreover, there is evidence that biological neurons also
learn using evaluative feedback from neurotransmitters such
as dopamine (Wang et al., 2018) (e.g., in the postulated
dopamine reward prediction-error signal (Schultz, 2016)).
However, since spiking neurons are fundamentally different
from artificial neurons, it is not clear if SNNs are as capable
as ReLU-Ns in machine learning domains. This raises the
questions: Do SNNs have the capability to represent the
same functions as ReLU-N? To be more specific, can SNNs
represent complex policies that can successfully play Atari
games? If so, do they have any advantages in handling noisy
inputs?

We answer these questions by demonstrating that ReLU-



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Improve robustness of RL Policies using Spiking Neural Networks

networks trained using existing reinforcement learning algo-
rithms can be converted to SNN with similar performance on
the reinforcement learning task when playing Atari Break-
out game. Furthermore, we show that such converted SNNs
are more robust than the original ReLU-Ns. Finally, we
demonstrate that full-sized deep Q-networks (DQN) (Mnih
et al., 2015) can also be converted to SNNs and maintain its
better than human performance, paving the way for future
research in robustness and RL with SNNs.

2. Background
2.1. Arcade learning environment

The Arcade learning environment (ALE) (Bellemare et al.,
2013) is a platform that enables researchers to test their
algorithms on over 50 Atari 2600 games. The agent sees the
environment through image frames of the game, interacts
with the environment with 18 possible actions, and receives
feedback in the form of the change in the game score. The
games were designed for humans and thus are free from
experimenter bias. The games span many different genres
that require the agent/algorithm to generalize well over var-
ious tasks, difficulty levels, and timescales. ALE thus has
become a popular test-bed for reinforcement learning.

Figure 1. Screenshot of Atari 2600 Breakout game

Breakout: We demonstrate our results on the game of
Breakout. Breakout is a game similar to the popular game
Pong. The player controls a paddle at the bottom of the
screen. There are rows of colored bricks on the upper part
of the screen. A ball bounces in between the bricks and the
player controlled paddle. If the ball hits a brick, the brick
breaks and the score of the game is increased. However, if
the ball falls below the paddle, the player loses a life. The
game starts with five lives, and the player/agent is supposed
to break all the bricks before they run of lives. Figure 1
shows a frame of the game.

2.2. Deep Q-Networks

Reinforcement learning algorithms train a policy π to max-
imize the expected cumulative reward received over time.
Formally, this process is modelled as a Markov decision
process (MDP). Given a state-space S and an action-space
A, the agent starts in an initial state s0 ∈ S′ from a set of
possible start states S0 ∈ S. At each time-step t, starting
from t = 0, the agent takes an action at to transition from
st to st+1. The probability of transitioning from state s to
state s′ by taking action a is given by the transition func-
tion P (s, a, s′). The reward function R(s, a) defines the
expected reward received by the agent after taking action a
on state s.

A policy π is defined as the conditional distribution of ac-
tions given the state π(s, a) = Pr(At = a|St = s). The
Q-value or action-value of a state-action pair for a given
policy, qπ(s, a), is the expected return following policy π
after taking the action a from state s.

qπ(s, a) = E[
∞∑
k=0

γkRt+k|St = s,At = a, π] (1)

where γ is the discount factor. The action-value function
follows a Bellman equation that can be written as:

qπ(st, at) = rt + γmax
at+1

qπ(st+1, at+1) (2)

Many widely used reinforcement learning algorithms first
approximate the Q-value and then select the policy that
maximizes the Q-value at each step to maximize returns
(Sutton & Barto, 2018). Deep Q-networks (DQN) (Mnih
et al., 2015) are one such algorithm that uses deep artificial
neural networks to approximate the Q-value. The neural
network can learn policies from only the pixels of the screen
and the game score and has been shown to surpass human
performance on many of the Atari 2600 games.

Figure 2. Architecture of Deep Q-networks; following Mnih et al.
(2015); ReLu nonlinear units are emphasized by red circles.

2.3. Spiking neurons

SNNs may use any of the various neuron models (W. Ger-
stner, 2002; Tuckwell, 1988). For our experiments, we use



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Improve robustness of RL Policies using Spiking Neural Networks

four different variations of spiking neuron. We use the nota-
tion below used to describe the variance neurons: τ is the
time constant. V is the membrane potential voltage. vrest
is the resting membrane potential. vthresh is the neuron
threshold.

1. Integrate-and-fire (IF) neuron: The IF neuron is the
simplest form of spiking neuron models. The neuron
simply integrates input until the membrane potential V
exceeds the voltage threshold Vthreshold and a spike is
generated. Once the spike is generated, the membrane
potential is reset to Vreset.

τ
dv

dt
=

n∑
i=1

Wi ∗ Inputi (3)

2. Subtractive Integrate-and-fire (SubIF) neuron: The
SubLIF (Cassidy et al., 2013; Diehl et al., 2016;
Rueckauer et al., 2017) behaves similar to the IF
neuron with one small change, when the membrane
potential voltage exceeds threshold value, the neu-
ron emits a spike and resets its membrane voltage to
Vreset + (V − Vthreshold). By adding the overshoot
voltage the neuron “remember” the excessive voltage
from the last spike and will be more prone to be ex-
cited with the next incoming inputs. This reduces the
information lost when spiking in SNNs converted from
ReLU-N.

3. Leaky integrate-and-fire (LIF) neuron: The LIF neuron
behaves similarly to the IF neuron. However, for ev-
ery time-step that its membrane potential is above the
resting potential, the neuron leaks a constant amount
of current.

τ
dv

dt
= (vrest − Vt−1) +

n∑
i=1

Wi ∗ Inputi (4)

4. Stochastic leaky integrate-and-fire neuron: The
stochastic leaky integrate-and-fire neuron is based on
the LIF neuron. However, the neuron may spike if its
membrane potential is below the threshold with proba-
bility proportional to its membrane potential (escape
noise). The escape noise (σ) is described here:

σ =

{
1/τσ exp(βσ(Vt − Vthreshold)) if less than 1
1 otherwise

(5)

where τσ and βσ are constant positive parameters. For this
paper, we set both τσ and βσ to 1.

For all the spiking models listed above, after every spike,
the neuron enters a refractory period during which they

are unable to spike or integrate input. For this paper, we
ignore the refractory period for simplicity in the conversion
from artificial neurons. For a complete list of the parameters
used for LIF and stochastic LIF see supplementary materials
Table 2.

3. Related work
Much of the recent work has focused on the ReLU-N to SNN
conversion. Prez-Carrasco et al. (2013) first introduced the
idea of converting CNN to spiking neurons with the aim
of processing inputs from event-based sensors. Cao et al.
(2015) suggested that frequency of spikes of the spiking neu-
ron is closely related to the activations of a rectified linear
unit (ReLU) and reported good performance on computer
vision benchmarks. Diehl et al. (2015) proposed a method
of weight normalization that re-scales the weights of the
SNN to reduce the errors due to excessive or too little fring-
ing of neurons. They also showed near lossless conversion
of ReLU-Ns for the MNIST classification task. Rueckauer
et al.Rueckauer et al. (2016; 2017)) demonstrated spiking
equivalents of a variety of common operations used in deep
convolutional networks like max-pooling, softmax, batch-
normalization and inception modules. This allowed them to
convert popular CNN architectures like VGG-16 (Simonyan
& Zisserman, 2014), Inception-V3(Szegedy et al., 2016),
BinaryNet(Courbariaux et al., 2016), etc. They achieved
near lossless conversion of these networks. There has been
no previous work on conversion of Deep Q-networks into
SNN to our knowledge. Figure 3 shows the network in
Figure 2 converted to a spiking neural network (SNN).

Figure 3. Network architecture following (Mnih et al., 2015), after
converting ReLu nonlinearity to spiking network.

4. Methods
We trained each network using the DQN algorithm (Mnih
et al., 2015). We started by testing our methods on shal-
low ReLU-Ns with one hidden layer and then move on to
full-sized deep Q-networks with the same architecture as
Mnih et al. (2015). We trained the smaller networks using
a replay memory size of 200000 and initial replay memory
size of 50000. We trained the network over 30000 episodes.



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Improve robustness of RL Policies using Spiking Neural Networks

The rest of the hyper-parameters we used are same as in
Mnih et al. (2015)’s work. For a complete list of the hyper-
parameters used see supplementary materials Table 1.

The trained ReLU-Ns are then converted to SNN. For the
converted SNN, The firing frequency of the spiking neurons
in the output layer is proportional to the Q-value of the
corresponding action.

We simulate spiking neurons using the PyTorch based open
source library BindsNET (Hazan et al., 2018). Testing SNN
based agents in the ALE is a computationally heavy task.
We use BindsNET as it allows users to leverage GPUs to
simulate the SNN and speed up testing.

4.1. Network architecture

Typically, the network used to train on Atari games using
the DQN algorithm consists of multiple convolutional layers
followed by fully connected layers (Mnih et al., 2015). How-
ever, to reduce the complexity of the network and reduce the
number of parameters, we choose a shallow fully connected
network with one hidden layer for our initial experiments.

The ReLU-N consists of 80x80 pixel input followed by a
fully connected hidden layer with 1000 ReLU neurons. The
output layer is a fully connected layer with 4 neurons that
give the estimate of the optimal action-value of each of the
4 possible actions in the Breakout game.

Figure 4. Network architecture: The input to the network consists
of an 80x80 image produced by preprocessing the frames of the
game. The hidden layer consists of 1000 neurons followed by the
output layer. The size of the output layer is equal to the number of
possible actions for the game.

Figure 4 shows the network architecture of the shallow SNN.
The network architecture of the shallow SNN is similar to
the shallow ReLU-N except that the neurons are replaced
by spiking neurons and the ReLU non-linearity is removed.

4.2. Experiments

The ReLU-N can be converted to SNN by replacing the
ReLU neurons with spiking neurons. However, the result
of this straight forward conversion usually causes to a very

little spiking activity in the network. Therefore, the network
needs to run for a large number of time steps on given
input to generate enough meaningful activity for a good
estimate of the Q-values. In order to expedite the process
and increase the spiking activity, the weights need to be
scaled up. Generally, the weights of deeper layers need to
be scaled higher than weights of the shallower layers. We
can treat the scale of the weights as parameters that need to
be adjusted with a constant run-time for each input. All the
weights of the same layer are scaled by the same factor thus
preserving the learned filters. To search for the weight scale
parameters, we can use many different methods. While
Rueckauer et al. (2017) showed one way of normalizing
the weights, we also employed other methods such as grid
search and particle swarm optimization (Clerc, 2012) to
search for the optimal parameters. For our experiments, we
run the SNN for 500 time-steps on each input.

Binary input

The first part of our experiments uses binary pixel inputs.
Each state consists of an 80x80 image of binary pixels. The
frames from the Gym environment are pre-processed to
create the state.

Each frame from the gym environment is cropped to remove
the text above the screen displaying the score and the num-
ber of lives left. The image is then re-sized to an 80x80
image and converted to a binary image. The previous frame
is then subtracted from the current frame while clamping
all the negative values to 0. We then add the most recent
four such difference frames to create a state for the RL envi-
ronment. Thus, a state is an 80x80 binary image containing
the movement information of the last four states. From this
image, however, it is not possible to detect the direction of
the movement from the image. This, we believe, restricts
the performance of the agent on the game.

Grayscale input

The binary input does not contain information about the
direction of the ball movement which we believe can con-
fuse the agent. To alleviate this problem, we weighted each
frame according to time and added them to create the state.
The most recent frame has the highest weight, and the least
recent frame has the least weights. At time t the state is
made up of the sum of the most recent 4 frames as follows:

St = Ft ∗ 1+Ft−1 ∗ 0.75+Ft−2 ∗ 0.5+Ft−3 ∗ 0.25 (6)

Where St and Ft are the state and the frame at time t respec-
tively.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Improve robustness of RL Policies using Spiking Neural Networks

(a) 0.05 epsilon greedy binary input (b) Greedy binary input

(c) 0.05 epsilon greedy grayscale input (d) Greedy grayscale input

Figure 5. Performance of the networks for Binary and Grayscale inputs. Each plot shows the reward distribution over 100 episodes using
0.05 epsilon greedy policy.

Robustness

Recent work has shown that deep Q-networks are vulnerable
to white-box and black-box adversarial attacks (Huang et al.,
2017). Witty et al. (2018) also showed that the policies
learned by the DQN algorithm generalize poorly for the
states of the game that the agent has not seen during training.
To test the robustness of the SNN against the ReLU-N,
we test the performance of each network when a 3-pixel
thick horizontal bar of pixels spanning the entire width of
the input is occluded. The thickness of the occlusion bar
corresponds to the thickness of the paddle on the screen
after preprocessing. We tested the performance for every
possible position of the bar on the screen. The position
of the occlusion bar does not change during the episode.
This is a challenging task since the bar sometimes partially
or wholly occludes the position of the ball or the paddle;
however, it tests the robustness and generalization of the

policies represented by both the networks.

5. Results
The experiments below show the results of 100 episodes
on two different inputs (Binary or Grayscale) using two
policies (greedy and 0.05 epsilon-greedy). We tested the
shallow SNN using LIF neurons and stochastic LIF neurons.
We refer to the SNN using LIF neurons as SNN and the
SNN using stochastic LIF neurons as stochastic SNN.

Binary input

The results demonstrate that SNNs are capable of represent-
ing policies that perform even better than the ReLU-N they
are converted from. Figure 5 shows the performance of the
ReLU-N against the performance of SNN and the stochastic
SNN for binary input. We can see that the stochastic SNN



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Improve robustness of RL Policies using Spiking Neural Networks

performs better on average than the ReLU-N it is converted
from. The optimal parameters for this binary input spiking
neural networks were found using grid search.

Grayscale input

The results show that the performance for the grayscale input
is higher then the binary input for both networks (SNN and
ReLU-N) as shown in figure 5. Table 1 summarizes the best
performance for each method of input for each network. We
also see that the standard deviation of the rewards gained
by the SNN is lower and the behavior is less random than
for the binary input, due to proper weight normalization.
We employed particle swarm optimization (Clerc, 2012) to
search for the optimal weight scaling parameters. The scale
of each of the two layers was treated as a parameter; thus the
dimension of the search space is 2. The swarm size was set
to 13. The stochastic LIF network has a smoother surface of
performance over the parameter space than the LIF network.
This suggests that the stochastic LIF network is more robust
to change in the scaling of its weights. The escape noise
of the stochastic LIF neuron can be tuned to improve the
performance further however we leave that to future work.

INPUT RELU-N SNN STOCHASTIC

0.05 EPSILON GREEDY

BINARY 5.77± 3.07 6.21± 1.74 7.12± 2.47
GRAYSCALE 6.55± 1.53 7.28± 1.79 7.5± 2.16

GREEDY

BINARY 6.0± 0 5.25± 2.13 7.58± 1.87
GRAYSCALE 9.32± 0.63 10.05± 0.68 8.0± 2.37

Table 1. Best performance achieved for different inputs and net-
works. Each value represents an average of 100 episodes.

Robustness

Figure 6 shows the performance of the ReLU-N and SNN
for the robustness task. The x-axis represents the vertical
position of the bottom-most occluded pixels. Thus as we
move from left to right on the plot, the 3-pixel thick occlu-
sion bar moves from bottom to the top of the screen. Figure
6 shows the result of 77 experiments, one for each possible
position of the horizontal occlusion bar. Each experiment
was run for 100 episodes using 0.05 epsilon greedy policy.

Our experiments on robustness show that SNNs are much
more robust to occlusions on input as compared to ReLU-
N even though they share the same weights. The ReLU-N
trained using backpropagation is very sensitive to occlusions
and perturbations at a few places in the input. When these
areas are occluded, the ReLU-N performs poorly. One such
area is near the bottom of the screen (marked in Figure 6

(a) Pixel-wise robustness ReLU-N vs SNN

Figure 6. Performance of ReLU-N and SNN for the robustness test.
The x-axis represents the position of the bottom most occluded
pixels of the 3-pixel thick horizontal occlusion bar. The y-axis
represents the average reward. The standard distribution for the
reward distribution is shown using the shaded region. The two
critical areas are marked by the black bars A and B at the bottom
of the plot. A shows the area near the paddle, while B marks the
region of the screen occupied by the brick wall.

by A). Occlusion in this area results in drastic decrease in
the performance of the ReLU-N. This is understandable as
this area contains the paddle and also shows the position
of the ball just before it hits the paddle or falls below the
screen. Surprisingly, occluding the neighborhood of area A
has much less negative impact on the performance of the
SNN as compared to ReLU-N. Once the paddle is visible,
we see that the SNN has no significant loss in performance.

Another sensitive area for the ReLU-N corresponds to the
position of the brick wall, marked by B in figure 6. We
see that occluding some of the positions in this area results
in a sharp drop in performance for ReLU-N. This can be
explained by the nature of the gradient descent updates.
Since the score changes when the ball hits the bricks and
the backpropagation loss calculated using the TD-error is
highest when the score changes, the filters of the network
learn to discriminate these areas. Thus, when these areas
are occluded, the performance drops. Interestingly, these
sudden drops in performance are not observed in the SNN.
This suggests that the SNN is more robust to occlusions in
the input than the ReLU-N it is converted from. We also see
that the SNN performs better than the ReLU-N in most of
the experiments and has a lower standard deviation in the
reward distribution.

For detailed list of results for positions of the occlusion see
supplementary materials, Table 3.



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Improve robustness of RL Policies using Spiking Neural Networks

6. Deep Q-networks

(a) DQN vs SNN

Figure 7. Performance of Deep Q-network vs. Deep Spiking Net-
work. Each plot shows the reward distribution over 100 episodes
using 0.05 epsilon greedy policy.

To demonstrate that our approach is applicable for state-
of-the-art, large-scale networks, we trained the Deep Q-
network (Mnih et al., 2015) and converted the weights to
SNN with similar network architecture (see Figure 3). Since
converting the DQN to SNN requires parameter search for
a larger number of parameters, we used the parameter nor-
malization method (Rueckauer et al., 2017). This approach
shows reasonable performance, although its performance
can be clearly improved using a systematic parameter op-
timization method. The deep Q-SNN was tested using the
subtractive-IF neurons. We used the OpenAI baseline im-
plementation of DQN to train the network (Dhariwal et al.,
2017). We show that the DQN can be converted to spiking
Q-network without significant loss in performance; see Fig-
ure 7 for full distribution of rewards using the two networks.
At the present stage of the work, we did not conduct robust-
ness test for the trained networks. We leave a systematic
robustness study and comparison to future work.

7. Conclusion
In this paper, we demonstrate that ReLU-Ns trained on the
game breakout can be converted to SNNs without degra-
dation of performance. Moreover, we show that SNNs are
more robust to occlusion attack and can outperform tradi-
tional ReLU networks on reinforcement learning tasks. In
some cases, SNNs perform better than ReLU-N on previ-
ously unseen states. These results, combined with other
benefits of SNNs, such as energy efficiency on neuromor-
phic hardware, make SNNs an ideal framework for rein-
forcement learning tasks when resources are limited and the
environment is noisy.

In summary:

1. SNNs can perform reinforcement learning tasks like
playing Atari games.

2. SNNs can be trained on reinforcement learning tasks
by conversion from trained ReLU-Ns.

3. SNNs can outperform the ReLU-Ns from which they
have been converted on reinforcement learning tasks,
like playing Atari games.

4. SNNs are robust to attacks and perturbations in the
input. They have improved generalization on states,
which they have not encountered before.

References
Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.

The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, jun 2013.

Bengio, Y., Fischer, A., Mesnard, T., Zhang, S., and Wu, Y.
From stdp towards biologically plausible deep learning.
In Deep Learning Workshop, International Conference
on Machine Learning (ICML), 2015.

Cao, Y., Chen, Y., and Khosla, D. Spiking deep convolu-
tional neural networks for energy-efficient object recog-
nition. International Journal of Computer Vision, 113
(1):54–66, May 2015. ISSN 1573-1405. doi: 10.1007/
s11263-014-0788-3. URL https://doi.org/10.
1007/s11263-014-0788-3.

Cassidy, A. S., Merolla, P., Arthur, J. V., Esser, S. K., Jack-
son, B., Alvarez-Icaza, R., Datta, P., Sawada, J., Wong,
T. M., Feldman, V., Amir, A., Rubin, D. B., Akopyan, F.,
McQuinn, E., Risk, W. P., and Modha, D. S. Cognitive
computing building block: A versatile and efficient digital
neuron model for neurosynaptic cores. In The 2013 Inter-
national Joint Conference on Neural Networks (IJCNN),
pp. 1–10, Aug 2013. doi: 10.1109/IJCNN.2013.6707077.

Clerc, M. Standard Particle Swarm Optimisation.
15 pages, September 2012. URL https://hal.
archives-ouvertes.fr/hal-00764996.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks: Training deep
neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,
M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and
Zhokhov, P. Openai baselines. https://github.
com/openai/baselines, 2017.

https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1007/s11263-014-0788-3
https://hal.archives-ouvertes.fr/hal-00764996
https://hal.archives-ouvertes.fr/hal-00764996
https://github.com/openai/baselines
https://github.com/openai/baselines


385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Improve robustness of RL Policies using Spiking Neural Networks

Diehl, P. and Cook, M. Unsupervised learning of
digit recognition using spike-timing-dependent plastic-
ity. Frontiers in Computational Neuroscience, 9:99,
2015. ISSN 1662-5188. doi: 10.3389/fncom.2015.
00099. URL https://www.frontiersin.org/
article/10.3389/fncom.2015.00099.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S., and
Pfeiffer, M. Fast-classifying, high-accuracy spiking deep
networks through weight and threshold balancing. In
2015 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8, July 2015. doi: 10.1109/IJCNN.2015.
7280696.

Diehl, P. U., Pedroni, B. U., Cassidy, A., Merolla, P., Neftci,
E., and Zarrella, G. Truehappiness: Neuromorphic emo-
tion recognition on truenorth. In 2016 International Joint
Conference on Neural Networks (IJCNN), pp. 4278–4285,
July 2016. doi: 10.1109/IJCNN.2016.7727758.

Ferr, P., Mamalet, F., and Thorpe, S. J. Unsu-
pervised feature learning with winner-takes-all based
stdp. Frontiers in Computational Neuroscience, 12:24,
2018. ISSN 1662-5188. doi: 10.3389/fncom.2018.
00024. URL https://www.frontiersin.org/
article/10.3389/fncom.2018.00024.

Gilra, A. and Gerstner, W. Non-linear motor control by
local learning in spiking neural networks. In Dy, J.
and Krause, A. (eds.), Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pp. 1773–
1782, Stockholmsmssan, Stockholm Sweden, 10–15 Jul
2018. PMLR. URL http://proceedings.mlr.
press/v80/gilra18a.html.

Hasselt, H. v., Guez, A., and Silver, D. Deep rein-
forcement learning with double q-learning. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, pp. 2094–2100. AAAI Press,
2016. URL http://dl.acm.org/citation.
cfm?id=3016100.3016191.

Hazan, H. and Manevitz, L. M. Topological constraints
and robustness in liquid state machines. Expert Sys-
tems with Applications, 39(2):1597 – 1606, 2012. ISSN
0957-4174. doi: https://doi.org/10.1016/j.eswa.2011.06.
052. URL http://www.sciencedirect.com/
science/article/pii/S0957417411009523.

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi,
D. T., Siegelmann, H. T., and Kozma, R. Bindsnet:
A machine learning-oriented spiking neural networks
library in python. Frontiers in Neuroinformatics, 12:
89, 2018. ISSN 1662-5196. doi: 10.3389/fninf.2018.
00089. URL https://www.frontiersin.org/
article/10.3389/fninf.2018.00089.

Huang, S. H., Papernot, N., Goodfellow, I. J., Duan, Y., and
Abbeel, P. Adversarial attacks on neural network policies.
CoRR, abs/1702.02284, 2017.

Huh, D. and Sejnowski, T. J. Gradient descent for spiking
neural networks. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 31,
pp. 1440–1450. Curran Associates, Inc., 2018.

Maass, W. Networks of spiking neurons: The third gener-
ation of neural network models. Neural Networks, 10:
1659–1671, 1996.

Martı́, D., Rigotti, M., Seok, M., and Fusi, S. Energy-
efficient neuromorphic classifiers. Neural Computation,
28:2011–2044, 2016.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,
Wierstra, D., Legg, S., and Hassabis, D. Human-level
control through deep reinforcement learning. Nature, 518
(7540):529–533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/nature14236.

Pfeiffer, M. and Pfeil, T. Deep learning with spiking
neurons: Opportunities and challenges. Fron-
tiers in Neuroscience, 12:774, 2018. ISSN 1662-
453X. doi: 10.3389/fnins.2018.00774. URL
https://www.frontiersin.org/article/
10.3389/fnins.2018.00774.

Prez-Carrasco, J. A., Zhao, B., Serrano, C., Acha, B.,
Serrano-Gotarredona, T., Chen, S., and Linares-Barranco,
B. Mapping from frame-driven to frame-free event-driven
vision systems by low-rate rate coding and coincidence
processing–application to feedforward convnets. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 35(11):2706–2719, Nov 2013. ISSN 0162-8828.
doi: 10.1109/TPAMI.2013.71.

Richardson, M. J. E. and Gerstner, W. Statistics of subthresh-
old neuronal voltage fluctuations due to conductance-
based synaptic shot noise. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 16(2):026106, 2006. doi:
10.1063/1.2203409. URL https://doi.org/10.
1063/1.2203409.

Rueckauer, B., Lungu, I.-A., Hu, Y., and Pfeiffer, M. Theory
and tools for the conversion of analog to spiking convolu-
tional neural networks. arXiv preprint arXiv:1612.04052,
2016.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and
Liu, S.-C. Conversion of continuous-valued deep

https://www.frontiersin.org/article/10.3389/fncom.2015.00099
https://www.frontiersin.org/article/10.3389/fncom.2015.00099
https://www.frontiersin.org/article/10.3389/fncom.2018.00024
https://www.frontiersin.org/article/10.3389/fncom.2018.00024
http://proceedings.mlr.press/v80/gilra18a.html
http://proceedings.mlr.press/v80/gilra18a.html
http://dl.acm.org/citation.cfm?id=3016100.3016191
http://dl.acm.org/citation.cfm?id=3016100.3016191
http://www.sciencedirect.com/science/article/pii/S0957417411009523
http://www.sciencedirect.com/science/article/pii/S0957417411009523
https://www.frontiersin.org/article/10.3389/fninf.2018.00089
https://www.frontiersin.org/article/10.3389/fninf.2018.00089
http://dx.doi.org/10.1038/nature14236
https://www.frontiersin.org/article/10.3389/fnins.2018.00774
https://www.frontiersin.org/article/10.3389/fnins.2018.00774
https://doi.org/10.1063/1.2203409
https://doi.org/10.1063/1.2203409


440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Improve robustness of RL Policies using Spiking Neural Networks

networks to efficient event-driven networks for im-
age classification. Frontiers in Neuroscience, 11:682,
2017. ISSN 1662-453X. doi: 10.3389/fnins.2017.
00682. URL https://www.frontiersin.org/
article/10.3389/fnins.2017.00682.

Schultz, W. Dopamine reward prediction-error signalling: a
two-component response. Nature Reviews Neuroscience,
17:183–195, 2016.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Stein, R. B., Gossen, E. R., and Jones, K. E. Neuronal
variability: noise or part of the signal? Nature Reviews
Neuroscience, 6:389 EP –, May 2005. URL https:
//doi.org/10.1038/nrn1668. Review Article.

Sutton, R. S. and Barto, A. G. Reinforcement learning:
An introduction. MIT Press, Cambridge, MA, USA, 2st
edition, 2018. ISBN 9780262039246.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Tuckwell, H. C. Introduction to Theoretical Neurobi-
ology, volume 2 of Cambridge Studies in Mathemati-
cal Biology. Cambridge University Press, 1988. doi:
10.1017/CBO9780511623202.

W. Gerstner, W. M. K. Spiking Neuron Models. Single
Neurons, Populations, Plasticity. Cambridge University
Press, 2002.

Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala,
D., Soyer, H., Leibo, J. Z., Hassabis, D., and Botvinick,
M. M. Prefrontal cortex as a meta-reinforcement learning
system. Nature Neuroscience, 21:1–9, 2018.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanc-
tot, M., and Freitas, N. Dueling network architec-
tures for deep reinforcement learning. In Balcan, M. F.
and Weinberger, K. Q. (eds.), Proceedings of The 33rd
International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Research,
pp. 1995–2003, New York, New York, USA, 20–22 Jun
2016. PMLR. URL http://proceedings.mlr.
press/v48/wangf16.html.

Witty, S., Lee, J. K., Tosch, E., Atrey, A., Littman, M.,
and Jensen, D. Measuring and characterizing general-
ization in deep reinforcement learning. arXiv preprint
arXiv:1812.02868, 2018.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. Spatio-
temporal backpropagation for training high-performance
spiking neural networks. Frontiers in Neuroscience, 12:
331, 2018. ISSN 1662-453X. doi: 10.3389/fnins.2018.
00331. URL https://www.frontiersin.org/
article/10.3389/fnins.2018.00331.

https://www.frontiersin.org/article/10.3389/fnins.2017.00682
https://www.frontiersin.org/article/10.3389/fnins.2017.00682
https://doi.org/10.1038/nrn1668
https://doi.org/10.1038/nrn1668
http://proceedings.mlr.press/v48/wangf16.html
http://proceedings.mlr.press/v48/wangf16.html
https://www.frontiersin.org/article/10.3389/fnins.2018.00331
https://www.frontiersin.org/article/10.3389/fnins.2018.00331

