
1

The Computational Power of Interactive Recur-
rent Neural Networks

Jérémie Cabessa1 and Hava T. Siegelmann1

1 BINDS Lab, Computer Science Department, University of Massachusetts Amherst,

140 Governors Drive, MA 01003-9264, USA.

jcabessa[at]nhrg.org, hava[at]cs.umass.edu

Key Words: neural computation, interactive computation, analog computation, re-

current neural networks, interactive Turing machines, learning, computational power,

ω-translations.

Abstract

In classical computation, rational- and real-weighted recurrent neural networks were

shown to be respectively equivalent to and strictly more powerful than the standard

Turing machine model. Here, we study the computational power of recurrent neural net-

works in a more biologically-oriented computational framework capturing the aspects

of sequential interactivity and persistence of memory. In this context, we prove that

so-called interactive rational- and real-weighted neural networks show the same com-

putational powers as interactive Turing machines and interactive Turing machines with

advice, respectively. A mathematical characterization of each of these computational

powers is also provided. It follows from these results that interactive real-weighted neu-

ral networks can actually perform uncountably many more translations of information

than interactive Turing machines, making them capable of super-Turing capabilities.



1 Introduction

Understanding the computational and dynamical capabilities of neural networks is an is-

sue of central importance. In this context, much interest has been focused on comparing

the computational power of diverse theoretical neural models and abstract computing

devices.

The approach was initiated by McCulloch and Pitts (1943), who proposed a mod-

elization of the nervous system as a finite interconnection of logical devices. Neural

networks were then considered as discrete abstract machines, and the issue of their

computational capabilities was investigated from the automata-theoretic perspective. In

this context, Kleene (1956) and Minsky (1967) proved that rational-weighted recurrent

neural networks equipped with boolean activation functions are computationally equiv-

alent to classical finite state automata. Later, Siegelmann and Sontag (1995) showed

that extending the activation functions of the cells from boolean to linear-sigmoid ac-

tually drastically increases the computational power of the networks from finite state

automata up to Turing capabilities. Kilian and Siegelmann (1996) then generalized

the Turing universality of neural networks to a broader class of sigmoidal activation

functions. The computational equivalence between so-called rational recurrent neural

networks and Turing machines has now become standard result in the field.

A further breakthrough has been achieved by Siegelmann and Sontag (1994) who

considered the computational power of recurrent neural networks from the perspective

of analog computation (Siegelmann, 1999). They introduced the concept of an analog

recurrent neural network as a classical linear-sigmoid neural net equipped with real-

instead of rational-weighted synaptic connections. This analog information processing

model turns out to be capable of capturing the non-linear dynamical properties that are

most relevant to brain dynamics, such as Cantor-like encoding and rich chaotic behav-

iors (Tsuda, 2001, 2009; Yamaguti et al., 2011). Moreover, many dynamical and ideal-

ized chaotic systems that cannot be described by the universal Turing machine are also

indeed well captured within this analog framework (Siegelmann, 1995). In this con-

text, Siegelmann and Sontag (1994) notably proved that the computational capabilities

of analog recurrent neural networks turn out to stand beyond the Turing limits. These

results support the idea that some dynamical and computational features of neurobio-

2



logical systems might be beyond the scope of standard artificial models of computation.

However, until now, the issue of the computational capabilities of neural networks

has always been considered from the strict perspective of Turing-like classical compu-

tation (Turing, 1936): a network is as an abstract machine that receives a finite input

stream from its environment, processes this input, and then provides a corresponding

finite output stream as answer, without any consideration to the internal or external

changes that might happen during previous computations. But this classical computa-

tional approach is inherently restrictive, and has nowadays been argued to “no longer

fully corresponds to the current notion of computing in modern systems” (van Leeuwen

and Wiedermann, 2008), especially when it refers to bio-inspired complex information

processing systems (van Leeuwen and Wiedermann, 2001a, 2008). Indeed, in the brain

(or in organic life in general), information is rather processed in an interactive way,

where previous experience must affect the perception of future inputs, and where older

memories themselves may change with response to new inputs. Hence, neural networks

should rather be conceived as performing sequential interactions or communications

with their environments, and be provided with memory that remains active throughout

the whole computational process, rather than proceeding in a closed-box amnesic clas-

sical fashion. Accordingly, we propose to study the computational power of recurrent

neural networks from the rising perspective of interactive computation (Goldin et al.,

2006).

In this paper, we consider a basic paradigm of computation capturing the aspects

of sequential interactivity and persistence of memory, and we study the computational

power of recurrent neural networks in this context. Our framework is in line with pre-

vious ones suggested for instance by Goldin et al. (2004) and van Leeuwen and Wie-

dermann (2006), but focused on biological computational considerations. In Section

2, some preliminary definitions are stated. In Section 3, the interactive computational

paradigm that we consider is presented. In sections 4 and 5, we define the concept of an

interactive recurrent neural network and further prove that under our interactive com-

putational scenario, the rational- and real-weighted neural networks show the very same

computational powers as interactive Turing machines and interactive Turing machines

with advice, respectively. Moreover, a mathematical characterization of each of these

computational powers is also provided. It follows from these results that in the inter-

3



active just as in the classical framework, analog (i.e., real-weighted) neural networks

are capable of super-Turing computational capabilities. Sections 6 and 7 are entirely

devoted to the proofs of these results. Finally, Section 8 provides some concluding

remarks.

2 Preliminaries

Before entering into further considerations, the following definitions and notations need

to be introduced. Given some finite alphabet Σ, we let Σ∗, Σ+, Σn, and Σω denote

respectively the sets of finite words, non-empty finite words, finite words of length n,

and infinite words, all of them over alphabet Σ. We also let Σ≤ω = Σ∗ ∪ Σω be the set

of all possible words (finite or infinite) over Σ. The empty word is denoted λ.

For any x ∈ Σ≤ω, the length of x is denoted by |x| and corresponds to the number

of letters contained in x. If x is non-empty, we let x(i) denote the (i + 1)-th letter

of x, for any 0 ≤ i < |x|. The prefix x(0) · · ·x(i) of x is denoted by x[0:i], for any

0 ≤ i < |x|. For any x ∈ Σ∗ and y ∈ Σ≤ω, the fact that x is a prefix (resp. strict prefix)

of y is denoted by x ⊆ y (resp. x ( y). If x ⊆ y, we let y − x = y(|x|) · · · y(|y| − 1)

be the suffix of y that is not common to x (we have y − x = λ if x = y). Moreover, the

concatenation of x and y is denoted by x · y or sometimes simply by xy. The word xn

consists of n copies of x concatenated together, with the convention that x0 = λ.

A function f : Σ∗ −→ Σ∗ is called monotone if the relation x ⊆ y implies f(x) ⊆

f(y), for all x, y ∈ Σ∗. It is called recursive if it can be computed by some Turing

machine. Besides, throughout this paper, any function ϕ : Σω −→ Σ≤ω will be referred

to as an ω-translation.

3 Interactive Computation

3.1 The Interactive Paradigm

Interactive computation refers to the computational framework where systems may re-

act or interact with each other as well as with their environment during the computation

(Goldin et al., 2006). This paradigm was theorized in contrast to classical computation

4



which rather proceeds in a closed-box fashion and was argued to “no longer fully cor-

responds to the current notions of computing in modern systems” (van Leeuwen and

Wiedermann, 2008). Interactive computation also provides a particularly appropriate

framework for the consideration of natural and bio-inspired complex information pro-

cessing systems (van Leeuwen and Wiedermann, 2001a, 2008).

In fact, Goldin and Wegner (2008) as well as Wegner (1997, 1998) argued that

the intrinsic nature of interactivity shall alone lead to computations beyond the expres-

siveness of classical Turing machines. Goldin (2000) and Goldin et al. (2004) then

introduced the concept of a persistent Turing machine as a possible extension of the

classical notion of Turing machine in the interactive context. Van Leeuwen and Wie-

dermann (2001a) however consider that “interactivity alone is not sufficient to break

the Turing barrier”. They introduced the concepts of interactive Turing machine and

interactive Turing machine with advice as a generalization of their classical counter-

parts in the interactive context and used them as a tool to analyze the computational

power of other interactive systems. In this context, they showed that several interactive

models of computation are actually capable of super-Turing computational capabilities

(van Leeuwen and Wiedermann, 2001a,b).

The general interactive computational paradigm consists of a step by step exchange

of information between a system and its environment. In order to capture the unpre-

dictability of next inputs at any time step, the dynamically generated input streams

need to be modeled by potentially infinite sequences of symbols (the case of finite se-

quences of symbols would necessarily reduce to the classical computational framework)

(Wegner, 1998; van Leeuwen and Wiedermann, 2008). Hence, the interactive system

receives a potentially infinite input stream of signals bit by bit and produces a corre-

sponding potentially infinite output stream of signals bit by bit. At every time step,

the current input bit might depend on intermediate outputs or external sources, and the

corresponding output bit depends on the current input as well as on the current internal

state of the system. It follows that every output actually depends on the whole input

history that has been processed so far. In this sense, the memory of the system remains

active throughout the whole computational process.

Throughout this paper, we consider a basic interactive computational scenario where

at every time step, the environment first sends a non-empty input bit to the system (full

5



environment activity condition), the system next updates its current state accordingly,

and then answers by either producing a corresponding output bit or remaining silent. In

other words, the system is not obliged to provide corresponding output bits at every time

step, but might instead stay silent for a while (to express the need of some internal com-

putational phase before outputting a new bit), or even forever (to express the case that it

has died). Consequently, after infinitely many time steps, the system will have received

an infinite sequence of consecutive input bits and translated it into a corresponding fi-

nite or infinite sequence of not necessarily consecutive output bits. Accordingly, any

interactive system S realizes an ω-translation ϕS : {0, 1}ω −→ {0, 1}≤ω.

3.2 Interactive Turing Machines

The concept of an Interactive Turing machine was introduced by van Leeuwen and

Wiedermann (2001a) as a generalization of the standard Turing machine model in the

context of interactive computation.

An interactive Turing machine consists of an interactive abstract device driven by

a standard Turing machine program. It receives an infinite stream of bits as input and

produces a corresponding stream of bits as output step by step. The input and output bits

are processed via corresponding input and output ports rather than tapes. Consequently,

at every time step, the machine can no more operate on the output bits that have already

been processed.1 Furthermore, according to our interactive scenario it is assumed that

at every time step, the environment sends a non-silent input bit to the machine and the

machine might either answer by some corresponding output bit or rather remain silent.

Formally, an interactive Turing machine (ITM) M is defined as a tuple M =

(Q,Γ, δ, q0), where Q is a finite set of states, Γ = {0, 1, λ, ]} is the alphabet of the

machine, where ] stands for the blank tape symbol, q0 ∈ Q is the initial state, and

δ : Q× Γ× {0, 1} −→ Q× Γ× {←,→,−} × {0, 1, λ}

is the transition function of the machine. The relation δ(q, x, b) = (q′, x′, d, b′) means

that if the machine M is in state q, the cursor of the tape is scanning the letter x ∈

1In fact, allowing the machine to erase its previous output bits would lead to the

consideration of much more complicated ω-translations.

6



{0, 1, ]}, and the bit b ∈ {0, 1} is currently received at its input port, thenM will go in

next state q′, it will make the cursor overwrite symbol x by x′ ∈ {0, 1, ]} and then move

to direction d, and it will finally output symbol b ∈ {0, 1, λ} at its output port, where λ

represents the fact the machine is not outputting any bit at that time step.

According to this definition, for any infinite input stream s ∈ {0, 1}ω, we define the

corresponding output stream os ∈ {0, 1}≤ω ofM as the finite or infinite subsequence of

(non-λ) output bits produced byM after having processed input s. In this manner, any

machineM naturally induces an ω-translation ϕM : {0, 1}ω −→ {0, 1}≤ω defined by

ϕM(s) = os, for each s ∈ {0, 1}ω. Finally, an ω-translation ψ : {0, 1}ω −→ {0, 1}≤ω

is said to be realizable by some interactive Turing machine iff there exists an ITMM

such that ϕM = ψ.

Van Leeuwen and Wiedermann (2001a) also introduced the concept of interactive

machine with advice as a relevant non-uniform computational model in the context of

interactive computation. Interactive Turing machines with advice are strictly more pow-

erful than their classical counterpart (i.e., interactive Turing machines without advice)

(van Leeuwen and Wiedermann, 2001b, Proposition 5) and (van Leeuwen and Wie-

dermann, 2001a, Lemma 1), and they were shown to be computationally equivalent to

several others other non-uniform models of interactive computation, like sequences of

interactive finite automata, site machines, and web Turing machines (van Leeuwen and

Wiedermann, 2001a).

An interactive Turing machine with advice (ITM/A) M consists of an interactive

Turing machine provided with an advice mechanism. The mechanism comes in the

form of an advice function which consists of a mapping α from N to {0, 1}∗. Moreover,

the machine M uses two auxiliary special tapes, an advice input tape and an advice

output tape, as well as a designated advice state. During its computation,M can write

the binary representation of an integer m on its input tape, one bit at a time. Yet at

time step n, the number m is not allowed to exceed n. Then, at any chosen time,

the machine can enter its designated advice state and then have the string α(m) be

written on the advice output tape in one time step, replacing the previous content of the

tape. The machine can repeat this process as many time as it wants during its infinite

computation.

Once again, according to our interactive scenario, any ITM/A M induces an ω-

7



translation ϕM : {0, 1}ω −→ {0, 1}≤ω which maps every infinite input stream s to its

corresponding finite or infinite output stream os produced byM. Finally, an ω-trans-

lation ψ : {0, 1}ω −→ {0, 1}≤ω is said to be realizable by some interactive Turing

machine with advice iff there exists an ITM/AM such that ϕM = ψ.

4 Interactive Recurrent Neural Networks

We consider a natural extension in the present interactive framework of the classical

model of recurrent neural network, as presented for instance in (Siegelmann and Sontag,

1994, 1995; Siegelmann, 1995, 1999). We will further provide a characterization of

the expressive powers of both rational- and real-weighted interactive recurrent neural

networks.

First of all, a recurrent neural network (RNN) consists of a synchronous network

of neurons (or processors) related together in a general architecture – not necessarily

loop free or symmetric. The network contains a finite number of neurons (xj)
N
j=1, as

well as M parallel input lines carrying the input stream transmitted by the environment

into M of the N neurons, and P designated output neurons among the N whose role

is to communicate the output of the network to the environment. At each time step,

the activation value of every neuron is updated by applying a linear-sigmoid function to

some weighted affine combination of values of other neurons or inputs at previous time

step.

Formally, given the activation values of the internal and input neurons (xj)
N
j=1 and

(uj)
N
j=1 at time t, the activation value of each neuron xi at time t+ 1 is then updated by

the following equation

xi(t+ 1) = σ

(
N∑

j=1

aij · xj(t) +
M∑

j=1

bij · uj(t) + ci

)
, i = 1, . . . , N (1)

where all aij , bij , and ci are numbers describing the weighted synaptic connections and

weighted bias of the network, and σ is the classical saturated-linear activation function

defined by

σ(x) =


0 if x < 0,

x if 0 ≤ x ≤ 1,

1 if x > 1.

8



A rational recurrent neural network (RNN[Q]) denotes a recurrent neural net whose

all synaptic weights are rational numbers. A real (or analog) recurrent neural network

(RNN[R]) is a network whose all synaptic weights are real. Since rational numbers

are real, note that any RNN[Q] is also a RNN[R] by definition. The converse is ob-

viously not true. In fact, it has been proven that RNN[Q] are Turing equivalent and

that RNN[R]s are strictly more powerful than RNN[Q]s and hence also than Turing

machines (Siegelmann and Sontag, 1994, 1995).

Now, in order to stay consistent with our interactive scenario, we define the notion

of an interactive recurrent neural network (IRNN) which adheres to a rigid encoding of

the way input and output are interactively processed between the environment and the

network.

First of all, we assume that any IRNN is provided with a single input line u whose

role is to transmit to the network the infinite input stream of bits sent by the environ-

ment. More precisely, at each time step t ≥ 0, the input line u admits an activation value

u(t) belonging to {0, 1} (the full environment activity conditions forces that u(t) never

equals λ). Furthermore, we suppose that any IRNN is equipped with two binary output

lines2, a data line yd and a validation line yv. The role of the data line is to carry the

output stream of the network, while the role of the validation line is to describe when

the data line is active and when it is silent. Accordingly, the output stream transmitted

by the network to the environment will be defined as the (finite or infinite) subsequence

of successive data bits that occur simultaneously with positive validation bits.

Note that the convention of using two output lines allows us to have all output sig-

nals be binary and hence stay close to the framework developed by Siegelmann and

Sontag (1994). Yet instead, one could have used a single output processor y satisfying

y(t) ∈ {−1, 0, 1} for every t ≥ 0, where y(t) = 0 means that no signal is present

at time t, while y(t) = {−1, 1} means that y is transmitting one of the two possible

values at time t. The forthcoming results do not depend on the output encoding that we

consider.

Now, an interactive rational recurrent neural network (IRNN[Q]) denotes an IRNN

2The binary requirement of the output lines yd and yv means that the network is

designed such that for every input and every time step t, one has yd(t) ∈ {0, 1} and

yv(t) ∈ {0, 1}.

9



whose all synaptic weights are rational numbers, and an interactive real (or analog)

recurrent neural network (IRNN[R]) is an IRNN whose all synaptic weights are real.

If N is a rational- or real-weighted IRNN with initial activation values xi(0) = 0

for i = 1, . . . , N , then any infinite input stream

s = s(0)s(1)s(2) · · · ∈ {0, 1}ω

transmitted to input line u induces via Equation (1) a corresponding pair of infinite

streams

(yd(0)yd(1)yd(2) · · · , yv(0)yv(1)yv(2) · · · ) ∈ {0, 1}ω × {0, 1}ω.

The output stream of N according to input s is then given by the finite or infinite sub-

sequence os of successive data bits that occur simultaneously with positive validation

bits, namely

os = 〈yd(i) : i ∈ N and yv(i) = 1〉 ∈ {0, 1}≤ω.

Hence, any IRNN N naturally induces an ω-translation ϕN : {0, 1}ω −→ {0, 1}≤ω

defined by ϕN (s) = os, for each s ∈ {0, 1}ω. Finally, an ω-translation ψ : {0, 1}ω −→

{0, 1}≤ω is said to be realizable by some IRNN iff there exists some IRNNN such that

ϕN = ψ.

5 The Computational Power of Interactive Recurrent

Neural Networks

This section states the main results of the paper. A complete characterization of the

computational powers of IRNN[Q]s and IRNN[R]s is provided. More precisely, it

is shown that IRNN[Q]s and IRNN[R]s are computationally equivalent to ITMs and

ITM/As, respectively. Furthermore, a precise mathematical characterization of the ω-

translations realized by IRNN[Q]s and IRNN[R]s is provided. From these results, it

follows that IRNN[R]s are strictly more powerful than ITMs, showing that the super-

Turing computational capabilities of analog recurrent neural networks also hold in the

framework of interactive computation (Siegelmann and Sontag, 1995).

10



5.1 The Classical Case

For the sake of clarity, we first recall the main results concerning the computational

powers of recurrent neural networks in the case of classical computation. In this con-

text, classical rational-weighted recurrent neural networks were proven to be computa-

tionally equivalent to Turing machines (Siegelmann and Sontag, 1995). Indeed, on the

one hand, any function determined by Equation (1) and involving rational weights is

necessarily recursive, and thus can be computed by some Turing machine, and on the

other hand, it was shown that any Turing machine can be simulated in linear time by

some rational recurrent neural network. The result can be expressed as follows.

Theorem 1. Let L ⊆ {0, 1}+ be some language. Then L is decidable by some RNN[Q]

if and only if L is decidable by some TM (i.e., iff L is recursive).

Moreover, classical real-weighted recurrent neural networks were shown to be strictly

more powerful than rational recurrent networks, and hence also than Turing machines.

More precisely, they turn out to be capable of deciding all possible languages in ex-

ponential time of computation. When restricted to polynomial time of computation,

the networks decide precisely the complexity class of languages P/poly, i.e., the set of

all languages decidable in polynomial time by some Turing machine with polynomially

long advice (Siegelmann and Sontag, 1994). Note that since P/poly strictly includes the

class P and contains non-recursive languages, it follows that the real networks are capa-

ble of super-Turing computational power already from polynomial time of computation.

These results are summarized in the following theorem.

Theorem 2. Let L ⊆ {0, 1}+ be some language. Then L is decidable in exponential

time by some RNN[R]. Moreover, L is decidable in polynomial time by some RNN[R]

iff L is decidable in polynomial time by some Turing machine with polynomially long

advice (i.e., iff L ∈ P/poly).

5.2 The Interactive Case

Similarly to the classical framework, the main tools involved in the characterization of

the computational powers of interactive neural networks are the concepts of interactive

Turing machine and interactive Turing machine with advice. Yet in order to be provide

11



a mathematical description that computational power, the following important relation-

ship between monotone functions and ω-translations also need to be introduced. More

precisely, we note that any monotone function f : {0, 1}∗ −→ {0, 1}∗ induces “in the

limit” an ω-translation fω : {0, 1}ω −→ {0, 1}≤ω defined by

fω(x) = lim
i≥0

f(x[0:i])

where limi≥0 f(x[0:i]) denotes the smallest finite word that contains each word of

{f(x[0:i]) : i ≥ 0} as a finite prefix if limi→∞ |f(x[0:i])| < ∞, and limi≥0 f(x[0:i])

denotes the unique infinite word that contains each word of {f(x[0:i]) : i ≥ 0} as a

finite prefix if limi→∞ |f(x[0:i])| = ∞ (whenever infinite, the word limi≥0 f(x[0:i]) is

also generally denoted by
⋃

i≥0 f(x[0:i]) (Kechris, 1995)). Note that the monotonicity

of f ensures that the value fω(x) is well-defined for all x ∈ {0, 1}ω. Intuitively, the

value fω(x) corresponds to the finite or infinite word that is ultimately approached by

the sequence of growing prefixes 〈f(x[0:i]) : i ≥ 0〉.

According to these definitions, in this paper, an ω-translation ψ : {0, 1}ω −→

{0, 1}≤ω will be called continuous3 if there exists a monotone function f : {0, 1}∗ −→

{0, 1}∗ such that fω = ψ; it will be called recursive continuous if there exists a mono-

tone and recursive function f : {0, 1}∗ −→ {0, 1}∗ such that fω = ψ.

We now come up to the computational power of interactive recurrent neural net-

works. More precisely, the following result shows that IRNN[Q]s and ITMs have

equivalent computational capabilities. The two models of computation actually real-

ize the class of all ω-translations that can be obtained as limits of monotone recursive

functions.

Theorem 3. IRNN[Q]s and ITMs have the same computational power. More precisely,

for any ω-translation ψ : {0, 1}ω −→ {0, 1}≤ω, the following conditions are equiva-

lent:

A) ψ is realizable by some IRNN[Q];

3The choice of this name comes from the fact that continuous functions over the Can-

tor space C = {0, 1}ω can be precisely characterized as limits of monotone functions.

We then chose to extend this appellation in the present broader context of functions

from {0, 1}ω to {0, 1}≤ω that can also be expressed as limits of monotone functions.

12



B) ψ is realizable by some ITM;

C) ψ is recursive continuous.

Proof. A direct consequence of forthcoming propositions 1 and 2 of Section 6.

The next result describes the computational power of interactive real-weighted re-

current neural networks. It states that IRNN[R]s and ITM/As have an equivalent com-

putational power, and realize precisely the class of all ω-translations that can be ob-

tained as limits of monotone but not necessarily recursive functions.

Theorem 4. IRNN[R]s and ITM/As have the same computational power. More pre-

cisely, for any ω-translation ψ : {0, 1}ω −→ {0, 1}≤ω, the following conditions are

equivalent:

A) ψ is realizable by some IRNN[R];

B) ψ is realizable by some ITM/A;

C) ψ is continuous.

Proof. A direct consequence of forthcoming propositions 3 and 4 of Section 7.

Finally, it follows from the two preceding results that, as for the case of classical

computation, analog recurrent neural networks also have super-Turing computational

capabilities in our context of interactive computation.

Theorem 5. IRNN[R]s are strictly more powerful than ITMs. More precisely, IRNN[R]s

can realize uncountably many more ω-translations than ITMs.

Proof. We first recall that ℵ0 and 2ℵ0 denote the cardinalities of the sets of natural and

real numbers, respectively, and that the difference set obtained by removing the nat-

ural numbers from the real numbers still has cardinality 2ℵ0 . Now, any ω-translation

ψ realized by some ITM can obviously also be realized by some ITM/A, and hence

also by some IRNN[R]. It follows that IRNN[R]s are at least as powerful as ITMs.

Moreover, since there are 2ℵ0 monotone functions from {0, 1}∗ into {0, 1}∗ but only ℵ0

recursive monotone functions from {0, 1}∗ into {0, 1}∗, there are also 2ℵ0 continuous

ω-translations whereas only ℵ0 recursive continuous ω-translations. Therefore, theo-

rems 4(C) and 3(C) show that IRNN[R]s can realize 2ℵ0 many more ω-translations than

ITMs.

13



The preceding theorems 3 and 4 furnish a complete characterization of the compu-

tational powers of IRNN[Q]s and IRNN[R]s according to our interactive paradigm of

computational. Theorem 5 further shows that IRNN[R]s are actually super-Turing.

More precisely, the equivalence between conditions (A) and (B) of Theorem 3 pro-

vides a proper generalization in our interactive context of the classical equivalence be-

tween RNN[Q]s and TMs stated in Theorem 1. The equivalence between conditions

(B) and (C) of Theorem 3 corresponds to the translation in the present computational

context of the results by van Leeuwen and Wiedermann (2006) (theorems 7 and 8) con-

cerning the characterization of partial and total interactive ω-translations from {0, 1}ω

to {0, 1}ω in terms of limits of monotone recursive functions. Furthermore, the equiva-

lence between conditions (A) and (B) of Theorem 4 provides some kind of interactive

counterpart to the equivalence in polynomial time of computation between RNN[R]s

and TM/poly(A)s stated in Theorem 2. In this case, the consideration of polynomial

time of computation is no longer relevant since the systems perform never-ending se-

quential interactive exchange of information. Condition (C) of Theorem 4 provides a

new precise mathematical characterization of the computational power of ITM/A and

IRNN[R]s.

Besides, following the approach of van Leeuwen and Wiedermann (2006), we could

also have conceived interactive computing devices as performing partial ω-translations

from {0, 1}ω to {0, 1}ω rather than total ω-translations from {0, 1}ω to {0, 1}≤ω. The

partial ω-translation ϕD realized by some interactive device D would be simply defined

by ϕD(s) = os if os ∈ {0, 1}ω, and ϕD(s) undefined if os ∈ {0, 1}∗, where os ∈

{0, 1}≤ω corresponds to the output produced by D when receiving input s ∈ {0, 1}ω.

In this case, the computational equivalences between IRNN[Q]s and ITMs as well as

between IRNN[R]s and ITM/As would remain valid, and hence the super-Turing capa-

bilities of the IRNN[R]s sill hold true. Moreover, the partial ω-translations performed

by ITM/As would correspond precisely to the partial functions ϕ : {0, 1}ω −→ {0, 1}ω

such that dom(ϕ) ∈ Π0
2 and ϕ|dom(ϕ) : dom(ϕ) ⊆ {0, 1}ω −→ {0, 1}ω is continu-

ous in the classical sense (see (Kechris, 1995) for a precise definition of Π0
2-sets and

continuous functions in the Cantor space {0, 1}ω).

14



6 IRNN[Q]s and ITMs

This section is devoted to the proof of Theorem 3. The following proposition establishes

the equivalence between conditions (B) and (C) of Theorem 3.

Proposition 1. Let ψ be some ω-translation. Then ψ is realizable by some ITM iff ψ is

recursive continuous.

Proof. Let ϕM be an ω-translation realized by some ITM M. We show that ϕM is

recursive continuous. For this purpose, consider the function f : {0, 1}∗ −→ {0, 1}∗

which maps every finite word u to the unique corresponding finite word produced by

M after |u| steps of computation when u ·x is provided as input bit by bit, for any suffix

x ∈ {0, 1}ω. In other words,

f(u) = output string produced byM after |u| time steps of computation

on input u · x, for any x ∈ {0, 1}ω.

In order to see that f is well-defined, we need to remark that the definition of f is

independent of the choice of x. In fact, by definition of our interactive scenario, after

the first |u| time steps of computation, the machineM working on input u · x has only

received the |u| first bits of u · x, namely u, which shows that its current output string is

so far absolutely not influenced by the suffix x. Hence, the function f is well-defined.

Now, sinceM is driven by the program of a TM, the function f can be computed

by the classical TMM′ which, on any finite input u ∈ {0, 1}∗, works exactly likeM

during the |u| first steps of computations, and then halts. It follows that f is recursive.

Moreover, if u ⊆ v, then since the definition of f is independent of the suffix x and

since u · (v − u) = v, the values f(u) and f(v) can actually be seen as the output

strings produced byM after respectively |u| and |v| time steps of computation over the

same input u · (v − u) · x, for some x ∈ {0, 1}ω. Since |u| ≤ |v|, one necessarily has

f(u) ⊆ f(v). Therefore f is monotone.

We now prove that ϕM = fω. Given some input stream s ∈ {0, 1}ω, we consider

in turn the two possible cases where either ϕM(s) ∈ {0, 1}ω or ϕM(s) ∈ {0, 1}∗.

Firstly, suppose that ϕM(s) ∈ {0, 1}ω. This means that the sequence of partial output

strings produced byM on input s after i time steps of computation is strictly increas-

ing as i grows to infinity, i.e. limi→∞ |f(s[0:i])| = ∞. Moreover, for any i ≥ 0, the

15



word f(s[0:i]) corresponds to the output stream produced byM after i + 1 time steps

of computation over the input s[0:i] · (s − s[0:i]) = s. Yet since the output stream

produced by M over the input s is by definition ϕM(s), it follows that f(s[0:i]) is a

prefix of ϕM(s), for all i ≥ 0. Hence, the two properties limi→∞ |f(s[0:i])| = ∞

and f(s[0:i]) ⊆ ϕM(s) ∈ {0, 1}ω for all i ≥ 0 ensure that ϕM(s) is the unique in-

finite word that contains each word of {f(s[0:i]) : i ≥ 0} as a finite prefix, which

is to say by definition that ϕM(s) = limi≥0 f(s[0:i]) = fω(s). Secondly, suppose

that ϕM(s) ∈ {0, 1}∗. This means that the sequence of partial output strings pro-

duced byM on input s after i time steps of computation becomes stationary from time

step j onwards, i.e. limi→∞ |f(s[0:i])| < ∞. Hence, the entire finite output stream

ϕM(s) must necessarily have been produced after a finite amount of time, and thus

ϕM(s) ∈ {f(s[0:i]) : i ≥ 0}. Moreover, as argued in the previous case, f(s[0:i]) is

a prefix of ϕM(s), for all i ≥ 0. Hence, the three properties limi→∞ |f(s[0:i])| < ∞,

ϕM(s) ∈ {f(s[0:i]) : i ≥ 0}, and f(s[0:i]) ⊆ ϕM(s) ∈ {0, 1}∗ for all i ≥ 0 ensure

that ϕM(s) is the smallest finite word that contains each word of {f(s[0:i]) : i ≥ 0}

as a finite prefix, which is to say by definition that ϕM(s) = limi≥0 f(s[0:i]) = fω(s).

Therefore, ϕM(s) = fω(s) for any s ∈ {0, 1}ω, i.e. ϕM = fω, which means that ϕM is

recursive continuous.

Conversely, let ψ be a recursive continuous ω-translation. We show that ψ is re-

alizable by some ITM M. Since ψ is recursive continuous, there exists a monotone

recursive function f : {0, 1}∗ −→ {0, 1}∗ such that fω = ψ. Now, consider the Pro-

cedure 1 described below. Since f is recursive, Procedure 1 consists of a never-ending

succession of only recursive steps. Hence, there indeed exists some ITM M which

performs Procedure 1 in the following way: the machineM keeps outputting λ sym-

bols while simulating any internal non-outputting instructions of Procedure 1 and then

outputs the current word v−u bit by bit every time it reaches up the instruction “output

v − u bit by bit”. Therefore, on any infinite input string s ∈ {0, 1}ω, the Procedure 1

and the machineM will actually produce the very same sequences of non-silent output

bits os ∈ {0, 1}≤ω after infinitely many time steps.

We now prove that ϕM = ψ. Note that, for any input stream s ∈ {0, 1}ω, the finite

word that has been output by M at the end of each instruction “output v − u bit by

bit” corresponds precisely to the finite word f(s[0:i]) currently stored in the variable v.

16



Procedure 1
Input s = s(0)s(1)s(2) · · · ∈ {0, 1}ω provided bit by bit

i← 0, u← λ, v ← λ

loop

compute f(s[0:i]) // rec. step since f is rec. by def.

v ← f(s[0:i])

if u ( v then

output v − u bit by bit

else

output λ

end if

i← i+ 1

u← v

end loop

Hence, after infinitely many time steps, the finite or infinite word ϕM(s) output byM

contains all words of {f(s[0:i]) : i ≥ 0} as a finite prefix. Moreover, if ϕM(s) is finite,

its value necessarily corresponds to some current content of the variable v, i.e to some

finite word f(s[0:j]), for some j ≥ 0. Hence, irrespective of whether ϕM(s) is finite

or infinite, one always has ϕM(s) = limi≥0 f(s[0:i]) = fω(s), for any s ∈ {0, 1}ω.

Therefore, ϕM = fω = ψ, meaning that ψ is realized byM.

The following result establishes the equivalence between conditions (A) and (C) of

Theorem 3.

Proposition 2. Let ψ be some ω-translation. Then ψ is realizable by some IRNN[Q] iff

ψ is recursive continuous.

Proof. Let ϕN be an ω-translation realized by some IRNN[Q] N . We show that ϕN is

recursive continuous. For this purpose, consider the function f : {0, 1}∗ −→ {0, 1}∗

which maps every finite word u to the unique corresponding finite word output by N

after |u| steps of computation when u · x is provided as input bit by bit, for any x ∈

{0, 1}ω. First of all, since N is a IRNN[Q], the function f can be computed by some

RNN[Q] N ′ which, on every input u, would behave exactly like N during the |u|

17



steps of computation and then stops. Hence, the equivalence between RNN[Q]s and

TMs ensures that f is recursive (Siegelmann and Sontag, 1995). Moreover, by similar

arguments as in the proof of Proposition 1, the interactive deterministic behavior of N

ensures that f is monotone and that ϕN = fω. Therefore, ϕN is recursive continuous.

Conversely, let ψ : {0, 1}ω −→ {0, 1}≤ω be recursive continuous. We show that ψ is

realizable by some IRNN[Q] N . Since ψ is recursive continuous, there exists a mono-

tone recursive function f : {0, 1}∗ −→ {0, 1}∗ such that fω = ψ. Now, we describe an

infinite procedure which, for any infinite word s = s(0)s(1)s(2) · · · provided bit by bit,

eventually produces a corresponding pair of infinite words (ps, qs). The procedure uses

the successive values of f(s[0:i]) in order to build the corresponding sequences ps and

qs block by block. More precisely, at stage i + 1, the procedure computes f(s[0:i+1]).

By monotonicity of f , the word f(s[0:i+1]) extends f(s[0:i]). If this extension is strict,

the procedure concatenates this extension to the current value of ps and concatenates a

block of 1’s of same length to the current value of qs. Otherwise, the procedure simply

concatenates a 0 to the current values of ps and qs. An illustration and pseudo-code of

this procedure are given below.

s 0 1 1 0 1 1 0 · · ·

f(s[0:i]) λ λ 10 10 10 101 101100 · · ·

ps 0 0 10 0 0 1 100 · · ·

qs 0 0 11 0 0 1 111 · · ·

Since f is recursive, Procedure 2 consists of a succession of recursive computational

steps. Hence, according to the equivalence between RNN[Q]s and TMs, there indeed

exists some IRNN[Q] N that performs Procedure 2 in the following way: the network

N keeps outputting pairs of (0, 0)’s every time it simulates some internal non-outputting

recursive computational instruction of Procedure 2, and then outputs the current pair

(v − u, 1|v−u|) bit by bit every time it reaches up the instructions “ps ← ps · (v − u)”

and “qs ← qs · 1|v−u|”.

We finally prove that ϕN = ψ. A similar argument as in the proof of Proposition

1 shows that ϕN (s) = limi≥0 f(s[0:i]) = fω(s), for any s ∈ {0, 1}ω. Therefore,

ϕN = fω = ψ, meaning that ψ is realized by N .

18



Procedure 2
Input s = s(0)s(1)s(2) · · · ∈ {0, 1}ω provided bit by bit

i← 0, u← λ, v ← λ, ps ← λ, qs ← λ

loop

compute f(s[0:i])

v ← f(s[0:i])

if u ( v then

ps ← ps · (v − u)

qs ← qs · 1|v−u|

else

ps ← ps · 0

qs ← qs · 0

end if

i← i+ 1

u← v

end loop

7 IRNN[R]s and ITM/As

This section is devoted to the proof of Theorem 4. The following proposition establishes

the equivalence between conditions (B) and (C) of Theorem 4.

Proposition 3. Let ψ be some ω-translation. Then ψ is realizable by some ITM/A iff ψ

is continuous.

Proof. The proof resembles that of Proposition 1. First of all, let ϕM be an ω-trans-

lation realized by some TM/AM. We show that ϕM is continuous. For this purpose,

consider the function f : {0, 1}∗ −→ {0, 1}∗ which maps every finite word u to the

unique corresponding finite word output byM after |u| steps of computation when u ·x

is provided as input bit by bit, for any x ∈ {0, 1}ω. By similar arguments as in the proof

of Proposition 1, the interactive deterministic behavior ofN ensures that f is monotone

and that ϕM = fω. Therefore, ϕM is continuous.

Conversely, let ψ be a continuous ω-translation. We show that ψ is realizable by

some ITM/AM. The key idea is the following: Since ψ is continuous, there exists a

19



monotone function f : {0, 1}∗ −→ {0, 1}∗ such that fω = ψ. Hence, we consider the

ITM/AM which contains a precise description of f in its advice and which simulates

the behavior of f step by step. The ω-translation ϕM eventually induced by M will

then satisfy ϕM = fω = ψ, showing that ψ is indeed realized byM.

More precisely, for each i ≥ 0, let (zi,j)
2i

j=1 be the lexicographic enumeration of the

words of {0, 1}i, and let α′ : N −→ {0, 1, ]}∗ be the function which maps every integer

i to the concatenation of all successive values f(zi,j) separated by ]’s. For instance,

α′(2) = ]f(00)]f(01)]f(10)]f(11)]. Furthermore, let α : N −→ {0, 1}∗ be the advice

function which maps every integer i to some suitable recursive binary encoding of α′(i),

and consider the following Procedure 3 which precisely uses the advice function α.

Note that Procedure 3 actually consists of a never-ending succession of recursive steps

and extrarecursive advice calls. Hence, there indeed exists some ITM/A M which

performs Procedure 3 in the following way: the machineM keeps outputting λ symbols

while simulating any internal non-outputting computational instructions of Procedure 3,

and then outputs the current word v−u bit by bit every time it reaches up the instruction

“output v − u bit by bit”.

Procedure 3
Input s = s(0)s(1)s(2) · · · ∈ {0, 1}ω provided bit by bit

i← 0, u← λ, v ← λ

loop

query α(i+ 1) and decode f(s[0:i]) from it

v ← f(s[0:i])

if u ( v then

output v − u bit by bit

else

output λ

end if

i← i+ 1

u← v

end loop

We now prove that ϕM = ψ. A similar argument as in the proof of Proposition

20



1 shows that ϕM(s) = limi≥0 f(s[0:i]) = fω(s), for any s ∈ {0, 1}ω. Therefore,

ϕM = fω = ψ, meaning that ψ is realized byM.

We now proceed to the equivalence between conditions (A) and (C) of Theorem 4.

The proof is conceptually similar to that of Proposition 3, but requires more work to

be achieved. More precisely, in order to prove that any continuous ω-translation ψ can

be realized by some IRNN[R], we first consider a monotone function f that precisely

implies ψ in the limit, i.e. such that fω = ψ, then recursively encode f into some real

number r(f), and finally prove the existence of an IRNN[R] N which, thanks to the

synaptic weight r(f), is able to simulate the behavior of f step by step. The ω-trans-

lation ϕN eventually induced by N will then satisfy ϕN = fω = ψ, showing that ψ is

indeed realized by N . The encoding and decoding approach is inspired by the method

described by Siegelmann and Sontag (1994).

First, we need to show that any function f : {0, 1}∗ −→ {0, 1}∗ can be suitably

encoded by some real number r(f). For this purpose, for any finite word z ∈ {0, 1}∗,

let pzq ∈ {1, 3, 5}+ be the word obtained by doubling and adding 1 to each successive

bit of z if z 6= λ, and being equal to 5 if z = λ. For instance, p0100q = 1311.

Accordingly, each value f(z) ∈ {0, 1}∗ of f can be associated with the finite word

pf(z)q ∈ {1, 3, 5}+. Each finite word pf(z)q can then be encoded by the rational

number r(f(z)) ∈ [0, 1] given by the interpretation of pf(z)q in base 8, namely

r(f(z)) =

|f(z)|−1∑
i=0

pf(z)q(i)

8i+1
.

Similarly, the whole function f can be associated with the infinite word pfq ∈ {1, 3, 5, 7}ω

defined by

pfq = 7 pf(0)q 7 pf(1)q 7 pf(00)q 7 pf(01)q 7 pf(10)q 7 pf(11)q 7 pf(000)q 7 · · ·

where the successive values of f are listed in lexicographic order of their arguments

and separated by 7’s. The infinite word pfq can then be encoded by the real number

r(f) ∈ [0, 1] given by the interpretation of pfq in base 8, namely

r(f) =
∞∑
i=0

pfq(i)

8i+1
.

The real r(f) provides a non-ambiguous encoding of the function f ; see (Siegelmann

and Sontag, 1994) for more details about such encoding.

21



Now, an analogous result to (Siegelmann and Sontag, 1994, Lemma 3.2) shows that,

for any function f : {0, 1}∗ −→ {0, 1}∗, there exists a corresponding (non-interactive)

RNN[R] Nf which, given a suitable encoding of any finite word z ∈ {0, 1}∗ as input,

is able to retrieve the rational encoding r(f(z)) as output. We let (zi)i>0 denote the

lexicographic enumeration of the words of {0, 1}+.

Lemma 1. Let f : {0, 1}∗ −→ {0, 1}∗ be some function. Then there exists an RNN[R]

Nf containing one continuous input cell, one continuous output cell, and a synaptic

real weight equal to r(f), and such that, starting from the zero initial state, and given

the input signal (1− 2−k)0ω, produces an output of the form 0∗r(f(zk))0
ω.

Proof. We give a sketch of the proof and invite the reader to see (Siegelmann and Son-

tag, 1994, Lemma 3.2) for more details. The idea is that the network Nf first stores the

integer k in memory. Then, Nf decodes step by step the infinite sequence pfq from its

synaptic weight r(f) until reaching the (k + 1)-th letter 7 of that sequence. After that,

Nf knows that it has lastly gone through the suitable block pf(zk)q of the sequence

pfq, and proceeds to a re-encoding of that last block into the rational number r(f(zk)).

The value r(f(zk)) is finally provided as output. The technicality of the proof resides

in showing that the decoding and encoding procedures are indeed performable by such

a RNN[R]. This property results from the fact that both procedures are recursive, and

any recursive function can be simulated by some rational-weighted network, as shown

in (Siegelmann and Sontag, 1995). Note that Nf contains only r(f) as non-rational

weight.

The previous lemma enables us to prove the equivalence between conditions (A)

and (C) of Theorem 4.

Proposition 4. Let ψ be some ω-translation. Then ψ is realizable by some IRNN[R] iff

ψ is continuous.

Proof. The proof resembles that of Proposition 2. First of all, let ϕN be an ω-transla-

tion realized by some IRNN[R] N . We show that ϕN is continuous. For this purpose,

consider the function f : {0, 1}∗ −→ {0, 1}∗ which maps every finite word u to the

unique corresponding finite word output byN after |u| steps of computation when u ·x

is provided as input bit by bit, for any x ∈ {0, 1}ω. By similar arguments as in the proof

22



of Proposition 1, the interactive deterministic behavior ofN ensures that f is monotone

and that ϕN = fω. Therefore, ϕN is continuous.

Conversely, let ψ : {0, 1}ω −→ {0, 1}≤ω be continuous. We show that ψ is re-

alizable by some IRNN[R] N . For this purpose, let f : {0, 1}∗ −→ {0, 1}∗ be a

monotone function such that fω = ψ, and let Nf be the corresponding RNN[R] de-

scribed in Lemma 1. Let also once again (zi)i>0 denote the lexicographic enumeration

of the words of {0, 1}+, and let num : {0, 1}+ −→ N be the function which maps

any non-empty word x to its corresponding numbering in the the enumeration (zi)i>0,

i.e. num(x) = i iff x = zi.

Now, we describe an infinite procedure very similar to that of the proof of Proposi-

tion 2 which, for any infinite word s = s(0)s(1)s(2) · · · provided bit by bit, eventually

produces a corresponding pair of infinite words (ps, qs). The procedure uses the succes-

sive values of f(s[0:i]) in order to build the corresponding sequences ps and qs block

by block. More precisely, at stage i+1, the procedure computes f(s[0:i+1]) by involv-

ing the capabilities of the RNN[R] Nf . By monotonicity of f , the word f(s[0:i+1])

extends f(s[0:i]). If this extension is strict, the procedure concatenates this extension

to the current value of ps and concatenates a block of 1’s of same length to the current

value of qs. Otherwise, the procedure simply concatenates a 0 to the current values of

ps and qs. An illustration and pseudo-code of this procedure are given below.

s 0 1 1 0 1 1 0 · · ·

f(s[0:i]) λ λ 10 10 10 101 101100 · · ·

ps 0 0 10 0 0 1 100 · · ·

qs 0 0 11 0 0 1 111 · · ·

Note that Procedure 4 consists of a succession of recursive computational steps as

well as extra-recursive calls to the RNN[R] Nf provided by Lemma 1. Hence, there

indeed exists some IRNN[R] N that contains Nf as a sub-network and that performs

Procedure 4 in the following way: the network N keeps outputting pairs of (0, 0)’s

every time it simulates some internal non-outputting computational instruction of Pro-

cedure 4, and then outputs the current pair (v−u, 1|v−u|) bit by bit every time it reaches

up the instructions “ps ← ps · (v − u)” and “qs ← qs · 1|v−u|”.

We finally prove that ϕN = ψ. A similar argument as in the proof of Proposition

23



Procedure 4
Input s = s(0)s(1)s(2) · · · ∈ {0, 1}ω provided bit by bit

i← 0, u← λ, v ← λ, ps ← λ, qs ← λ

loop

k ← num(s[0:i]) // i.e. s[0:i] = zk

submit input (1− 2−k) to Nf

get output r(f(zk)) from Nf

decode f(zk) = f(s[0:i]) from r(f(zk))

v ← f(zk) = f(s[0:i])

if u ( v then

ps ← ps · (v − u)

qs ← qs · 1|v−u|

else

ps ← ps · 0

qs ← qs · 0

end if

i← i+ 1

u← v

end loop

24



1 shows that ϕN (s) = limi≥0 f(s[0:i]) = fω(s), for any s ∈ {0, 1}ω. Therefore,

ϕN = fω = ψ, meaning that ψ is realized by N .

8 Conclusion

This present paper provides a study of the computational powers of recurrent neural

networks in a basic context of interactive and active memory computational paradigm.

More precisely, we proved that rational and analog interactive neural networks have the

same computational capabilities as interactive Turing machine and interactive Turing

machines with advice, respectively. We also provided a precise characterization of each

of these computational powers. It follows from these results that in the interactive just

as in the classical framework, analog neural networks turn out to reveal super-Turing

computational capabilities.

In our sense, the present characterization of the computational power of interactive

recurrent neural networks (theorems 3, 4, and 5) is more than a simple interactive gener-

alization of the previous work by Siegelmann and Sontag (1994, 1995) (summarized by

theorems 1 and 2 of the present paper). Indeed, we believe that the consideration of an

interactive computational framework represents an important step towards the modeling

of a more biologically-oriented paradigm of information processing in neural networks.

Also, theorems 3, 4, and 5 do not appear to us as straightforward generalizations

of theorems 1 and 2, since the present interactive situation contrasts with the classical

one on many significant aspects. From a technical point of view, the mathematical tools

involved in the modeling of the classical and interactive computational frameworks are

notably different. The classical situation involves languages of finite binary strings

whereas the interactive situation involves translations of infinite binary strings. The

two approaches clearly appeal to distinct kinds of reasoning. Only the encoding and

decoding procedures used in the proofs are similar. In addition, the proof techniques

themselves are different in spirit. In the classical situation, the equivalence between the

two computational models is obtained by simulating any device of one class by a device

of the other class and conversely. In the interactive context, the equivalence is obtained

by proving that both models of computation realize the same class of ω-translations.

This alternative approach is used on purpose in order to obtain more complete results in

25



the sense that an additional purely mathematical characterization of the computational

powers of IRNN[Q]s, ITMs, IRNN[R]s, and ITM/As is also provided in this way. Fur-

thermore, as opposed to the classical situation, a simple counting argument shows that

IRNN[R]s do actually not have unbounded computational power. Indeed, there are 22ℵ0

possible ω-translations whereas there are only 2ℵ0 IRNN[R]s, meaning that there neces-

sarily exist uncountably many ω-translations that cannot be realized by some IRNN[R].

This feature actually makes the interactive results more interesting than the classical

ones since the model of IRNN[R]s never becomes pathologically (unboundedly) pow-

erful under some specific condition.

This work can be extended in several directions. First of all, in the perspective of

evolving interactive systems presented by van Leeuwen and Wiedermann (2001a), it is

envisioned to consider the concept of a interactive recurrent neural network with synap-

tic plasticity as a neural network whose synaptic weights would be able to evolve and

change over time. It is conjectured that such networks would be equivalent to interactive

analog neural networks and interactive machines with advice, thus realizing precisely

the class of all continuous ω-translations. More generally, we also envision to extend

the possibility of evolution to several important aspects of the architecture of the net-

works, like the numbers of neurons (to capture neural birth and death), the connectivity,

etc. Ultimately, the combination of all such evolving features would provide a better un-

derstanding of the computational power of more and more biologically-oriented models

of interactive neural networks.

Besides, a more general interactive paradigm could also be considered, where not

only the device but also the environment would be allowed to stay silent during the

computation. In such a framework, any interactive device D would perform a no more

functional yet relational ω-translation of information RD ⊆ {0, 1}≤ω × {0, 1}≤ω (in-

duced by the total function ϕD : {0, 1, λ}ω −→ {0, 1, λ}ω achieved by the deviceD). A

precise understanding of either the function ϕD or the relation RD preformed by ITMs

and ITM/As would be of specific interest. We believe that the computational equiva-

lences between ITMs and IRNN[Q]s as well as between ITM/As and IRNN[R]s still

hold in this case. However, a precise mathematical characterization of that computa-

tional power remains unclear.

An even more general interactive framework could also be considered where the

26



machines would be able to keep control of the bits that have already been output. In

other words, at any time step of the computation, the machine would be allowed to erase

one or several bits that have previously been output in order to come back on its decision

and replace them by other bits. This approach could be justified from a machine learning

perspective. Indeed, the erasing decision of the machine could be interpreted as the

possibility for the machine to reconsider and correct its previous output behavior from

the perspective of its current learning level. In such a machine learning interactive

framework, the considered machines would certainly be able to compute ω-translations

that are strictly more complicated than continuous. A better comprehension of such

functions could be of interest.

Finally, we believe that the study of the computational power of more realistic neural

models involved in more biologically-oriented interactive computational contexts might

bring further insights to the understanding of brain functioning in general.

Acknowledgements

Research supports from the Swiss National Science Foundation (SNSF) under grant #

PBLAP2-132975 and from the Office of Naval Research (ONR) under grant # N00014-

09-1-0069 are gratefully acknowledged.

References

Goldin, D. (2000). Persistent turing machines as a model of interactive computation. In

Schewe, K.-D. and Thalheim, B., editors, Foundations of Information and Knowledge

Systems, volume 1762 of LNCS, pages 116–135. Springer Berlin / Heidelberg.

Goldin, D., Smolka, S. A., Attie, P. C., and Sonderegger, E. L. (2004). Turing machines,

transition systems, and interaction. Inf. Comput., 194:101–128.

Goldin, D., Smolka, S. A., and Wegner, P. (2006). Interactive Computation: The New

Paradigm. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Goldin, D. and Wegner, P. (2008). The interactive nature of computing: Refuting the

strong church–turing thesis. Minds Mach., 18:17–38.

27



Kechris, A. S. (1995). Classical descriptive set theory, volume 156 of Graduate Texts

in Mathematics. Springer-Verlag, New York.

Kilian, J. and Siegelmann, H. T. (1996). The dynamic universality of sigmoidal neural

networks. Inf. Comput., 128(1):48–56.

Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In Au-

tomata Studies, volume 34 of Annals of Mathematics Studies, pages 3–42. Princeton

University Press, Princeton, N. J.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysic, 5:115–133.

Minsky, M. L. (1967). Computation: finite and infinite machines. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA.

Siegelmann, H. T. (1995). Computation beyond the Turing limit. Science,

268(5210):545–548.

Siegelmann, H. T. (1999). Neural networks and analog computation: beyond the Turing

limit. Birkhauser Boston Inc., Cambridge, MA, USA.

Siegelmann, H. T. and Sontag, E. D. (1994). Analog computation via neural networks.

Theor. Comput. Sci., 131(2):331–360.

Siegelmann, H. T. and Sontag, E. D. (1995). On the computational power of neural

nets. J. Comput. Syst. Sci., 50(1):132–150.

Tsuda, I. (2001). Toward an interpretation of dynamic neural activity in terms of chaotic

dynamical systems. Behav. Brain Sci., 24(5):793–847.

Tsuda, I. (2009). Hypotheses on the functional roles of chaotic transitory dynamics.

Chaos, 19:015113–1 – 015113–10.

Turing, A. M. (1936). On computable numbers, with an application to the Entschei-

dungsproblem. Proc. London Math. Soc., 2(42):230–265.

28



van Leeuwen, J. and Wiedermann, J. (2001a). Beyond the turing limit: Evolving in-

teractive systems. In Pacholski, L. and Ružicka, P., editors, SOFSEM 2001: Theory

and Practice of Informatics, volume 2234 of LNCS, pages 90–109. Springer Berlin /

Heidelberg.

van Leeuwen, J. and Wiedermann, J. (2001b). The turing machine paradigm in contem-

porary computing. In Engquist, B. and Schmid, W., editors, Mathematics Unlimited

- 2001 and Beyond. LNCS, pages 1139–1155. Springer-Verlag.

van Leeuwen, J. and Wiedermann, J. (2006). A theory of interactive computation. In

Goldin, D., Smolka, S. A., and Wegner, P., editors, Interactive Computation, pages

119–142. Springer Berlin Heidelberg.

van Leeuwen, J. and Wiedermann, J. (2008). How we think of computing today. In

Beckmann, A., Dimitracopoulos, C., and Lwe, B., editors, Logic and Theory of Al-

gorithms, volume 5028 of LNCS, pages 579–593. Springer Berlin / Heidelberg.

Wegner, P. (1997). Why interaction is more powerful than algorithms. Commun. ACM,

40:80–91.

Wegner, P. (1998). Interactive foundations of computing. Theor. Comput. Sci., 192:315–

351.

Yamaguti, Y., Kuroda, S., Fukushima, Y., Tsukada, M., and Tsuda, I. (2011). A mathe-

matical model for Cantor coding in the hippocampus. Neural Networks, 24(1):43–53.

29


