
November 18, 2014 10:39 1450029

International Journal of Neural Systems, Vol. 24, No. 8 (2014) 1450029 (22 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0129065714500294

THE SUPER-TURING COMPUTATIONAL POWER OF
PLASTIC RECURRENT NEURAL NETWORKS
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We study the computational capabilities of a biologically inspired neural model where the synaptic
weights, the connectivity pattern, and the number of neurons can evolve over time rather than stay
static. Our study focuses on the mere concept of plasticity of the model so that the nature of the
updates is assumed to be not constrained. In this context, we show that the so-called plastic recur-
rent neural networks (RNNs) are capable of the precise super-Turing computational power — as the
static analog neural networks — irrespective of whether their synaptic weights are modeled by ratio-
nal or real numbers, and moreover, irrespective of whether their patterns of plasticity are restricted to
bi-valued updates or expressed by any other more general form of updating. Consequently, the incorpo-
ration of only bi-valued plastic capabilities in a basic model of RNNs suffices to break the Turing barrier
and achieve the super-Turing level of computation. The consideration of more general mechanisms of
architectural plasticity or of real synaptic weights does not further increase the capabilities of the net-
works. These results support the claim that the general mechanism of plasticity is crucially involved
in the computational and dynamical capabilities of biological neural networks. They further show that
the super-Turing level of computation reflects in a suitable way the capabilities of brain-like models of
computation.

Keywords: Neural networks; plastic neural networks; neural computation; Turing machines; Turing
machines with advice; super-Turing; plasticity; evolvability; adaptability; learning; computational capa-
bilities.

1. Introduction

The brain computes, but it does so differently than
today’s computers. Synapses update their connec-
tivity patterns continuously, and synaptic plasticity
provides the basis for most models of learning1,2; ner-
vous cells can die while others regenerate3; acquired

memory might rely on the dynamical combination
of neural assemblies into higher-order constructs4;
and neural memories themselves are updated when
being retrieved in a process called reconsolidation,
which causes adaptation to changing conditions.5

Such features provide evidence of a very flexible neu-
ral architecture.

∗Corresponding author.
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In the context of Artificial Intelligence (AI), the
consideration of evolving neural architectures in so-
called Evolving Connectionist Systems (ECoS) has
proven to be fruitful and significantly increased in
applications.6,7 Yet from a theoretical perspective,
the general concepts of evolvability and plasticity are
difficult to handle in brain modeling, and have gen-
erally been neglected in the classical literature con-
cerning the computational capabilities of brain-like
models (see e.g. Refs. 8–17 and the references there
as well as more recently Refs. 18 and 19). Hence, the
following questions naturally arise: Can we approach
the issue of the brain’s capabilities from a nonstatic
perspective? Can we understand and characterize the
computational capabilities of a neural model incor-
porating the crucial feature of plasticity?

We answer positively by providing a detailed
study of the computational capabilities of a plas-
tic neural model where the networks can update
their architectures at each discrete time step. Our
study focuses on the mere concept of plasticity of
the model, with no assumption on the particular
environment, so that the nature of the updates
is assumed to be not constrained. The consider-
ation of specific mechanisms of plasticity is envi-
sioned for future work. In this general context,
we show that plastic recurrent neural networks
(RNNs) are not merely capable of breaking the Tur-
ing barrier of computation, but achieve the exact
so-called “super-Turing” computational level,20 irre-
spective of whether their synaptic weights are mod-
eled by rational or real numbers, and moreover,
irrespective of whether their patterns of plasticity
are restricted to bi-valued updates (namely changes
between two possible distinct synaptic weights, like
0 and 1) or expressed by any other more general
form of updating. The super-Turing computational
level has already been demonstrated to be relevant
in the context of various biological and physical
systems.16,20,21

More precisely, we consider a classical model
of first-order rational-weighted RNNs, and show
that by adding possibility to update their synap-
tic weights among only two possible values at each
discrete time step, the networks drastically increase
their computational capabilities from the Turing22

to the super-Turing level,20 thus being equivalent
to static real-weighted (analog) neural networks.13

We further show that the consideration of any other

more complex pattern of plasticity would actually
not further increase the capabilities of the networks.
Following the common results on static neural net-
works.13,14 the question then arises whether the
super-Turing capabilities of the plastic neural net-
works would be further increased when stepping from
the rational-weighted to the real-weighted context.
We prove that this is actually not the case. The com-
putational powers of static and plastic RNNs is sum-
marized in Table 1.

Besides, central in neural computation is the issue
of noise, and a natural question to be addressed con-
cerns the robustness of the super-Turing computa-
tional power of our plastic RNNs when they are sub-
jected to various kinds of noise. In this context, the
presence of analog noise would generally strongly
decrease the computational power of the underly-
ing systems,23–25 whereas the consideration of some
discrete source of stochasticity would rather tend to
increase or maintain the capabilities of the systems.15

We show that our plastic neural model falls under
the scope of these results. More precisely, on the one
hand, both plastic rational and plastic real RNNs
have their computational power decreased to regu-
lar or definite languages in the presence of analog
noise as described in Refs. 23 and 24, respectively.
On the other hand, the plastic networks have their
capabilities maintained to the super-Turing level in
the presence of some discrete source of stochasticity
as presented in Ref. 15.

These results allow to drop any kind of analog
assumption and replace it by the more biological con-
cept of plasticity. They support the claim that the
general mechanism of plasticity is crucially involved
in the computational and dynamical capabilities of
biological neural networks. In this sense, they provide
a theoretical complement to the numerous exper-
imental studies on the importance of the general
mechanism of plasticity in the brain’s information
processing.1,26,27

Table 1. Computational power of static and plastic neu-
ral networks according to the nature of their synaptic
weights and patterns of plasticity.

Static Plastic (bi-valued) Plastic (general)

Q Turing super-Turing super-Turing
R super-Turing super-Turing super-Turing
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These results also suggest that some intrinsic
features of biological intelligence might fail to be
captured by Turing-equivalent artificial models of
computation. In fact, Alan Turing himself explained
that his machine model is different from the human
brain: “Electronic computers are intended to carry
out any definite rule of thumb process which could
have been done by a human operator working in
a disciplined but unintelligent manner”.28 Yet, he
trusted that other models will exist that will describe
intelligence better: “My contention is that machines
can be constructed which will simulate the behavior
of the human mind very closely”.29 In 1952, Turing
suggested a particular direction, based on adaptabil-
ity and learning: “If the machine is built to be treated
only as a domestic pet, and is spoon-fed with par-
ticular problems, it will not be able to learn in the
varying way in which human beings learn”.30 While
Turing died within two years and did not manage to
realize his own direction, it is possible that the results
described in this paper provide a step forward in the
study of more intelligent systems, following Turing
1952’s call.

2. The Model

We consider a classical rate model of first-ordera

recurrentb neural networks where the synaptic
weights can update at each discrete time step.

Following the terminology of Ref. 16, a RNN con-
sists of a synchronous network of neurons (or proces-
sors) related together in a general architecture. The
network contains a finite number of neurons (xi)N

i=1,
M parallel input lines (ui)M

i=1, and P designated out-
put neurons among the N . At each time step, the
activation value of every neuron is updated by apply-
ing a linear-sigmoid function to some weighted affine
combination of values of other neurons or inputs at
the previous time step. Moreover, as opposed to the
classical static case, the synaptic weights are now
supposed to be time-dependent. Hence, given the

activation values of cells (xj)N
j=1 and (uj)M

j=1 at time
t, the activation value of each cell xi at time t + 1 is
then updated by the following equation:

xi(t + 1) = σ


 N∑

j=1

aij(t) · xj(t)

+
M∑

j=1

bij(t) · uj(t) + ci(t)


 (1)

for i = 1, . . . , N , and where all aij(t), bij(t), and ci(t)
are bounded and time-dependent synaptic weights,
and σ is the classical saturated-linear activation func-
tion defined by

σ(x) =




0 if x < 0,

x if 0 ≤ x ≤ 1,

1 if x > 1.

As a specific innovation of this paper, the time
dependence of the synaptic weights captures the
plastic capabilities of the network. The bounded-
ness condition expresses the fact that the synap-
tic strengths are confined into a certain range of
values imposed by the biological constitution of
the neurons.16 It formally states that there exist
an upper and a lower bound s and s′ such that
aij(t), bij(t), ci(t) ∈ [s, s′] for every t ≥ 0.

Note that the present plastic neural model can
describe important architectural evolving capabil-
ities other than the sole synaptic plasticity. For
instance, creation or deterioration of synapses can
be modeled by switching the corresponding synap-
tic weights on or off, respectively, and cell birth and
death are modeled by simultaneously switching on or
off all the adjacent synaptic weights of a given cell,
respectively.

Throughout this paper, six models of RNNs will
be considered. A network will be called rational if
all its weights are modeled by rational numbers,
and real if all its weights are modeled by real num-
bers. It will also be called static if all its weights

aWe recall that first-order RNNs are neural nets where the activation values of every cell are computed by means of

weighted sums of other cells’ activation values and inputs, as described by Eq. (1). By contrast, in higher-order RNNs,

the activation values of every cell are computed by means of polynomials of other cells’ activation values and inputs. The

degree of the polynomial represents the order of the network.
bRNNs refer to neural networks whose architectures might contain loops, as opposed to feedforward neural networks. We

recall that without recurrency, neural networks can approximate, adapt to input, and even evolve according to some opti-

mization function. Yet, they cannot compute recursive (i.e. Turing computable) functions, for these latter would require

a looped architecture.
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remain constant over time, and plastic if some of
its weights are time-dependent. Furthermore, it will
be called bi-valued plastic if it is plastic and its
time-dependent weights are restricted to only two
possible distinct values. According to these defini-
tions, the corresponding notions of static rational
(St-RNN[Q]), static real (St-RNN[R]), bi-valued plas-
tic rational (Pl2-RNN[Q]), bi-valued plastic real (Pl2-
RNN[R]), plastic rational (Pl-RNN[Q]), and plastic
real (Pl-RNN[R]) RNNs will be employed.

Observe that since rational numbers are included
in real numbers, any rational network is also a real
network by definition. Also, since static weights are
particular cases of plastic weights where the updating
patterns remain constant over time, it follows that
any static network is also a plastic network. Further-
more, by definition, any bi-valued plastic network is
a particular plastic network.

3. The Computational Power of Static
RNNs: Previous Work

For the sake of clarity, we first recall the main results
concerning the computational powers of RNNs in the
case of static synaptic weights.

In 1943, McCulloch and Pitts proposed a model
of the nervous system as a finite interconnection
of logical devices.8 For the first time, neural net-
works were considered as discrete abstract machines,
and the issue of their computational capabilities
investigated from the automata-theoretic perspec-
tive. In this context, Kleene and Minsky proved that
finite RNNs with Boolean activation functions are
computationally equivalent to classical finite state
automata.9,11 Meanwhile, in a seminal 1948 paper,
Turing foresaw the possibility of surpassing the capa-
bilities of finite state machines and reaching Tur-
ing universality via neural networks called ‘B-type
unorganised machines’.31 The networks consisted of
a specific interconnection of NAND neurons, and
the consideration of infinitely many such cells could
simulate the behavior of a Turing machine (TM).

The Turing universality of neural networks involv-
ing infinitely many binary neurons has further been
investigated in many directions, see for instance
Refs. 32–36.

More recently, Siegelmann and Sontag proved
the Turing universality of first-order rational RNNs
involving only finitely many cells and simple short
rational weights.14 They showed that, on the one
hand, any function determined by Eq. (1) and involv-
ing static rational weights is necessarily recursive,
and thus can be computed by some TM. On the
other hand, any TM can be simulated in real time
by some static rational RNN.14 The result can be
expressed as follows14,16 (for a precise definition of
the notion of language decidability via RNNs, see
Appendix A).

Theorem 1. St-RNN[Q]s are Turing equivalent.
More precisely, a language L is decidable by some
St-RNN[Q] if and only if L is decidable by some TM,

i.e. iff L is recursive.

Siegelmann and Sontag made another important
breakthrough in the field by showing that static real-
weighted RNNs are actually strictly more powerful
than their rational counterparts, and hence also than
TMs.13,16 More precisely, the analog neural networks
are capable of unbounded capabilities in exponential
time of computation (i.e. analog RNNs are capable
of deciding all possible binary languages in expo-
nential time), and when restricted to polynomial
time of computation, the networks turn out to be
computationally equivalent to Turing machines with
polynomial-bounded advicec (TM/poly(A)), mean-
ing that they decide the complexity class P/poly.
This precise computational level is referred to as the
super-Turing level. Note that since P/poly strictly
includes the class P and even contains nonrecursive
languages,d it follows that analog RNNs are capable
of extra-recursive computational power from polyno-
mial time of computation already. These results are
summarized by the following theorem.13,16

cWe recall that a Turing machine with advice (TM/A) consists of a classical TM provided with an additional advice

function α : N → {0, 1}+ as well as an additional advice tape, and such that, on every input u of length n, the machine

first copies the advice word α(n) on its advice tape and then continues its computation according to its finite Turing

program. A Turing machine with polynomial-bounded advice (TM/poly(A)) consists of a TM/A whose advice length is

bounded by some polynomial.
dThe complexity classes P and P/poly correspond to the classes of languages decided in polynomial time by TMs and

TM/poly(A), respectively.
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Theorem 2. St-RNN[R]s are super-Turing. More
precisely:

(a) A language L is decidable in polynomial time by
some St-RNN[R] if and only if L is decidable in
polynomial time by some TM /poly(A), i.e. iff
L ∈ P/poly.

(b) Any language L can be decided in exponential
time by some St-RNN[R].

Theorems 1 and 2 show that the introduction of
real synaptic weights in a standard first-order neural
model drastically increases the computational power
of the networks from Turing to super-Turing capa-
bilities. Besides, Siegelmann showed another way to
achieve computational capabilities beyond the Tur-
ing limits without resorting to the consideration of
real synaptic weights, but via the incorporation of
some discrete source of stochasticity in the model, as
explained in details in Sec. 4.2.

In fact, the super-Turing computational class was
demonstrated to be the upper bound of an infinite
hierarchy of nonuniform complexity classes starting
at the TM level, and made up of the increasing com-
putational powers of analog neural networks with
weights of increasing Kolmogorov complexity.37

From a general perspective, the relevance of
the super-Turing model of computation resides in
its capability to capture nonlinear dynamical prop-
erties that are most relevant to brain dynamics
and that cannot be described by the classical TM
model, e.g. Cantor-like encoding and rich chaotic
behavior.20,38–40 These considerations support the
idea that some dynamical and computational fea-
tures of neurobiological systems might lie beyond
the scope of current standard artificial models of
computation.

4. Results

4.1. The computational power of
plastic RNNs

This section provides the statements of our main
results. First, we show that plastic RNNs are capa-
ble of breaking the Turing barrier of computation.
Next, we provide a precise characterization of their
computational power.

More precisely, forthcoming key Theorem 4 shows
that rational-weighted plastic RNNs provided with
only bi-valued plastic capabilities do actually achieve

the exact super-Turing computational power, and
hence, are computationally equivalent to static ana-
log neural networks. The following Theorems 5 and
6 show that plastic RNNs remain super-Turing
equivalent irrespective of whether their synaptic
weights are modeled by rational or real num-
bers, and moreover, irrespective of whether their
patterns of plasticity are restricted to bi-valued
updates or expressed by any other more general
form of updating. Consequently, the four models of
bi-valued plastic rational-weighted (Pl2-RNN[Q]s),
general plastic rational-weighted (Pl-RNN[Q]s), bi-
valued plastic real-weighted (Pl2-RNN[R]s), and gen-
eral plastic real-weighted (Pl-RNN[R]s) RNNs are
all super-Turing computationally equivalent (Corol-
lary 7). These considerations are summarized in
Table 1.

Our results show that the incorporation of bi-
valued plastic capabilities into first-order ratio-
nal RNNs suffices to break the Turing barrier
and achieve the super-Turing level of computation.
The consideration of more general mechanisms of
architectural plasticity or the incorporation of real
synaptic weights in the model would actually not fur-
ther increase the capabilities of the neural networks.
Our proofs show that the super-Turing capabilities
of plastic RNNs do not come from any process of
approximation of real weights by some convergent
series of rational ones, but from the intrinsic power
of plasticity instead. In fact, the super-Turing capa-
bilities of plastic RNNs emerge from the potential
non-recursive patterns of plasticity to which the net-
works might be subjected.

We now turn to the formal statements of the
above mentioned results. The following lemma states
that all models of plastic RNNs are capable of break-
ing the Turing barrier of computation.

Lemma 3. Pl2-RNN[Q]s, Pl-RNN[Q]s, Pl2-
RNN[R]s, Pl-RNN[R]s are all strictly more powerful
than TMs.

The proof of this lemma can be obtained as an
easy consequence of previous Theorem 1 and forth-
coming Theorem 6. It would however be possible
to provide an independent proof of it. The argu-
ment goes as follows. By Theorem 1, St-RNN[Q]s
are Turing equivalent. Since the addition of plastic
capabilities to the networks cannot reduce their com-
putational power, it follows that Pl-RNNs (bi-valued
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or general, rational or real) are at least as powerful
as TMs. Now, consider the unary halting problem
language UHALT = {1n : n encodes a pair 〈M, x〉
such that M is a TM that halts on input x}. It can
be shown that UHALT ∈ P/poly (see Ref. 41), and
thus, by Theorem 6 (whose forthcoming proof is inde-
pendent from the present result), UHALT is decid-
able by some Pl-RNN (bi-valued or general, rational
or real). Moreover, it can be shown that UHALT
is not Turing-decidable.41 Therefore, Pl-RNNs are
strictly more powerful than TMs.

The following and main result states that bi-
valued plastic rational RNNs are precisely super-
Turing.

Theorem 4. Pl2-RNN[Q]s are super-Turing. More
precisely:

(a) A language L is decidable in polynomial time by
some Pl2-RNN[Q] if and only if L is decidable
in polynomial time by some TM /poly(A), i.e. iff
L ∈ P/poly.

(b) Any language L can be decided in exponential
time by some Pl2-RNN[Q].

Proof. Points (b) and (a) are given by forthcoming
Propositions 10(i) and 11(i) of Appendix A, respec-
tively.

The next result shows that the consideration of
more general patterns of plasticity would actually
not increase the computational capabilities of the
neural networks. In other words, the translation from
the bi-valued plastic to the general plastic rational
context would not provide any additional power to
the underlying neural networks.

Theorem 5. Pl-RNN[Q]s are super-Turing equiva-
lent to Pl2-RNN[Q]s in polynomial as well as in expo-
nential time of computation.

Proof. The exponential time and polynomial time
equivalences are given by forthcoming Propositions
10(ii) and 11(ii) of Appendix A, respectively.

Now, the computational power of plastic real
RNNs can be deduced from the previous results.
The following result shows that plastic real neu-
ral networks are also computationally equivalent
to bi-valued plastic rational ones, irrespective of
whether their plastic synaptic weight are restricted

to bi-valued patterns of plasticity or expressed by any
other more general form of updating. Hence, once
again, the translation from the plastic rational to the
plastic real context would not provide any additional
power to the underlying neural networks.

Theorem 6. Both models of Pl2-RNN[R]s and
Pl-RNN[R]s are super-Turing equivalent to Pl2-
RNN[Q]s in polynomial as well as in exponential time
of computation.

Proof. See Appendix A.

Finally, Theorems 2 and 4–6 directly imply the
super-Turing computational equivalence of the five
models of Pl2-RNN[Q]s, Pl-RNN[Q]s, Pl2-RNN[R]s,
Pl-RNN[R]s, and St-RNN[R]s. This result shows that
the super-Turing level of computation is achieved
by the model of Pl2-RNN[Q]s, and that the incor-
poration of any more general patterns of plasticity
or any possible real synaptic weights in this model
does actually not further increase its computational
capabilities.

Corollary 7. Pl2-RNN[Q]s, Pl-RNN[Q]s, Pl2-
RNN[R]s, Pl-RNN[R]s, and St-RNN[R]s are all
super-Turing equivalent in polynomial as well as in
exponential time of computation.

4.2. The computational power of noisy
plastic RNNs

Central in neural computation is the issue of noise,
and in particular, the relationship between noise and
information processing in biological neural systems
appears to be of specific interest.42 Hence, a natu-
ral question to be addressed concerns the robustness
of the super-Turing computational power of plastic
RNNs when subjected to various kinds of noise. In
this context, the presence of “analog noise” — i.e.
some phenomenon that perturbs or moves the acti-
vation values of the cells according to some proba-
bility distribution — would generally strongly reduce
the computational power of the neural networks.23–25

On the other hand, the consideration of some “dis-
crete source of stochasticity” — i.e. some addi-
tional binary input cells spiking at each time step
with a certain probability — would rather tend to
increase or maintain the capabilities of the neural
networks.15
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More precisely, Maass and Orponen showed that
general analog computational systems subjected
to arbitrarily small amount of analog noise have
their computational power reduced to that of finite
automata.23 In particular, in the presence of such
arbitrarily small amount of analog noise, both
rational- and real-weighted RNNs have their com-
putational capabilities seriously reduced from the
Turing-equivalent and the super-Turing levels to
the finite automata level, respectively, namely to the
recognition of regular languages. Maass and Son-
tag further showed that in the presence of Gaus-
sian or other common analog noise distribution with
sufficiently large support, RNNs have their com-
putational power reduced to even less than finite
automata, since they can recognize only definite
languages.e,24 These two results were further gen-
eralized to the broader classes of quasi-compact
and weakly ergodic Markov computational systems,
respectively.25

On the other hand, the presence of discrete rather
than analog types of noise tends to increase rather
than decrease the computational power of the under-
lying information processing systems. In this con-
text, Siegelmann proved that RNNs subjected to
some discrete source of stochasticity would have
their computational capabilities either improved or
kept unchanged.15 In polynomial time of compu-
tation, rational neural networks have their power
enhanced from P to BPP/log∗,f and real neural
nets have their computational capabilities preserved
to the class P/poly.

All these results extend to the plastic neu-
ral networks context, and can be summarized as
follows.

Theorem 8. (a) When subjected to either arbitrar-
ily small or larger amounts of analog noise as
described in Refs. 23 and 24, all models of plas-
tic RNNs (bi-valued or general, rational or real)
have their computational capabilities reduced to
regular and definite languages, respectively.

(b) In the presence of some discrete source of
stochasticity as described in Ref. 15, all models
of plastic RNNs (bi-valued or general, rational or
real) have their computational capabilities main-
tained to the super-Turing level P/poly in poly-
nomial time of computation, and maintained to
the unbounded level in exponential time of com-
putation.

Proof. See Appendix A.

Consequently, the computational power of noisy
neural networks relies on the specific conception of
noise that we consider. The empirical questions con-
cerning the nature of the noise that could occur in
real-world neural networks and the effects that the
noise could have on the functioning of the networks
remain at the moment open.43

5. Discussion

We proved that plastic RNNs are super-Turing —
hence computationally equivalent to analog RNNs.20

The plastic neural networks do achieve the exact
same super-Turing computational power irrespective
of whether their synaptic weights are modeled by
rational or real numbers, and irrespective of whether
their patterns of plasticity are restricted to bi-valued
updates or expressed by any other more general form
of updating. As a chief contribution of this paper,
we introduced a minimal model (a normal form)
of plastic neural networks — the so-called bi-valued
plastic neural networks — and proved that they are
super-Turing equivalent to general plastic neural net-
works, first studied in Ref. 6. Note that the present
results are mathematically stronger and conceptually
deeper than those expressed in Ref. 44, for these lat-
ter reduce to only a special case of the present ones.
Furthermore, while the study in 6 is only concerned
with non-noisy plastic networks, the present one also
considers three stochastic models of plastic neural
networks: two of them are based on analog noise and

eA language L is called definite if there exists some integer r > 0 such that the membership of any word w in L can be

decided by just inspecting the last r symbols of w. Over finite alphabets, definite languages are regular.
fThe complexity class BPP represents the class of languages recognized by some polynomial-time probabilistic TM whose

error probability is bounded above by some positive constant ε < 1/2. The complexity class BPP/log∗ is the class of

languages recognized by such kind of machines which have further access to prefix logarithmic advice functions, i.e. advices

that are logarithmic is the size of the input and such that every advice string α(n) works for every inputs of lengths up

to n. For a formal definition of this complexity class, see Ref. 15.
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one of them on the stochasticity coming from a “ran-
dom coin”. In this context, we showed that, similarly
to the case of static neural networks, plastic RNNs
have their computational power decreased to regu-
lar or definite languages in the presence of analog
noise,23–25 and have their capabilities maintained to
the super-Turing level in the presence of some dis-
crete source of stochasticity.15

The super-Turing power of plastic neural net-
works — equivalent to that of static real-weighted
neural networks — does actually not come from any
process of approximation of real weights by some
evolving convergent series of rational ones. Instead,
the super-Turing capabilities of plastic neural net-
works emerge from intrinsic power of plasticity,
or alternatively put, from the potential nonrecur-
sive patterns of plasticity to which the networks
might be subjected. In fact, Proposition 10 and
Lemma 12, which show that plastic neural networks
are at least super-Turing, do not involve any such
process of approximation in their proofs. Proposi-
tion 13, which shows that plastic neural networks
are at most super-Turing, uses the fact any plas-
tic real neural networks can be simulated by some
family of polynomially describable plastic rational
neural networks, which is the purpose of technical
Lemma 9.

The most interesting part of our results con-
cerns rational-weighted neural networks. In this con-
text, the translation from the static to the bi-
valued plastic framework does bring up an additional
super-Turing computational power. It is worth not-
ing that such super-Turing capabilities can only be
achieved in cases where the patterns of plasticity
are themselves nonrecursive, i.e. non-Turing com-
putable. By contrast, in the case of real-weighted
neural networks, the translation from the static to
the plastic framework does not bring any additional
computational power to the networks. In this case,
the super-Turing computational power of the net-
works might be related to the nonrecursivity of
either the real synaptic weights that are involved,
or the patterns of plasticity under consideration, or
both.

To summarize, Corollary 7 shows that the con-
sideration of either plastic capabilities or real synap-
tic weights does equivalently lead to the emergence
of super-Turing computational capabilities for the
underlying neural networks. However, even if the

mechanism of plasticity on the one hand and the
concept of the power of the continuum on the other
hand turn out to be mathematically equivalent in
this sense, they are nevertheless conceptually well
distinct. While the power of the continuum is a pure
conceptualization of the mind, the plastic capabil-
ities of the networks are by contrast observable in
nature.

Our results support the claim that the general
mechanism of plasticity is crucially involved in the
computational and dynamical capabilities of biologi-
cal neural networks, and in this sense, provide a the-
oretical complement to the numerous experimental
studies emphasizing the importance of the general
mechanism of plasticity in the brain’s information
processing.26–28

From a global perspective, our results sug-
gest that some computational characteristics of
biological neural networks fail to be captured
by Turing-equivalent models of computation, and
that the super-Turing computational model20 of a
TM/poly(A) has a natural fit to capture the capa-
bilities of brain-like models of computation. Indeed,
while the Turing computational model requires the
brain to be discrete, based on bit-calculations, and
fixed in its structure, the super-Turing model, on
the other hand, enables us to describe brains that
consider levels of chemicals as well as evolving and
adaptive architectures. These results also support
the Super-Turing Thesis of Natural Computation,
which states that every natural computational phe-
nomenon can be captured within the super-Turing
computational model.13

The achievement of super-Turing potentialities
in plastic neural networks depends on the possi-
bility for “nature” to realize nonrecursive patterns
of plasticity. Such nonrecursive patterns are likely
to occur in unconstrained environments, where the
inputs or influences on the system are not driven by a
man-made TM. In fact, Turing himself defined com-
putable numbers as those generated by a machine
that is built in advance. Besides, the consideration
of purely random phenomena — intrinsic to the the-
ory of quantum physics — also necessarily leads
to the emergence of nonrecursive behaviors. Con-
sequently, the assumption that nature does not fol-
low only preprogrammed patterns and that biological
structures can change according to random or other
general kind of mechanisms suffices to acknowledge
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a theoretical possibility for super-Turing computa-
tional capabilities of plastic neural networks.

6. Conclusion

Nowadays, the relevance of artificial neural net-
works is beyond question.46–54 For future work, we
intend to pursue our study of the computational
capabilities of neural models at a more biological-
oriented level. For instance, the consideration of fur-
ther bio-inspired weight updating paradigms along
the lines of Hebb’s rule, spike-timing-dependent plas-
ticity (STDP) or input-dependent evolving frame-
works would be of major interest, and bring us closer
to the concept of adaptability of networks. Also, a
detailed study of the computational power of spik-
ing neural models provided with various kind of
plastic capabilities seems highly promising. In gen-
eral, the computational and dynamical capabilities of
more and more sophisticated neural models captur-
ing key biological phenomena and involved in more
bio-inspired paradigms of computation are intended
to be studied.

Finally, we believe that the present work presents
some interest far beyond the question of the possi-
ble existence of some hypercomputational capabil-
ities in nature.44,45 In fact, comparative studies of
the computational power of more and more biologi-
cally oriented neural models might ultimately bring
further insight to the understanding of the intrin-
sic natures of biological as well as artificial intel-
ligences. Furthermore, foundational approaches to
alternative models of computation might in the long
term not only lead to relevant theoretical considera-
tions, but also to practical applications. Similarly to
the theoretical work from Turing which played a sem-
inal role in the practical realization of current digi-
tal computers, further foundational considerations of
alternative models of computation might definitely
contribute to the emergence of novel computational
technologies and computers, and step by step, open
the way to the next computational era.
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Appendix A. Proofs of the Results

The study of the computational power of RNNs
involves the consideration of a specific model
of RNNs capable to perform computation and
decision of formal languages, hence permitting a
mathematical comparison with the languages com-
puted by classical abstract models of computation,
like TMs and TM/As in our case.

For this purpose, we consider a notion of for-
mal RNN which adheres to a rigid encoding of the
way binary strings are processed as input and out-
put between the network and the environment. In our
proofs, we will use the same encoding as described in
Refs. 13 and 14. Yet note that the consideration of a
binary string input/output framework is not restric-
tive, and the forthcoming results are correct for any
possible finite or infinite countable input alphabet of
symbols. In fact, any possible finite or infinite count-
able alphabet of symbols can be encoded by some set
of binary strings. In particular, every integer or ratio-
nal number can be encoded by some binary string.
Consequently, any case of an isolated input or a finite
sequence of input symbols taken from some count-
able alphabet can be handled by the binary string
encoding context.

More precisely, we assume that formal networks
are equipped with two binary input lines ud and uv

as well as two binary output lines yd and yv. The data
lines ud and yd carry some uninterrupted incoming
and outgoing binary data, respectively, and the vali-
dation lines uv and yv take value 1 to indicate when
their corresponding data line is active and take value
0 otherwise. Moreover, the networks are assumed to
be designed in such a way that the two designated
output lines yd and yv are not fed into any other cell.
From this point onwards, all considered neural net-
works will be assumed to be of that formal form. A
formal RNN is illustrated in Fig. A.1.

The formal RNNs perform computation over
finite input strings of bitsg as follows: given some for-
mal RNN N and some input string u = u0 · · ·uk ∈
{0, 1}+, we say that u is classified in time τ by N if

gWe recall that the space of all nonempty finite strings of bits is denoted by {0, 1}+, and for any n > 0, the set of all

binary strings of length n is denoted by {0, 1}n. Moreover, any subset L ⊆ {0, 1}+ is called a language.
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Fig. A.1. (Color online) A formal recurrent neural net-
works. The two little cells at the very left side represent
the input data and validation lines. The two little cells
at the very right side represent the output data and vali-
dation lines. The forward and recurrent synaptic connec-
tions are represented in blue and red, respectively. The
background activity connections are represented in red
also. The shaded style of the synaptic connections illus-
trates the fact that the synaptic weights might change
over time.

given the input streams

ud(0)ud(1)ud(2) · · · = u0 · · ·uk000 · · · ,
uv(0)uv(1)uv(2) · · · = 1 · · · 1︸ ︷︷ ︸

k+1

000 · · · ,

the network N produces the corresponding output
streams

yd(0)yd(1)yd(2) · · · = 0 · · · 0︸ ︷︷ ︸
τ−1

ηu000 · · · ,

yv(0)yv(1)yv(2) · · · = 0 · · · 0︸ ︷︷ ︸
τ−1

1000 · · · ,

where ηu ∈ {0, 1}. The input string u is said to
be accepted or rejected by N if ηu = 1 or ηu = 0,
respectively. Moreover, for any nondecreasing func-
tion f : N∗ → N∗ and any language L ⊆ {0, 1}+, we
say that L is decided by N in time f if and only if
every string u ∈ {0, 1}+ is classified by N in time
τ ≤ f(|u|), and u ∈ L ⇔ ηu = 1. Finally, a given
language L is then said to be decidable in time f

by some network if and only if there exists a RNN
N that decides L in time f . A language L is simply
said to be decidable by some network if and only if
there exist a RNN N and a nondecreasing function
f : N∗ → N∗ such that N decides L in time f .

Now, in order to show that the computational
power of plastic RNNs does not exceed the super-
Turing level, we will need a lemma which we chose
to present first, due to its technical nature. It is a
generalization of the so-called “linear-precision suf-
fices lemma”.13 Intuitively, the lemma states that for
every Pl-RNN[R] N deciding some language L in
time f , there exists a family of Pl-RNN[Q]s {Nf(n) :
n > 0} such that each network Nf(n) can compute
precisely like N up to time step f(n) by using only
about f(n) precision bits to describe its weights and
activation values at every time steps. In other words,
every Pl-RNN[R] N can be approximated by some
Pl-RNN[Q] Nf(n) which only requires about f(n)
precision bits for each instantaneous description but
still computes precisely like N up to time step f(n).

Formally, consider some Pl-RNN[R] N given by
its input neurons ud and uv, its output neurons yd

and yv, the sequence of its internal neurons (xi)N−2
i=1 ,

and the sequence of its evolving weights (aij(t))t≥0,
(bij(t))t≥0, (ci(t))t≥0. Consider also some nonde-
creasing function f : N∗ → N∗. An f -truncated
family over N consists of a family of Pl-RNN[Q]s
{Nf(n) : n > 0} where each network Nf(n) is
described as follows (see Fig. A.2):
• the nonoutputting part of network Nf(n) contains

the same number of cells as N , denoted by ũd, ũv,
ỹd, ỹv, and (x̃i)N−2

i=1 , and the same connectivity
patterns between those cells as N ;
• the outputting part of Nf(n) consists of two addi-

tional cells ỹ′
d and ỹ′

v playing the role of output
processors and related to ỹd and ỹv by the rela-
tion ỹ′

d(t + 1) = σ(2 · ỹd(t) − 1
2 ) and ỹ′

v(t + 1) =
σ(2 · ỹv(t)− 1

2 );
• the dynamics of Nf(n) is given as follows: at each

time step, the weights of Nf(n), denoted by ãij(t),
b̃ij(t), c̃i(t), correspond to the weights aij(t), bij(t),
ci(t) of N truncated after K · f(n) bits, for some
constant K independent of n, and the activation
values of all nonoutputting processors of Nf(n) at
time t, denoted by x̃i(t), ỹd(t), ỹv(t), are computed
only up to K · f(n) precision bits, for the same
some constant K independent of n.

The relationship between a Pl-RNN[R]N and the
Pl-RNN[Q] Nf(n) of an f -truncated family over N is
illustrated in Fig. A.2. As explained in more detail
in the forthcoming proof of Lemma 9, the networks
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Fig. A.2. Relationship between a Pl-RNN[R] N and the Pl-RNN[Q] Nf(n) of an f -truncated family over N .

Nf(n) are designed in such a way that the output pro-
cessors yd, yv and ỹ′

d, ỹ
′
v of the respective networksN

and Nf(n) would generate the very same binary out-
put values as long as the activation values between
yd, yv and ỹd, ỹv are not too distant (this distance
being arbitrarily chosen as 1

4 in our case).
The following result shows that any Pl-RNN[R]

can be perfectly simulated by a family of Pl-RNN[Q]s
in the following sense.

Lemma 9. Let N be some Pl-RNN[R] and f :
N∗ → N∗ be some nondecreasing function. Then
there exists an f -truncated family {Nf(n) : n > 0}
of Pl-RNN[Q]s over N such that, for every input u

and every n > 0, the output processors of N and
Nf(n) satisfy yd(t) = ỹ′

d(t + 1) and yv(t) = ỹ′
v(t + 1)

for all time steps t ≤ f(n).

Proof. By definition of an f -truncated family
{Nf(n) : n > 0} over N , for each n > 0, the dynam-
ics of the nonoutput processors of Nf(n) is defined
by x̃i(0) = 0 and

x̃i(t + 1) =


σ


 N∑

j=1

[aij(t)]K·f(n) · x̃j(t)

+
M∑

j=1

[bij(t)]K·f(n) · ũj(t)

+ [ci(t)]K·f(n)







K·f(n)

(A.1)

for i = 1, . . . , N , where [α]K·f(n) denotes the value
of α truncated after K · f(n) bits for some constant
K (independent of n), and the dynamics of the two
output processors ỹ′

d and ỹ′
d is given by ỹ′

d(t + 1) =
σ(2 · ỹd(t)− 1

2 ) and ỹ′
v(t + 1) = σ(2 · ỹv(t)− 1

2 ).
In order to prove the existence of an f -truncated

family {Nf(n) : n > 0} over N with the required
properties, we need to prove the existence of a con-
stant K such that, for every n > 0 and on every
input u ∈ {0, 1}+, the Pl-RNN[Q] Nf(n) and the
Pl-RNN[R] N whose dynamics are respectively gov-
erned by Eqs. (A.1) and (1) actually satisfy yd(t) =
ỹ′

d(t + 1) and yv(t) = ỹ′
v(t + 1) for all time steps

t ≤ f(n). Given some n > 0, some input u ∈ {0, 1}+,
and some time step t ≥ 0, let ud(t), uv(t), (xi(t))N−2

i=1 ,
xN−1(t) = yd(t), xN (t) = yv(t) be the activa-
tion values of N at time t, and let aij(t), bij(t),
ci(t) be the weights of N at time t, when working
on input u; similarly, let ũd(t), ũv(t), (x̃i(t))N−2

i=1 ,
x̃N−1(t) = ỹd(t), x̃N (t) = ỹv(t), ỹ′

d(t), ỹ′
v(t) denote

the activation values of network Nf(n) at time t,
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and let ãij(t) = [aij(t)]K·f(n), b̃ij(t) = [bij(t)]K·f(n),
c̃i(t) = [ci(t)]K·f(n) denote the weights of network
Nf(n) at time t, when working on u. Note that since
we consider the same input u, one has ud(t) = ũd(t)

and uv(t) = ũv(t). Let also W = max{|s|, |s′|}, where
s and s′ are the bounds on the weights of N . Fur-
thermore, let the largest truncation errors of the pro-
cessors and weight at time t as well as the largest
accumulated error at time t be given by

δp(u, t) = max
i

∣∣∣∣∣∣∣

σ


 N∑

j=1

ãij(t) · x̃j(t) +
M∑

j=1

b̃ij(t) · uj(t) + c̃i(t)







K·f(n)

− σ


 N∑

j=1

ãij(t) · x̃j(t) +
M∑

j=1

b̃ij(t) · uj(t) + c̃i(t)




∣∣∣∣∣∣,

δw(t) = max
{

max
i,j
|ãij(t)− aij(t)|, max

i.j
|b̃ij(t)− bij(t)|, max

i
|c̃i(t)− ci(t)|

}
,

ε(t) = max
i
|x̃i(t)− xi(t)|.

Now, let δp be the supremum of all values δp(u, t)
over all possible inputs u and time steps t, i.e. δp =
supu∈{0,1}+,t≥0 δp(u, t). Since any possible activation
value always belongs to [0, 1], one has δp(u, t) ≤
δp ≤ 1. Let also δw be the supremum of all val-
ues δw(t) over all possible time steps (note that
δw(t) does not depend on the input u), i.e. δw =

supt≥0 δw(t). Since every possible weight belongs by
definition to [s, s′], the weight’s largest truncation
errors cannot exceed W = max{|s|, |s′|}, and one
thus has δw(t) ≤ δw ≤W .

According to these definitions, using the global
Lipschitz property |σ(x) − σ(y)| ≤ |x − y| and the
fact that uj(t) = ũj(t), one has

ε(t + 1) = max
i
|x̃i(t + 1)− xi(t + 1)|

= max
i

∣∣∣∣∣∣∣

σ


 N∑

j=1

ãij(t) · x̃j(t) +
M∑

j=1

b̃ij(t) · uj(t) + c̃i(t)







K·f(n)

− σ


 N∑

j=1

aij(t) · xj(t) +
M∑

j=1

bij(t) · uj(t) + ci(t)




∣∣∣∣∣∣

≤ max
i

∣∣∣∣∣∣σ

 N∑

j=1

ãij(t) · x̃j(t) +
M∑

j=1

b̃ij(t) · uj(t) + c̃i(t)




− σ


 N∑

j=1

aij(t) · xj(t) +
M∑

j=1

bij(t) · uj(t) + ci(t)




∣∣∣∣∣∣ + δp(u, t)

≤ max
i

∣∣∣∣∣∣

 N∑

j=1

ãij(t) · x̃j(t) +
M∑

j=1

b̃ij(t) · uj(t) + c̃i(t)




−

 N∑

j=1

aij(t) · xj(t) +
M∑

j=1

bij(t) · uj(t) + ci(t)




∣∣∣∣∣∣ + δp(u, t)
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≤ max
i

∣∣∣∣∣∣
N∑

j=1

ãij(t) · x̃j(t)−
N∑

j=1

aij(t) · xj(t)

∣∣∣∣∣∣ +

∣∣∣∣∣∣
M∑

j=1

b̃ij(t) · uj(t)−
M∑

j=1

bij(t) · uj(t)

∣∣∣∣∣∣
+ |c̃i(t)− ci(t)|+ δp(u, t)

≤ max
i

∣∣∣∣∣∣
N∑

j=1

ãij(t) · x̃j(t)−
N∑

j=1

ãij(t) · xj(t)

∣∣∣∣∣∣ +

∣∣∣∣∣∣
N∑

j=1

ãij(t) · xj(t)−
N∑

j=1

aij(t) · xj(t)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
M∑

j=1

b̃ij(t) · uj(t)−
M∑

j=1

bij(t) · uj(t)

∣∣∣∣∣∣ + |c̃i(t)− ci(t)|+ δp(u, t)

≤ N · (W + δw(t)) · ε(t) + (N + M + 1) · δw(t) + δp(u, t)

≤ N · 2 ·W · ε(t) + (N + M + 1) · δw(t) + δp(u, t)

≤ N · 2 ·W · ε(t) + (N + M + 1) · δw + δp

= K1 · ε(t) + K2 · δw + δp,

where K1 = 2 · N · W and K2 = N + M + 1 are
constants. Using the fact that ε(0) = maxi |x̃i(0) −
xi(0)| = 0 and the geometric series formula, one has

ε(t + 1) ≤
t∑

i=0

Ki
1 · (K2 · δw + δp)

≤ Kt+1
1 · (K2 · δw + δp). (A.2)

Now, we want to show the existence of a constant
K such that the binary output values yd(t), yv(t)
and ỹ′

d(t + 1), ỹ′
v(t + 1) of the respective network N

and truncated network Nf(n) satisfy the relations
yd(t) = ỹ′

d(t + 1) and yv(t) = ỹ′
v(t + 1), for all

t ≤ f(n). In other words, according to the dynamics
of ỹ′

d and ỹ′
v, one must have for all t ≤ f(n):

if yd(t) = 0 then σ

(
2 · ỹd(t)− 1

2

)
= 0

i.e. 2 · ỹd(t)− 1
2
≤ 0,

if yd(t) = 1 then σ

(
2 · ỹd(t)− 1

2

)
= 1

i.e. 2 · ỹd(t)− 1
2
≥ 1,

if yv(t) = 0 then σ

(
2 · ỹv(t)− 1

2

)
= 0

i.e. 2 · ỹv(t)− 1
2
≤ 0,

if yv(t) = 1 then σ

(
2 · ỹv(t)− 1

2

)
= 1

i.e. 2 · ỹv(t)− 1
2
≥ 1,

for all t ≤ f(n). Note that the above relations hold
whenever |ỹd(t) − yd(t)| ≤ 1

4 and |ỹv(t) − yv(t)| ≤ 1
4

for all 0 ≤ t ≤ f(n), and hence in particular when-
ever ε(t) ≤ 1

4 for all t ≤ f(n) (since yd and yv

belong to the xi’s). This latter inequality is satis-
fied for t = 0 (since ε(0) = 0 ≤ 1

4 ), and according to
inequality (A.2), it also holds for all 0 < t ≤ f(n) if

Kt
1 · (K2 · δw + δp) ≤ 1

4
for all 0 < t ≤ f(n).

Now, note that the previous relations hold if δw and
δp are both bounded by all values 1

5 (K1 ·K2)−t, for
all 0 < t ≤ f(n) (for the case t = 1, use the fact that
K2 ≥ 5, and for the cases t > 1, use the fact that
K2 +1 ≤ Kt

2). Since 1
5 (K1 ·K2)−f(n) ≤ 1

5 (K1 ·K2)−t

for all t ≤ f(n), the above relations are also satisfied
if δw and δp are both bounded by 1

5 (K1 · K2)−f(n).
Moreover, we recall that if the truncations in δw and
δp occur at K · f(n) bits after the decimal point,
then δw and δp are bounded by 2−K·f(n). Hence, in
order to have δw and δp bounded by 1

5 (K1 ·K2)−f(n)

as requested, it suffices to have 2−K·f(n) ≤ 1
5 (K1 ·

K2)−f(n), i.e. to have K ≥ log(1
5 (K1 ·K2)). There-

fore, by taking K = �log(1
5 (K1 · K2))� (where �x�

denotes the least integer above x), the dynamics
given by Eq. (A.1) ensures that the output binary
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values yd(t), yv(t) as well as ỹ′
d(t + 1), ỹ′

v(t + 1) pro-
duced by the respective networks N and Nf(n) will
be the very same for all time steps t ≤ f(n). This
concludes the proof.

We now show the main results of the paper.

Proposition 10. Let L ⊆ {0, 1}+ be some lan-
guage.

(i) There exists some Pl2-RNN[Q] that decides L in
exponential time.

(ii) There exists some Pl-RNN[Q] that decides L in
exponential time.

Proof. Note that Point (ii) is a direct consequence
of Point (i), since any Pl2-RNN[Q] is a particular Pl-
RNN[Q]. We now prove Point (i). The main idea of
the proof is illustrated in Fig. A.3.

First of all, let w1, w2, w3, . . . denote the infinite
lexicographical enumeration of all words of {0, 1}+
(i.e. w1 = 0, w2 = 1, w3 = 00, w4 = 01, w5 = 10,
w6 = 11, w7 = 000, etc.), and for every i > 0, let εi

be the L-characteristic bit χL(wi) of wi, i.e. εi = 1
iff wi ∈ L. Now, let w be the binary infinite word
defined as the succession of all wi’s and εi’s separated
by 0’s, i.e.

w = w10ε10w20ε20w30ε30w40ε40 · · · .
In words, w represents a description of all successive
binary words followed by the information of whether
each of these words belongs to L or not. Besides,
consider also the binary infinite word z which has
the same structure as w except that every sub-word
wi is replaced by a block of 1’s of the same length
and every bit εi is replaced by a 1, i.e.

z = 101010101101011010 · · · .

Fig. A.3. Illustration of the Pl2-RNN[Q] NL described in the proof of Proposition 10.

The idea is that the infinite word z acts as a valida-
tion line for the infinite word w, i.e. the active bits
of z correspond in their positions to the data bits of
w. The superposition bit by bit of the words w and
z is as illustrated below:

w1 0 ε1 0 w2 0 ε2 0 w3 0 ε3 0 w4 0 ε4 0 · · ·
1 0 1 0 1 0 1 0 11 0 1 0 11 0 1 0 · · ·

We now provide the description of a Pl2-RNN[Q]
NL that decides L in exponential time. The network
NL actually consists of one plastic and one static
rational sub-network connected together.

The plastic rational-weighted part of NL is made
up of two designated processors xp and xp′ . Both
neurons xp and xp′ receive as incoming synaptic con-
nections a background activity of changing intensity
cp(t) and cp′(t), respectively. The synaptic weight
cp(t) takes as values the successive bits composing
the infinite word w. The synaptic weight cp′(t) takes
as values the successive bits composing the infinite
word z. At each time step, cp(t) and cp′(t) switch
from one bit to the next. In this way, the synaptic
weights cp(t) and cp′(t) evolve among only two pos-
sible values, namely 0 or 1. In words, the neurons xp

and xp′ respectively receive as background activities
the two binary infinite words w and z in parallel.

We now describe the static rational-weighted part
of NL. This network is designed in order to per-
form the recursive neural procedure described by
Algorithm 1 below. Algorithm 1 receives some finite
binary input u bit by bit, uses the information pro-
vided by the plastic neurons xp and xp′ , and eventu-
ally decides whether u belongs to L or not.

Algorithm 1 consists of two subroutines per-
formed in parallel until some return instruction
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Algorithm 1 Neural procedure
Input: finite binary word u provided bit by bit

1: SUBROUTINE 1:
2: c← 0
3: for all time steps t ≥ 0 do
4: store xp(t) into neuron xw

5: store xp′ (t) into neuron xz

6: if xp′ (t) = 0 then
7: c← c + 1 mod 2 // c counts modulo 2 the number of 0’s occurring at neuron xp′

8: end if
9: end for

10: SUBROUTINE 2:
11: for t = 0 to |u| do
12: store u(t) into neuron xu

13: end for // the activation value of xu represents an encoding of u

14: wait for c (of subroutine 1) to switch from 1 to 0
15: copy the current activation value of neuron xw (of subroutine 1) into neuron xw′

16: copy the current activation value of neuron xz (of subroutine 1) into neuron xz′

// at that moment t, the values of xw′ and xz′ represent the encodings of two words w′ and z′ of the forms
// w′ = w10ε10w20ε20 · · ·wn(t)0εn(t)0 and z′ = 1|w1|0ε101|w2|0ε20 · · · 1|wn(t)|0εn(t)0, for some n(t) > 0

17: if u = wi for some i = 1, . . . , n(t) and εi = 1 then
18: return ACCEPT // in this case, u ∈ L

19: else if u = wi for some i = 1, . . . , n(t) and εi = 0 then
20: return REJECT // in this case, u 
∈ L

21: else
22: goto instruction 14 // we still don’t know whether u belongs to L or not
23: end if

is eventually reached. It involves seven designated
neurons xu, xp, xp′ , xw , xw′ , xz , xz′ . Concerning
instructions 4, 5 and 12, the way to store succes-
sive incoming bits into some designated neuron is
described in detail in Ref. 14. Intuitively, the acti-
vation value of a neuron can be employed to encode
the content a binary stack, and every new incoming
bit can be pushed into the stack in constant time.14

These tasks can be achieved by some simple static
rational-weighted RNNs.14 In order to be able to
store binary words of any possible finite length, one
needs to dispose of an unbounded memory. This is
achieved via the possibility to dispose of an arbi-
trary precision for the rational activation values of
the neurons.14 For instructions 7 and 14, the imple-
mentation of a counter by some static rational RNN
is described in detail in Ref. 14. The counter is imple-
mented as a unary stack. Incrementing or decrement-
ing the counter is achieved by pushing or popping
an element to and from the stack. The content of

the unary stack is encoded by the activation value
of a neuron.14 In instructions 15 and 16, the two
copies are achieved by simply triggering two synap-
tic connections of intensities 1 from xw to xw′ , and
from xz to xz′ , respectively. Instructions 17 to 23
are written in a high-level language, but it is clear
that they can be performed by some three-tape TM,
where the words u, w′, and z′ encoded in neurons
xu, xw′ , and xz′ are written on each tape at the
beginning of the computation. According to the real-
time computational equivalence between TMs and
static rational-weighted RNNs proven in Ref. 14,
this instruction block can also be simulated by some
static rational RNNs with the words u, w′ and z′

encoded as rational activation values of the three
designated neurons xu, xw′ and xz′ at the beginning
of the computation. The possibility to encode and
decode any finite binary word into and from the acti-
vation value of some neuron is described in detail in
Ref. 14.
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Besides, note that every time instructions
14, 15, 16 are re-executed (via instruction 22), the
activation values of xw′ and xz′ will represent the
encodings of two words w′ and z′ which strictly
extend those two involved in the previous execu-
tion of these instructions. Now, since (wi)i>0 is an
enumeration of {0, 1}+, there exists some k > 0
such that u = wk. By the previous argument, there
will necessarily be some execution of instructions
14, 15, 16 involving a word w′ of the form w′ =
w10ε10w20ε20 · · ·wn0εn0, where n ≥ k. In this case,
the word u matches one of the sub-words wi’s of
w′, meaning that Algorithm 1 will either provide an
accepting or a rejecting answer, and therefore neces-
sarily terminate.

Hence, the analysis of each instruction ensures
that Algorithm 1 always terminates and can indeed
be simulated by some static rational RNN. This RNN
represents the static rational-weighted part of NL.

The Pl2-RNN[Q] NL consists of the bi-
valued plastic and the static rational sub-networks
described above. According to Algorithm 1, NL

clearly decides the language L. Moreover, for any
input u of length n, the network has to wait for O(2n)
time steps before the binary word u occurs as a sub-
word of w. Therefore, the network NL decides the
language L in exponential time.

Proposition 11. Let L ⊆ {0, 1}+ be some lan-
guage.

(i) L is decidable in polynomial time by some Pl2-
RNN[Q] if and only if L ∈ P/poly.

(ii) L is decidable in polynomial time by some Pl-
RNN[Q] if and only if L ∈ P/poly.

Fig. A.4. Illustration of the Pl2-RNN[Q] NL described in the proof of Lemma 12.

The proof is achieved by Lemmas 12 and 13.
Note that Lemma 12 concerns Pl2-RNN[Q]s whereas
Lemma 13 concerns Pl-RNN[Q]s.

Lemma 12. Let L ⊆ {0, 1}+ be some language. If
L ∈ P/poly, then there exists a Pl2-RNN[Q] that
decides L in polynomial time.

Proof. The present proof resembles the proof of
Proposition 10. The main idea of the proof is illus-
trated in Fig. A.4. We recall that the notation |x|
denotes the length of the word x.

First of all, since L ∈ P/poly, there exists a
TM/poly(A) M that decides L in polynomial time.
Let α : N∗ → {0, 1}+ be the polynomial-bounded
advice function of M. Let w be the binary infinite
word defined as the succession of all α(i)’s separated
by 0’s, i.e.

w = α(1)0α(2)0α(3)0α(4)0 · · · .
Moreover, let z be the binary infinite word which has
the same structure as w except that every sub-word
α(wi) is replaced by a block of 1’s of the same length,
i.e.

z = 1|α(w1)|01|α(w2)|01|α(w3)|01|α(w4)|0 · · · .
Once again, the idea is that the infinite word z acts as
a validation line for the infinite word w, i.e. the active
bits of z correspond in their positions to the data bits
of w. The superposition bit by bit of the words w and
z is as illustrated below:

α(1) 0 α(2) 0 α(3) 0 α(4) 0 · · ·
1|α(1)| 0 1|α(2)| 0 1|α(3)| 0 1|α(4)| 0 · · ·

We now provide the description of a Pl2-RNN[Q]
NL that decides L in polynomial time. Once again,
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the network NL consists of one plastic and one static
rational sub-network connected together.

The plastic rational-weighted part of NL is made
up of two designated processors xp and xp′ . The neu-
rons xp and xp′ receive as incoming synaptic con-
nections background activities of changing intensities
cp(t) and cp′(t), each of which taking as values the
successive bits of the infinite words w and z, respec-
tively. At each time step, cp(t) and cp′(t) switch from
one bit to the next. In this way, the synaptic weights
cp(t) and cp′(t) evolve among only two possible val-
ues, namely 0 or 1. In words, the neurons xp and xp′

respectively receive as background activities the two
binary infinite words w and z in parallel.

The static rational-weighted part of NL is
designed in order to perform the recursive neural pro-
cedure described by Algorithm 2 below. Algorithm 2
receives some finite binary input u bit by bit, uses
the information provided by the plastic neurons xp

and xp′ , and eventually decides in polynomial time
whether u belongs to L or not.

Algorithm 2 consists of two subroutines per-
formed in parallel until some final answer is pro-
vided in instruction 16. It involves eight designated

neurons xu, xp, xp′ , xw , xw′ , xz , xz′ , xα. Concern-
ing instructions 3, 4 and 8, the way to store suc-
cessive incoming bits into some designated neuron is
described in detail in Ref. 14. Instruction 10 uses a
counter which is implemented as a unary stack. For
each letter of u, a 1 is pushed into the stack. The con-
tent of the stack is encoded in the activation value
of a neuron.14 For instruction 11, the counting pro-
cedure is implemented as follows: every time some
0 occurs as a background activity of neuron xp′ , a
1 is popped from the neuron stack, until the stack
becomes empty. In instructions 12 and 13, the two
copies are achieved by simply triggering two synaptic
connections of intensities 1 from xw to xw′ , and from
xz to xz′ , respectively. The block of instructions 14
and 15 is written in a high-level language, but it is
clear that it can be performed by some TM, where
the words w′ encoded in neurons xw′ is written on the
tape at the beginning of the computation. According
to the real-time computational equivalence between
TMs and static rational-weighted RNNs,14 this sub-
procedure can also be simulated by some static ratio-
nal RNNs with the word w′ encoded as the rational
activation value of a designated neurons xw′ at the

Algorithm 2 Neural procedure
Input: finite binary word u provided bit by bit

1: SUBROUTINE 1:
2: for all time steps t ≥ 0 do
3: store xp(t) into neuron xw

4: store xp′ (t) into neuron xz

5: end for

6: SUBROUTINE 2:
7: for t = 0 to |u| do
8: store u(t) into neuron xu

9: end for // the activation value of xu represents an encoding of u

10: compute and store the value |u| in a neuron
11: from the current time step, wait that |u| occurrences of 0 have appeared at neuron xp′

12: copy the current activation value of neuron xw (of subroutine 1) into neuron xw′

13: copy the current activation value of neuron xz (of subroutine 1) into neuron xz′

// at that point, the activation values of xw′ and xz′ represent the encodings of two words w′ and z′

// that are prefixes of w and z respectively.
// Since one has waited that at least |u| 0’s have occurred as a background activity of neuron xp′ ,

// we are sure that the finite word w′ contains the value α(|u|) as sub-word.
14: decode α(|u|) from the activation value of xw′

15: store α(|u|) into neuron xα

16: simulate the behavior of the TM/poly(A)M working on u with α(n) written on its advice tape
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beginning of the computation. Concerning instruc-
tion 16, the behavior of a TM/poly(A) M working
on u and with the advice string α(n) already written
on its advice tape is clearly recursive (only the call to
the advice function is not recursive), and therefore,
can be simulated by some static rational-weighted
RNN.14

Hence, the analysis of each instruction ensures
that Algorithm 2 can indeed be simulated by some
static rational RNN, which represents the static
rational-weighted part of NL.

The Pl2-RNN[Q] NL consists of the bi-
valued plastic and the static rational sub-networks
described above. According to Algorithm 2, the Pl2-
RNN[Q] NL outputs the same answer as M. Since
M decides the language L, so doesNL. Besides, since
the advice is polynomial-bounded, it follows that for
any input u, the network has to wait for polynomi-
ally many time steps before the binary word α(|u|)
occurs as a sub-word of w. Moreover, sinceM decides
L in polynomial time, the simulating task of M by
NL is also done in polynomial time in the input
size.14 Consequently, NL decides L in polynomial
time.

Fig. A.5. Illustration of the proof idea of Lemma 13.

Lemma 13. Let L ⊆ {0, 1}+ be some language. If
there exists a Pl-RNN[Q] that decides L in polyno-
mial time, then L ∈ P/poly.

Proof. The main idea of the proof is illustrated in
Fig. A.5. Suppose that L is decided by some Pl-
RNN[Q] N in polynomial time p. Since N is by
definition also a Pl-RNN[R], Lemma 9 applies and
shows the existence of a p-truncated family of Pl-
RNN[Q]s over N . Hence, for every n, there exists a
Pl-RNN[Q] Np(n) such that: first, the network Np(n)

has the same processors and connectivity pattern
as N ; second, for every t ≤ p(n), each rational
synaptic weight of Np(n)(t) can be represented by
some sequence of bits of length at most C · p(n), for
some constant C independent of n; third, on every
input of length n, if one restricts the activation val-
ues of Np(n) to be all truncated after C · p(n) bits
at every time step, then the output processors of
N and Np(n) at respective time steps t and t + 1
have the same activation values for all time steps
t ≤ p(n).

We now prove that L can also be decided in poly-
nomial time by some TM/poly(A) M. First of all,
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consider the advice function α : N → {0, 1}+ given
by α(i) = Encoding(〈Np(i)(t) : 0 ≤ t ≤ p(i)〉), where
Encoding(〈Np(i)(t) : 0 ≤ t ≤ p(i)〉) denotes some
suitable recursive encoding of the sequence of suc-
cessive descriptions of the network Np(i) up to time
step p(i). Note that α(i) consists of the encoding of
p(i) + 1 successive descriptions of the network Np(i),
where each of this description has synaptic weights
representable by at most C · p(i) bits. Therefore, the
length of α(i) belongs to O(p(i)2), and thus is still
polynomial in i.

Now, consider the TM/poly(A) M that uses α

as advice function, and which, on every input u

of length n, first calls the advice word α(n), then
decodes this sequence in order to simulate the trun-
cated network Np(n) on input u up to time step p(n)
and in such a way that all activation values of Np(n)

are only computed up to C · p(n) bits at every time
step. Note that each simulation step ofNp(n) byM is
performed in polynomial time in n, since the decod-
ing of the current configuration of Np(n) from α(n)
is polynomial in n, and the computation and repre-
sentations of the next activation values ofNp(n) from
its current activation values and synaptic weights are
also polynomial in n. Consequently, the p(n) simula-
tion steps of Np(n) by M are performed in polyno-
mial time in n.

Now, since any u of length n is classified by N
in time p(n), Lemma 9 ensures that u is also classi-
fied by Np(n) in time p(n), and the behavior of M
ensures that u is also classified by M in p(n) sim-
ulation steps of Np(n), each of which being polyno-
mial in n. Hence, any word u of length n is classified
by the TM/poly(A)M in polynomial time in n, and
the classification answers of M, Np(n), and N are
the very same. Since N decides the language L, so
does M. Therefore L ∈ P/poly, which concludes
the proof.

Proof of Proposition 11. Concerning Point (i),
the backward implication is given by Lemma 12. For
the forward implication, suppose that L is decidable
by some Pl2-RNN[Q] N . Then, L is also decidable
by some Pl-RNN[Q], namely N itself. By Lemma 13,
L ∈ P/poly.

Concerning Point (ii), the forward implication is
given by Lemma 13. For the backward implication,
suppose that L ∈ P/poly. By Lemma 12, L is decid-
able by some Pl2-RNN[Q] N . Consequently, L is also

decidable by some Pl-RNN[Q], namely N itself. This
concludes the proof.

Proof of Theorem 6. We first consider the case of
the exponential time of computation. Let L ⊆ {0, 1}∗
be some language. Then, by Proposition 10(i), L is
decidable in exponential time by some Pl2-RNN[Q]
N . Hence, L is also decidable in exponential time
by some Pl2-RNN[R] as well as by some Pl-RNN[R],
namely by N itself. This shows that any language
L can be decided in exponential time by some Pl2-
RNN[R] or some Pl-RNN[R].

We now treat the case of the polynomial time of
computation. Suppose that L is decidable in polyno-
mial time by some Pl2-RNN[R] N . Then, L is also
decidable in polynomial time by some Pl-RNN[R],
namely by N itself. Furthermore, since Lemma 9 is
originally stated for the case of Pl-RNN[R]s, it fol-
lows that Lemma 13 — which appeals to Lemma 9 in
its proof — can also be generalized in the context of
Pl-RNN[R]s. Consequently, L ∈ P/poly. This pro-
vides the two implications from Pl2-RNN[R]s and Pl-
RNN[R]s to P/poly.

Conversely, suppose that L ∈ P/poly. By Theo-
rem 4(a), L is decidable in polynomial time by some
Pl2-RNN[Q] N . Hence, L is also decidable in poly-
nomial time by some Pl2-RNN[R] as well as by some
Pl-RNN[R], namely by N . This provides the two
implications from P/poly to Pl2-RNN[R]s and Pl-
RNN[R]s.

Proof of Theorem 8. Point (a). Note that the
dynamics of plastic RNNs is governed by an equation
of the form

x(t + 1) = σ(A(t) · x(t) + b(t) · u(t) + c(t)),

where A(t), b(t), and c(t) are the weight matrices
and vectors, and σ is the linear-sigmoid activation
function applied componentwise. Since weights are
time-dependent, the computational states of plas-
tic neural networks are given by a description of
both the current activation values of the cells as
well as the current synaptic weights, and hence,
for a network containing N + 2 cells (N activa-
tion cells plus 2 inputs), can be represented by a
K-dimensional vector, with K = (N + 2) + (N2 +
2N + N). Since the activation and weight values are
bounded by 0 and 1 and by s and s′, respectively,
one can take as state space the bounded Borel set
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Ω = [min(0, s), max(1, s′)]K ⊆ RK . The dynam-
ics of the network can thus be expressed by the
transition function f : Ω × {0, 1}2 → Ω defined
by f(p,a) = σ(A(p) · x(p) + b(p) · a + c(p)),
where x(p) is the activation value vector and A(p),
b(p), and c(p) are the weight matrices, all of them
extracted from the (N + 2) first and (N2 + 2N + N)
last components of state p, respectively. The func-
tion f is clearly continuous (and measurable) for
each fixed input a. Therefore, the state space Ω
and the transition function f satisfy the require-
ments described in Refs. 23–25, showing that the
computational power of plastic RNNs will indeed be
reduced to regular and definite languages in the pres-
ence of either arbitrarily small or larger amounts of
noise.

Point (b). We begin with the case of polynomial
time computation. First, note that the addition of
some discrete source of stochasticity to any of the
considered plastic neural network model does clearly
not decrease the computational power of the model
below P/poly. Formally, if L ∈ P/poly, then by
Corollary 7, L is decidable in polynomial time by
some Pl-RNN N , and hence, by incorporating in N
some “inefficient” or “harmless” source of stochastic-
ity, L is also decidable in polynomial time by some
stochastic Pl-RNN. We now show that the addi-
tion of some discrete source of stochasticity does
not increase the computational power of plastic neu-
ral networks above P/poly. Let L be some lan-
guage that is ε-recognizedh in polynomial time by
some stochastic Pl-RNN N of any kind (bi-valued
or general, rational or real). By a generalization
of Lemma 7.1 of Ref. 15, there exists a family of
nonstochastic feedforward St-RNN[R]s {Fn}∞n=0 that
decides L in polynomial time p, in the sense that each
network Fn classifies correctly all possible inputs of
length n in time p(n). Intuitively, each Fn is obtained
by unfolding the network N into p(n) layers, copying
this unfolding cn times for some constant c (which
depends on ε), assigning to each copy some specific
fixed values for its stochastic gates which ensure that
a majority of the copies always answers correctly on
all possible inputs of length n, and gathering as final
answer the majority of the answers of the copies.
Then, by a direct generalization of Lemma 7.2 of

Ref. 40, the behavior of this family of feedforward
St-RNN[R]s {Fn}∞n=0 can be simulated by a single
St-RNN[R] N . The St-RNN[R] N decides L with a
quadratic slowdown, but still in polynomial time. By
Theorem 2(a), L ∈ P/poly.

We now consider the case of exponential time
computation. Let L ⊆ {0, 1}+ be some arbitrary lan-
guage. By Corollary 7, L is decidable in exponential
time by some Pl-RNN N of any kind (bi-valued or
general, rational or real). Hence, by incorporating in
N some “inefficient” or “harmless” source of stochas-
ticity, L is also decidable in exponential time by some
stochastic Pl-RNN of any kind (bi-valued or general,
rational or real).

References

1. L. F. Abbott and S. B. Nelson, Synaptic plasticity:
Taming the beast, Nat. Neurosci. 3 Suppl (2000)
1178–1183.

2. S. J. Martin, P. D. Grimwood and R. G. M. Morris,
Synaptic plasticity and memory: An evaluation of
the hypothesis, Annu. Rev. Neurosci. 23(1) (2000)
649–711.

3. A. Ertürk, C. P. Mauch, F. Hellal, F. Förstner,
T. Keck, K. Becker, N. Jährling, H. Steffens,
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