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One of the brain’s most basic functions is integrating sensory data from diverse sources. This ability
causes us to question whether the neural system is computationally capable of intelligently inte-
grating data, not only when sources have known, fixed relative dependencies but also when it must
determine such relative weightings based on dynamic conditions, and then use these learned
weightings to accurately infer information about the world. We suggest that the brain is, in fact,
fully capable of computing this parallel task in a single network and describe a neural inspired
circuit with this property. Our implementation suggests the possibility that evidence learning re-
quires a more complex organization of the network than was previously assumed, where neurons
have different specialties, whose emergence brings the desired adaptivity seen in human online
inference. © 2010 American Institute of Physics. �doi:10.1063/1.3491237�

Our senses work in parallel passing multimodal data of
the same fact or object to the brain. A fundamental ques-
tion in the field of computational neuroscience is how the
brain accommodates sensory data from different sources
to form one holistic picture. Cue integration experiments,
in which subjects experience apparently synchronized
cross modal stimuli, but where one source is displaced
from its counterpart, can reveal how the brain handles
parallel inputs. The results suggest that the human brain
computes a weighted average over the different cues, fit-
ting neatly with Bayes’ probability theory, where each
piece of information is weighted by the amount, on which
the brain relies on the channeling sense. Studies now sug-
gest that this relative reliability must also take into ac-
count changing conditions, such as varying lighting for
vision, environmental noise levels for audio, etc. Using
fixed reliabilities, as was previously modeled, skews deci-
sion making and contradicts both optimality and human
studies. A question arises as to whether the previous
Bayes-based theory still holds for cue integration given
the need of adapting the levels of reliabilities. We propose
it does and introduce a neural network architecture that
can both constantly learn the reliabilities of sensory data
and use them in the integration of cues. While the brain
does not necessarily use the method that we are propos-
ing for our architecture and there is currently no way to
test exactly how the brain makes these computations, our
work provides a proof of concept of the brain’s ability to
handle learning and inference in parallel and within one
network.

I. INTRODUCTION

People may perform Bayesian-like inference in the way
they combine data, such as in scene and object recognition,
sensorimotor learning, utilizing common sense, and making
decisions.1–4 Bayesian inference is reasoning about values of
variables, which takes into consideration existing probability

distributions and new evidence. Optimally, this process com-
bines different sources, weighting their relative reliability,
into the most plausible conclusion in terms of posterior prob-
ability of an unseen variable. Bayesian learning, as opposed
to Bayesian inference, is a technique derived from Bayesian
statistics that allows the optimal estimation of probability
distributions including both prior distributions of the vari-
ables and conditional distributions relating them.

Neural models were proposed, demonstrating Bayesian
inference given fixed conditional probabilities.5–9 Yet, Baye-
sian inference alone cannot explain perception unless the
relative reliabilities are updated over time.10–13 Two recent
solutions were suggested. One introduces an approximation
of an inference rule via reinforcement learning without speci-
fying neural correlates;14 the other one15 suggests a frame-
work of neurons with spikes that behave in a Poisson-like
way to enable learning. We provide another approach, where
a demonstrated novel analog neural circuit calculates poste-
rior probabilities and at the same time and in a different time
scale learns the relative reliabilities to fit the reality of chang-
ing conditions. The approach is innovative in that it intro-
duces neurons of different roles and specialties: Those that
carry distributions as in the traditional approach and those
used for explicit evidence based learning. While existing ar-
tificial neural network models are far more simplified than
the brain, they do share certain inherent characteristics stan-
dard computational models do not possess. Thus, our work
can be interpreted as a proof of concept demonstrating that
brain-like architectures are able to both execute optimal in-
ference of parallel stimuli—doing so adaptively and to sug-
gest that optimal evidence learning may require a more com-
plex, less homogeneous neural organization than previously
assumed.

II. THE NEURON MODEL

The model neuron used in our suggested Bayesian cir-
cuit is based on sigma-pi operations, inspired by the obser-
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vation that neurons and systems have local nonlinearities
�e.g., in dendrites� that cause them to approximate low-order
polynomials.16–19 The input synapses to each neuron j are
clustered to dendritic regions dj �Dj.

20,21 One abstract
weight, wj

I�dj�, is defined per dendritic region, where I�dj� is
the set of presynaptic neurons and j is the postsynaptic neu-
ron. Modification of the weight represents long-term
potentiation/depression that may occur through plasticity of
the entire synaptic region �e.g., tuning the nonlinearity with
respect to the spatial locality of individual synapses� and/or
plasticity of single synapses �e.g., the addition or removal of
receptors�.

In our simplified model, neuron j computes local multi-
plication in the individual dendritic regions. The soma sums
the activity from the dendritic regions weighted by wj

I�dj� and
the output activity of the neuron is piecewise linear with
respect to the somatic activity,

aj = L� �
dj�Dj

wj
I�dj� �

i�I�dj�
ai	 , �1�

where

L�x� = 
0, x � 0

x , 0 � x � 1

1, x � 1.
� �2�

A normalization via division will be used. This can be imple-
mented by changing the neural update equation to

aj = L� �
dj�Dj

wj
I�dj�e�i�I�dj�

log ai	 �3�

or instead by assuming that a normalization occurs naturally
within the neuronal circuit, where the firing rates keep the
relative ratios rather than the exact values.

Comment: Many nonlinearities from real neurons are
known, and we provide one such interpretation based on
multiplications in the dendritic trees. While it is unknown
whether our interpretation of the nonlinearities is more likely
than other models, one can also consider the analog neurons
described above as representing sets of probabilistic binary
neurons. The value of each analog neuron corresponds, in
this interpretation, to the fraction of the joint firing in the
associated group: if they all fire, the value is 1; if none fires,
they are represented by 0; and if some fire, they will be
represented by the appropriate fraction. A similar distributed
form of memory was described,22 where groups of neurons
fire together and synchronize locally. The individual neurons
in this case are probabilistic, and their firing probability is
updated by Eq. �1�. This also makes our work interface.15 It
should be noted that the simplified sigmoid function of Eq.
�2� is used here for simplicity of proofs only, yet the results
will not be changed if it is substituted with any sigmoidal-
like function.23

III. THE INFERENCE

The literature on inference and learning in graphical
models is by now vast and highly sophisticated �see, e.g.,
Refs. 24–26�. As the purpose of this paper is to contribute to
neuroscience rather than to graphical models, we chose to

simulate a simple propagation algorithm, which is sufficient
to demonstrate our point. It is very likely that richer learning
algorithms can also be implemented on neural inspired archi-
tectures.

A. Bayesian factor graphs

Bayesian inference is commonly performed computa-
tionally on an acyclic factor graph.27 This is an undirected
graph with two types of nodes. The M nodes represent the
variables and the N nodes represent the “factors,” which in-
clude prior probabilities on the variables as well as relation-
ships between the variables in the form of conditional prob-
abilities �see Fig. 1�. Bayesian inference is tractable in
acyclical graphical models. Belief propagation is an efficient
way to infer via local messages, and generalizations of which
were suggested.28 We focus on the “loopy belief propaga-
tion” approximation algorithm,29 which we find easy to
simulate in a neural model. The loopy propagation sends one
message along each edge: a �-message from a factor to an
adjacent variable and a �-message from a variable to an ad-
jacent factor.

A message is a vector. The components of the
�-message from factor F to variable A sum �-messages re-
ceived at F from all other variables neighboring F, scaled by
the probability of the assignment. The sum is taken over all
possible assignments of F’s neighboring variables when A is
set to the value a,

�FA�a� = �
���N�F�\A

� f���,a��
b���

�BF�b� . �4�

Here, N�F� \A is the set of all variable nodes neighboring F
except for A, �� �N�F� \A represents a particular assignment
to those nodes, f is the value of the factor �a conditional
probability� for a particular assignment of the neighboring
variables, b is the assignment to one of the neighboring vari-
ables, and B is the variable that was assigned. The compo-
nents of a �-message from a variable A to a factor F are
products of the A=a components of �-messages sent to vari-
able A from all other neighboring factors. This can be ex-
pressed as

�

��
����

��
��	�

	


�
�����	�

�

� 	

�

� �

FIG. 1. �a� Bayesian network of three variables where C is dependent on
both A and B. �b� The factor graph representation of the same network. The
M nodes are A–C and the N nodes are 1–3.
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�AF�a� = �
j�N�A�\F

� jA�a� , �5�

where a is a particular assignment to variable A and N�A� \F
is the set of all factor nodes neighboring A except for F.

B. Neural implementation of inference

A main contribution of this paper is the implementation
of the inference and weight learning steps within a particular
neural inspired architecture. It was previously shown how to
iteratively estimate priors in a spiking neural model,30 but
our work has the goal of combining learning with inference.
Our architecture is somewhat tricky. The majority of the
sigma-pi neurons in the architecture implement neither vari-
ables nor factors of the graphical model. Instead, these ana-
log neurons represent messages in the propagation algorithm.
With this nontrivial model, we gain the desired attribute of
having the learning and inference processes coexist in the
neural architecture as equal partners with equal importance,
instead of learning being pushed to the implementation level
serving the inference procedure. Thus, we will include two
neural templates: type M neuron and type N neuron. Type M
neuron, MFA�a�, calculates the value of an entry in a
�-message sent from a factor to a variable �see Fig. 2�. Each
dendritic region corresponds to one assignment to the vari-
ables neighboring the factor F with the value of variable A
set to a. An N neuron, NAF�a�, calculates the value of an
entry in a �-message sent from a variable to a factor.

The posterior estimate of a variable, p�A=a�, is the
product of the �-messages sent to the variable node A. This
is equivalent to multiplying any two messages that are
passed along an edge connected to the variable node A,
which can be easily done within a sigma-pi neuron,

P�A = a� =
�AF�a��FA�a�

�b�A�AF�b��FA�b�
. �6�

Figures 3 and 4 exemplify the implemented Bayesian net-
works.

Inference from partial evidence is applied by the basic
neural update. To enter evidence �, the N and M neurons that
include the observed variable A receive the entry of 1 for the
value observed and 0 to all other entries,

NAF�a� = MFA�a� = �1 if �A = a� � �

0 if �A = a� � � .
� �7�

By applying the neural dynamics, the output activity of indi-
vidual neurons, as described by Eq. �1�, will converge to the
appropriate values of the messages due to the one-to-one
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FIG. 2. �a� An M neuron. Neurons of this type calculate
the �-message from a factor F to a variable A. �b� An N
neuron. Neurons of this type calculate the �-message
from a variable A to a factor F.
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FIG. 3. �Color online� �Left� The factor graph of two variables in which B
is conditioned on A. �Right� The neural implementation of these messages.
Each neuron and its attached dendrite tree �shown as blunt ended edges� and
axon tree �shown as directed edges� are represented in the same color. Un-
labeled synapses have weight 1 and also unconnected edges carry the con-
stant value 1.
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correspondence between the computation of the neurons and
message-passing equations.

The update in our model is done when the neuron is
ready. Such update can occur synchronously based on an
external pacemaker or asynchronously when each neuron re-
ceives the input. Assuming that there is a latency of l milli-
seconds from the time a neuron receives its input until its
output firing rate appears, and d is the diameter of the acyclic
factor graph, the activity will then converge within 2dl to the
right posterior estimates. While the architecture is cumber-
some, it carries the benefit of having adaptable reliabilities.

IV. MODEL LEARNING IN SYNAPSES

A significant contribution of this work is to show how
the circuit described above can learn online the distribution
and mutual effects among the variables, and how the learning
is done by adapting the weights of synaptic regions in this
neural circuit using a “generalized Hebbian learning” rule.31

In generalized Hebbian learning, the weight of a synapse is
updated from the current weight by a function F of the pr-
esynaptic and postsynaptic neural activities,

wj
I�dj��t + 1� = wj

I�dj��t� + F�ai1
�t�, . . . ,ain

�t�,aj�t�� . �8�

The generalized Hebbian learning is local, can be done on-
line with a single piece of evidence and thus is considered
biologically plausible. Our particular implementation in-
volves active steps of learning with neurons being allocated

and specialized with this role, differently than more tradi-
tional approaches.14 We propose that learning is important
enough to brain function that it allocates dedicated neural
hardware toward this end.

In our neural implementation, the conditional or prior
probabilities are stored in a distributed fashion in the weights
of the synaptic regions, and updating the weights is done by

wj
I�dj��t + 1� = wj

I�dj��t�

+ �tevt�Y� = y���ev�X = x,Y� = y�� − wj
I�dj��t�� , �9�

where ev is short for evidence, X is a variable with value x,
and Y� is a vector of variables with the values y�.

If � is decreased by

�t+1 =
�t

�t + 1
�10�

and it is initialized by the prior probability of X, then
wj

I�dj��t+1�= Pt+1�X=x �Y� =y��. It is also possible to consider a
constant learning rate that weights recent information more
heavily, allowing the estimate to track changes in the world.
Furthermore, if any value is not drawn from the distribution
�i.e., is incorrectly assigned� and biases the estimator, then a
constant learning rate causes the value to vanish over time,
yielding an estimator that is asymptotically unbiased. A be-
havior consistent with a constant learning rate has also been
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FIG. 4. �Color online� The neural implementation of the graph in Fig. 1�b�. Synaptic trees fan out to consider evidence from multiple variables.
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a constant learning rate has also been observed biologically
in a noisy sensory integration task.32

Next, we explain how the learning rule was chosen. As-
sume that at any time t, evt� · � is assigned either 1 or 0,
depending on whether the variables referenced in this evi-
dence co-occur as stimuli at time t. Assume also that weight
updates occur only in the presence of the conditioned stimuli
Y� =y� and otherwise the weight remains unchanged. We can
then prove that the update rule represents the Bayesian opti-
mal estimate of the probability Pt�X=x �Y� =y�� as follows:

wt = wt−1 +
1

t
�evt − wt−1�

=
evt

t
+

t − 1

t
wt−1

=
evt

t
+

t − 1

t
� evt−1

t − 1
+

t − 2

t − 1
wt−2

=
evt + evt−1

t
+

�t − 2�wt−2

t
.

Introducing a term a, where a� t, we can express the cumu-
lative weight as

wt+1 =
�i=0

a evt+1−i

t
+

�t − a�wt−a

t
. �11�

Assuming we look at the entire cumulative history �i.e.,
a= t�, we reduce to only the first term

wt+1 =
�i=0

t evi

t
. �12�

Recalling that the update only occurs in the presence of Y� =y�,
this is equivalent to

wt+1 =
�i=0

t evi�X = x�Y� = y��

�i=0
t evi�Y� = y��

. �13�

This is now the formulation of the expected value of
Pt�X=x �Y� =y�� in the Dirichlet formulation of multinomial
Bayesian priors,

Pt�X = x�Y� = y�� =
�i=0

t evi�X = x�Y� = y��

�i=0
t evi�Y� �y��

. �14�

All that remains is to demonstrate that the update pro-
vided for the learning rate in Eq. �10� is equivalent to
1 / �t+1� at time t+1. This can be shown by a simple algebra,

�t+1 =
1

t + 1
=

1

t

1 +
1

t

=
�t

1 + �t
.

V. EXAMPLE WITH CUE INTEGRATION

Cue integration refers to the estimation of a hidden prop-
erty based on disparate information from multiple senses. In
Refs. 3 and 4, subjects were asked to locate a cued location

on the table in front of them and then point to it with the tip
of their left index finger from underneath the table. The cues
about the location were given both visually and through
proprioception �the internal sense, in this case, of where the
finger is�. The subject’s right hand is placed on the table but
it is hidden by a mirror that reflects the location of the finger
by a light dot. The motion of the subject’s right arm is re-
stricted to two dimensions, radial distance and azimuth,
which is orthogonal to distance, using mechanically restrict-
ing apparatus. Three tasks were defined in this setup. In the
first one, the subject is asked to point his left finger using
only the data from a dot on the screen. In the second task, the
subject is asked to point only by feeling where his hidden
right index finger is. In the third task, the subject is asked to
point after integrating both the visual and the proprioceptive
cues. Feedback was provided after each trial.

To study the process of integration, conflicting data were
given to the subjects in the third task and their predictions
were analyzed. It has been shown that the estimates rely
differentially upon each of the senses in the azimuth and
distance dimensions with preference for visual feedback
along the azimuth dimension and preference for propriocep-
tive feedback along the distance dimension. The predictions
used the relative precisions of each sense and combined the
estimates along each dimension.4

It was concluded that the integration of cues is done in a
Bayesian manner. A neural model of Bayesian cue integra-
tion was described.33 Assumptions were made in that model
about uniform priors over the target locations and that the
variances are explicitly encoded and fixed in the sensory rep-
resentations. Our neural network model can combine the
senses in a Bayesian way without knowing in advance the
different reliabilities of the senses or their variances, by first
learning these hidden parameters through interaction with the
environment, with a similar rationale to Ref. 15.

Target
Distance

P(Target =
Distance)

P(Vision =
Distance)

Vision
Distance

P(Proprio. =
Distance)

Prioprio.
Distance

Target
Azimuth

P(Target =
Azimuth)

P(Vision =
Azimuth)

Vision
Azimuth

P(Proprio. =
Azimuth)

Prioprio.
Azimuth

FIG. 5. A factor graph representation of the variables used to generate a
Bayesian neural network for our experiments. The hidden variables are tar-
get distance and target azimuth, as well as the relative reliability of the first
layer nodes.
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A. Simulating cue integration

To simulate cue integration, we created a neural circuit
of the type described in this paper. We used multinomial
random variables to represent a discretized version of the
space. For both vision and proprioception, separate variables
represented the azimuth dimension �with values from
	45° �	0.785 rad� to 45° �0.785 rad�, with a step size of
7.5° �0.130 rad�� and the radial distance �with values from
0 to 6, with a step size of 0.5�. We used similar variables for
the hidden azimuth and distance of the target position, and
the perceived locations were calculated with the factor graph
model in Fig. 5. The network first learned the priors and the
conditional probabilities from the evidence presented to it in
a form of pairs along each dimension: �target location and
proprioception� and �target location and vision�. To prepare
the evidence for one iteration of learning, a target location
was chosen uniformly from the grid described by the vari-
ables. Gaussian noise was then applied to each estimate sepa-
rately along each dimension. The variance of the noise de-
pended on the sense being trained and was in accord with the
experimental data. So, given a target location �Taz ,Tdist�, a
sensory location was produced as �Taz+G�0,
az,sense� ,Tdist

+G�0,
dist,sense�� with 
az,vision�
az,prop and 
dist,prop

�
dist,vision.
We utilized 1000 training examples of each dimension

�prioperception and vision�. To analyze the robustness of the
learning, the entire learning procedure was repeated five
times and testing was performed on each learned network. In
Table I, we report statistics about the network, showing both

how simple the topology is and how learning affects the
structure. For testing, the network was presented with a set of
points for each of the senses and it was allowed to iterate
until producing the posterior distribution over the target lo-
cation. All pairs of conflicting points from the grid with city-
block distance greater than 2 were presented for testing.

Figure 6 demonstrates that the posterior estimates of the
target locations are qualitatively similar to the results from
the psychological experiments. The target estimates were
compared to the points derived from Bayesian optimal esti-
mates by taking the first moment of the product of the Gaus-
sians,

targetaz =

az,vis

2


az,vis
2 + 
az,pro

2 Visaz +

az,pro

2


az,vis
2 + 
az,pro

2 Proaz,

�15�

targetdist =

dist,vis

2


dist,vis
2 + 
dist,pro

2 Visdist

+

dist,pro

2


dist,vis
2 + 
dist,pro

2 Prodist. �16�

The neural network was trained and tested five times for
each of the three conditions to control for variance in param-
eter estimation. In each conditions A, B, and C �as in
Table II�, the relative variances were modified to test the
ability of the network to learn and apply the appropriate
conditional probabilities. The mean/standard deviation of the
root-mean-square error between the network’s estimates of
the target and the optimal Bayesian estimate for conditions
A, B, and C were, respectively, 1.49°/0.023°, 1.94°/0.037°,
and 1.65°/0.046°. The mean/standard deviation root-mean-

TABLE I. Statistics about the size and complexity of the neural networks
for cue integration. Many of the compartments have zero weights, which can
be considered equivalent to having them pruned.

Network’s properties Cue integration

No. of M neurons 130
No. of N neurons 130
No. of P neurons 79
Average synaptic branches/neuron 4.67
Average nonzero branches/neuron 1.38
Average synapses/branch 1.46
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FIG. 6. �Color online� The results from cue integration neural network. Each box describes three experiments. The proprioception and vision provided
conflicting information about distance �x axis� and azimuth �y axis�. The information provided by proprioception and vision is indicated by the triangles, and
a line is plotted between them. The data about these points were given with noise, having 
 as described by conditions A–C from Table II. Black crosses in
each figure indicate the optimal Bayesian estimates for each condition. Where not visible, the test points overlap exactly with the optimal point. In all neural
experiments, the system managed to learn and then guess target locations very close to the Bayes optimal.

TABLE II. The relative standard deviations for each of the experimental
conditions.

Condition 
az,vision 
az,prop 
distance,vision 
distance,prop

A 1.0 2.0 2.0 1.0
B 1.0 1.5 1.5 1.0
C 1.0 1.75 1.25 1.0

037112-6 H. T. Siegelmann and L. E. Holzman Chaos 20, 037112 �2010�

Downloaded 04 Oct 2010 to 10.0.105.171. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



square errors for the distance were 0.066/0.0012, 0.0076/
0.0025, and 0.0089/0.0034, respectively. Note that the error
is significantly lower than the discretization of the variables,
reflecting that multinomials can efficiently represent com-
plex distributions. In fact, by observation, the majority of the
error comes from variations produced by model learning
over a relatively small number of examples. When the ob-
served points are distant from each other in a particular di-
mension, there is increased variation due to the rarity of the
noise model producing a point at that distance �despite the
nonzero probability of doing so�. In Fig. 6, the large amount
of conflict in the distance dimensions increases the variabil-
ity of the target estimate in that dimension.

VI. CONCLUSIONS

Much previous work within computational neuroscience
has dealt with the problem of inference, or hidden state esti-
mation, while in many cases prior assumptions are lacking,
necessitating a learning phase that updates the priors based
on data. We suggest that neural dynamics serves to perform
the inference step, while Hebbian synaptic plasticity imple-
ments learning. The former process is surmised to operate on
a fast time scale, as opposed to the latter process, which is
slower.

Our work supports the hypothesis that in brainlike archi-
tectures, Bayesian priors may exist to provide default values
of the probability distributions. The priors may be repre-
sented in a distributed fashion by the initial weights of the
synaptic regions and also in the initial value of the learning
rates. A large or fixed learning rate or a uniform distribution
will describe noninformative data, which requires reliance on
learning. A small learning rate or a highly peaked distribu-
tion will describe a genetic bias or expectation that is harder
to overcome. It is possible that the brain includes different
reliabilities in different areas for proper functioning.

Finally, we note that our approach deviates from the tra-
ditional one where learning is a mere emergent property of
the neural mechanism that is developed toward applying in-
ference. In the architecture introduced here, there are both
neurons that represent prior and conditional probabilities
�i.e., factors� in the traditional sense, but there are also neu-
rons that represent messages which are key to learning the
probabilities in a Bayesian fashion. This innovative view,
accompanied by a nontrivial neural network design, indicates
that perhaps to accomplish learning from evidence as is sup-
ported by experimental evidence, the simple architectures
proposed before are not sufficient, and neurons of different
specialties should exist to support optimal learning.
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