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Abstract.  We describe a data mining technique for the discovery of student behavior 
patterns while using a tutoring system. Student actions are logged during tutor 
sessions.  The actions are categorized, binned and symbolized.  The resulting symbols 
are arranged sequentially, and examined by a motif discovery algorithm to detect 
repetitive patterns, or motifs, that describe frequent tutor events.  These motifs are 
examined and categorized as student behaviors.  The categorized motifs can be used 
in real-time detection of student behaviors in the tutor system. 
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1 Introduction 

Tutoring systems have demonstrated effective learning in the classroom [11].  However, even 
the most effective tutoring system will fail if the student’s behavior is not receptive to the 
material being presented. For example, lack of motivation has been shown empirically to 
correlate with a decrease in learning rate [2]. In addition, students often use tutors 
ineffectively and adopt behavioral strategies that allow them to avoid learning, e.g., 
deliberately entering incorrect answers to elicit hints and, eventually, the correct answer from 
the tutor [2]. Although tutor instruction is beneficial, its effectiveness might be increased if 
maladaptive student behaviors could be identified [4].  
Intelligent tutoring systems can identify student behaviors that are likely to be unproductive in 
the long term. The potential to help students is much greater if their keystroke information is 
logged to provide teachers with real-time data on students’ performance, formative 
assessments, instead of summative assessments [8].  Recent research has utilized dynamic 
assessment of students’ performance to enhance the effectiveness of their tutor sessions [4].  
Previous methods for examining behavioral trends have focused on behaviors that are 
correlated to specific outcomes. One example is correlating engagement (e.g. fluctuations in 
attention, willingness to engage in effortful cognition, etc.) with successful and unsuccessful 
problem solving [3].  A potential drawback of this traditional approach is that behavior 
patterns during tutor usage can be masked in the overall data.   
The work presented here approaches the goal of understanding student use/misuse of tutoring 
systems in a different way.  Instead of correlating to specific outcomes, we data-mine patterns 
of student behavior that are frequent. Interesting frequent patterns over series of student data 
emerge.  This process is a variation of time-based motif discovery [7]. Continuous variables 
of student tutor progress are binned into discrete categories represented by "a, b, c …" These 
letters chronologically form a single string that represents one students actions over hours of 
tutor use.  Concatenating these strings we can create a single string representing of the work 
of hundreds of students in several schools over several work sessions.   Motif discovery is 
applied and the discovered patterns are examined and categorized qualitatively. The 
discovered patterns are a potential input for tutor interventions. 
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2 Relevant Literature 

Several models have been proposed to infer high-level student behavior, such as student 
motivation from behavioral measures. A latent response model [2] was learned to classify 
student actions as either gaming or not gaming the system. Two cases of gaming were 
identified: gaming with no impact on pretest-posttest gain and gaming with a negative impact 
on pretest-posttest gain. The latent response model features consisted of a student’s actions in 
the tutor, such as response time, and probabilistic information regarding a student’s latent 
skills. Beck [4] proposed a function relating response time to the probability of a correct 
response to model student disengagement in a reading tutor. He adapted the item 
characteristic curve from Item Response Theory (IRT) to include a student’s speed, 
proficiency, response time, and other problem-specific parameters. The learned model showed 
that disengagement negatively correlated with performance gain. These models embody 
different assumptions about the variables required to estimate student motivation (e.g. static 
versus dynamic models, complex versus simple features, user specified versus learned model 
parameters, generic versus domain specific models).  
A dynamic mixture model was proposed that used a student’s behavior to disambiguate 
between proficiency, modeled as a static, continuous variable and motivation, modeled as a 
dynamic, discrete variable [6]. These assumptions were based on a student’s tendency to 
exhibit different behavioral patterns over the course of a tutoring session. The model 
suggested four novel principles: the model should estimate both student motivation and 
proficiency, run in real time, be able to easily include other forms of unmotivated behavior, 
and motivation should be treated as a dynamic variable. Empirical evidence suggests that a 
student’s motivation level tends to ebb and flow in spurts [6]. 

Following the above literature, our method examines student interaction with the tutor during 
problem solving. However, rather than correlating behaviors with outcomes, we examine 
frequent behaviors to find meaning in the behaviors on their own. This involves four steps:  1) 
The raw tutor data is binned and categorized both by hand and statistically. This results in a 
string of symbols representing the tutor interactions of all students concatenated.  2) The 
discovery algorithm searches for reoccurring motifs representing student actions over 10 
problem intervals.  3) The discovered motifs are consolidated (combined) and categorized by 
hand, so that they describe high-level student behaviors.  4) These motifs are applied to the 
original student log and predict student behaviors during tutor usage.  In the future, these will 
be utilized within the tutor to predict real-time student behaviors and correlated to 
performance outcomes. 

3 Tutor description and method 

Wayang Outpost is an adaptive tutoring system that helps students learn to solve standardized-
test type of questions, in particular state-based exams taken at the end of high school in the 
USA. This multimedia tutoring system teaches students how to solve geometry, statistics and 
algebra problems of the type that commonly appear on standardized tests. To answer 
problems in the Wayang interface, students choose a solution from a list of multiple choice 
options. Students are provided immediate feedback when they click on an answer (a check for 
correct or a cross for incorrect). Students may click on a help button for hints, and 
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teachers/researchers encourage them to do so as many times as necessary, as hints are 
displayed in a progression from general suggestions to bottom-out solution.  

Despite efforts to emphasize the importance of going slowly through problems, students tend 
to “game” the system by using a variety of speeding strategies. Students either click through 
answers fast in order to get  the immediate reward of a correct answers (a green check); or 
they skip problems without making any attempts; or they click through hints to get to the 
“bottom-out” hint that reveals the correct choice. Decisions about content sequencing are 
based on a model of student effort, used to assess the degree of cognitive effort a student 
invests to develop a problem solution [1]. 

The data involved in this paper comes from 250 high school students from a variety of math 
classes in public high schools during Spring 2009. Students came to the computer lab to use 
Wayang Outpost during that spring semester for about a week, one-hour periods 
approximately, instead of their regular math class. Students went through various topics such 
as perimeter problems, area problems, angles, triangles, Pythagorean theorem, etc. The first 
day and the last day students took a mathematics pretest and posttest. For some students, the 
topics in Wayang were a review to their math class, to others it was a way to encounter new 
concepts (there is a short tutorial at the beginning of each topic) and for others it was a way to 
practice strategies for their upcoming standardized state-wide exams. 

4 Data binning and categorization  

During interaction with our tutoring system, each student’s actions are logged in a central 
database. We focus on the data collected during the course of a problem. We utilize four 
metrics: hints seen (hints), seconds to first attempt (secFirst), seconds between subsequent 
attempts (secOther), and incorrect attempts (numIncorrect).  These metrics are manually 
binned based on the meaning of the value. For example, there are two indicators for hints seen 
in our database. There is the count of hints, and there is an indicator that the last hint was 
seen. From this we have three bins. No hints seen, some hints seen, and last hint solved 
(because the last hint reveals the answer). 

Once the metrics are binned, each problem is represented as a four character problem string. 
For any given student, the tutor interaction can be summarized by the sequence ordered 
concatenation of problem strings that we will call a student string. The problem string 
construction and meaning is discussed in the following paragraphs. 

In motif discovery, data is sometimes binned into discrete categories to significantly reduce 
the data footprint in memory.   Our reasons for binning are to increase the clarity and meaning 
of the data; with our understanding of the tutor we categorize each metric so that the bins 
more clearly describe student behavior.  Each metric is categorized in three or five categories 
represented by a single character from 'a' through 'q', as follows: 

hints  (a, b, c) – Hints is a measure of the number of hints viewed for this problem.  
Although each problem has a maximum number of hints, the hint count does not have 
an upper bound because students can repeat hints and the count will increase at each 
repeated view.   The three categories for hints are: (a) no hints, meaning that the 
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student did not use the hint facility for that problem,  (b) meaning the student used the 
hint facility, but was not given the solution, and (c) last hint solved, meaning that the 
student was given the solution to the problem by the last hint.   As described above, 
this metric combines two values logged by the tutor: the count of hints seen, and an 
indicator that the final hint giving the answer was seen.  The data could have been 
simply binned low, medium, high hints; however, this would have missed the 
significance of zero hints and using hints to reveal the problem solution.  

secFirst (d, e, f) – The seconds to first attempt is an important measure as it is during 
this time that the student is reading the problem and formulating their response.    In 
previous research [6], five seconds was determined to be a threshold for this metric 
representing gaming: students who make a first attempt in less than five seconds are 
considered not working on-task.  We divide secFirst into three bins: (d) less than 5 sec,  
(e) 5 to 30 sec, (f) greater than 30 sec.  (d) represents students who are gaming the 
system, (e) represents a moderate time to the first attempt, (f) represents a long time to 
the first attempt. The cut at 30 seconds was chosen because it equalizes the distribution 
of bins (e and f), representing a division between a moderate and a long time to the 
first attempt. 

secOther (g, h, i, j, k) – This variable represents actions related to answering the 
problem after the first attempt was made. While the first attempt includes the problem 
reading and solution time, subsequent solution attempts could be much quicker and the 
student could still be making good effort. secOther is categorized in five bins: (g) skip, 
(h) solved on first, (i) 0 to 1.2 sec, (j) 1.2 to 2.9 sec, (k) greater than 2.9 sec. First, 
there are two categorical bins, skip and solve on first attempt. These are each 
determined from an indicator in the log data for that problem. Skipping a problem 
implies only that students never clicked on a correct answer; they could have worked 
on the problem and then given up, or immediately skipped to the next problem with 
only a quick look.  Solved  on first attempt indicates correctly solving the problem. If 
neither of the first two bins are indicated in the logs, then the secOther metric 
measures the mean time for all attempts after the first. The divisions of 1.2 sec and 2.9 
sec for the latter three bins were obtained using the mean and one standard deviation 
above the mean for all tutor usage; (i) less than 1.2 seconds would indicate guessing, 
(j) would indicate normal attempts, and (k) would indicate a long time between 
attempts. 

numIncorrect – (o, p, q) - Each problem has four or five possible answer choices, that 
we divide into three groups: (o)  zero incorrect attempts, indicates either solved on first 
attempt, skipped problem, or last hint solves problem (defined by the other metrics); 
(p) indicates choosing the correct answer in the second or third attempt, and (q)  
obtaining the answer by default in a four answer problem or possibly guessing when 
there is five answer problem. 

Some of the bins have dependencies that effect motif discovery and analysis.  For example, 
last hint solves (c) precludes solved on first (h) and skipped (g); solved on first (h) requires 
zero incorrect attempts (o).  In addition, by binning skip (g) in the secOther group, the timing 
of incorrect attempts is lost when the problem is skipped.  
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479 student strings representing 3762 total problems were constructed and concatenated into a 
15048 character input string for motif discovery.  The first 160 characters of the string (40 
words/problems, separated at problems for clarity) are: 

afkq bfho cekp bfho aeho cekq bfiq bfkq bfip aeho aeho aeip 
aeho aeip afip cekp aeho afip cfho aeho cfho bfkp bekp bekp 
aeho aekp beho bekp aeho cfho bfkq aekp ceho cfkp bfjp aeip 
bfkp aeho afip afho  

In the first problem, afkq indicates no hints used, greater than 30 seconds to first attempt,  
over 2.9 mean seconds in other attempts, and most or all choices were made to find the 
solution.  In the next problem, coded bfho, the student asks for one or two hints, greater than 
30 seconds to first attempt, then solves the problem on first attempt.  The sequence based 
motif discovery algorithm searches the input string in step two of the process. A detailed 
description follows.  

5 Word-skipping sequence-based motif discovery algorithm 

Our sequence-based motif discovery algorithm is a modification of the PROJECTION 
algorithm [10].  It is similar to the Chiu et al. [5] projection algorithm, except that our sliding 
window moves per word rather than per character. The PROJECTION algorithm is an 
efficient way to find planted strings in a long sequence of characters, and our modification to 
the algorithm allows us to apply it in a multivariate fashion where each character of the word 
represents a variable. In order to illustrate the algorithm, we first present an example, and then 
present a formal description of the algorithm. 

5.1 Example word skipping projection 

Take as input a string words, four characters each, with no separation.  Construct a matrix S as 
a 40 character sliding window that slides 4 characters (1 word) per row. The below 6 x 40 
character matrix (Figure 1a) represents the first 64 characters or 16 words. Randomly select 
10 columns in the S matrix as the projection highlighted below. Project the selected columns 
to a new matrix (Figure 1b). If there is a string match between any pair of rows, then add a 
collision to the collision matrix (Figure 1c). The highlighted rows (3 and 4) match and thus 
the 3rd row and the 4th column has a collision. 

5.2 Random projection multivariate motif discovery algorithm 

Function Name: wordMotif 

Inputs: word sequence (t), motif size in characters (n), word size (w), projection length (p), 
number of iterations (m), max character distance (d), number of motifs to find (c). 

Outputs: c motif lists with start index and strings of length n for each motif example. 
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Figure 1. Steps of word skipping projection. (a) the S matrix of 40 character substrings highlighted with a 
random projection (b) the projected matrix with 2 matching substrings (c) the resulting collision added to 

the collision matrix. 

wordMotif(t,n,w,p,m,d,c) 

1. Construct S matrix of size (t/w * n) by sliding an n sized window w characters at a 
time. 

2. Create collision matrix using project(S,p,m) 
3. Compare pair of examples (A,B) with highest collision value 
4. If (A,B) do not overlap and are within a hamming distance of d characters, then test 

them against other members of the S matrix, adding all members that are within 
hamming distance d to the motif set, and removing the collision values from the 
collision matrix. 

5. Repeat 3 and 4 until c motifs are found or the collision matrix is exhausted. 
6. Return the lists of up to c motifs 

project(S,p,m) 

1. let k be the number of rows in S 
2. construct an empty k x k collision matrix 
3. repeat m times 

a. make a k x p matrix based on a random mask of p columns of the S matrix 
b. add a collision for each pair whose string is equivalent. 

4. Return collision matrix 

The algorithm outputs a matrix of indices into the string, with a column for each discovered 
motif. For this study we found thirty motifs. The first two indices of the first 10 motifs are 
shown in Table 1. 

 

 

196



 

 

Table 1. The first 2 indices of the first 10 motifs. 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
2305 6789 8989 8993 9485 2301 18181 29469 29301 48953 
6533 7717 9101 9105 11525 18061 19557 49577 58825 67561 

  

Each value in the matrix is an index to the first character of the motif. We can index into the 
original data to determine the symbols in each of these motifs. The first instance of the motif 
(in row 1) is representative of the pattern, and the other instances (in row 2, etc.) will be 
identical or within 10 characters of both the first and the second instance.  Table 2 shows the 
first instance of the first ten motifs. 

Table 2. Ten of the motifs The index of the first character is followed by the 40 character motif with a 
separation each word to see problem characteristics. 

M1 2305 adgo adgo adgo adgo adgo adgo adgo adgo adgo adgo 
M2 6789 adgo adgo adgo adgo adgo adgo adgo adgo adgo adgo 
M3 8989 adiq adgo adgo adgo adgo adgo adgo adgo adgo adgo 
M4 8993 adgo adgo adgo adgo adgo adgo adgo adgo adgo adgo 
M5 9485 adgo adgo adgo adgo adgo adgo adgo adgo adgo adgo 
M6 2301 cdgo adgo adgo adgo adgo adgo adgo adgo adgo adgo 
M7 18181 adgo adgo adgo adgo adgo bdgo adgo adgo adgo adgo 
M8 29469 afho aeho aeho aeho aeho aeho aeho afho aeho aeho 
M9 29301 aeho aeho aeho aeho aeho aeho aeho afho afho aeho 
M10 48953 aeho afho afho afho aeho aeho aeho aeho afho aeho 

 

6 Discovered motifs 

In the third step, we examine and analyze the discovered motifs to determine the high level 
behavior that each motif discovered. We group motifs with similar behaviors. For this study 
we used the algorithm to detect thirty motifs.  Chiu et al. [5] suggest a need to eliminate 
degenerate motifs, which are motifs that have no informational content, such as a sequence of 
repeated characters. In the case of the tutor data, repeated words are not degenerate because 
they inform us that the student is repeating a particular behavior. Repetition of undesired 
behavior is an important feature to capture, so we do not remove such motifs as degenerate.  

In the 30 discovered motifs, there were a number of repeated motifs. This is because a number 
of motifs were essentially straight, i.e. repetitions of a motif word, so there are cases of motifs 
that have essentially the same structure; these would overlap with each other, so they are 
considered distinct patterns.  By grouping these exact match motifs, and also by comparing 
the different motifs by eye, we grouped the 30 motifs into 7 distinct meaning groups coded g, 
f, F, k, r, z, n: 

Game-like (g). adgo (10), adip (10), or adiq (10) – Student is not reading the problems and 
either skipping or making quick guesses. 
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Frustration (guess) (f). adiq (1) adgo (9) – Guessing to find solution, then skipping the next 9 
problems.  This could be an indication of frustration. 

Frustration (hints) (F). cdgo (1) adgo (9) – Using the hints to find solution, then skipping the 
next 9 problems.  This also could indicate frustration, and was grouped together with the 
previous motif.   

Not challenged (k). a[ef]ho (10) – Solving the problem on first attempt, not using hints, not 
guessing.  This student is using the tutor appropriately, but not being challenged. 

Too difficult (r). ceho (10) - student is taking time to read the problem, then using hints to 
find the answer.  These students could be working but the material is too difficult for them to 
solve the problem themselves. 

Skipping (z). adgo (5) aeho (5)  – Student skips 5 problems, then solves 5 normally on first 
attempt.  Taking time to read all problems, then answering or skipping depending on whether 
the answer is known.  

On-task(n) aeiq  aeho  aeho  aekp  aeho  aeiq  aeho  aeip  aeho  aeip - This is the most 
complex motif found and seems to indicate “on task learning” tutor usage; the student is 
always reading the problem and making a good first attempt, with a mixture of solving on first 
attempt (aeho), solving after some attempts (aekp, aeip) and guessing (aeiq).  The student is 
not using the hints nor skipping. 

With these groups coded as a single character, we can look a the progress of one student by 
converting the string of words to a string of motif groups for quicker interpretation.  For 
example, in the too difficult (r) grouping, these problems show the student is taking 5 to 30 
seconds before taking any action.  However, if the student initially chose the wrong answer, 
subsequent attempts were quick guesses or gaming hints.  In contrast, in the game-like (g) 
grouping the student was not reading the problem, simply skipping, or making quick guesses.  
In the frustration (guess) (f) grouping the student was skipping after an attempt.  This could 
just be an indication of skipping problems, or possibly the error in the first attempt triggering 
a frustration response to skip the next 9 problems. And the on-task(n) grouping appears to be 
a mixture of responses for on task tutor use. 

7 Evaluating student interaction 

The final step in the process is to apply the 7 meaning groups to individual students. To do 
this we can convert each student string into a student motif string. This is done by scanning 
the student string and replacing each problem string with a dash (-) until a motif is detected; at 
this point, the problem string is replaced with the meaning group code associated with the 
motif. The meaning group code is only placed at the final problem of each motif (the last four 
characters). The conversion is shown below for two students. 

Using the meaning group code, we generated the student number followed by patterns for 
each student representing their tutor interaction. We examine two students below: 
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4362,"---------k-kkkkkk---k-------k-kkkkk-----------------------kkkk-kkkkkkkk------------kkkkkk-kkkk-k----k---kk---------" 

4363,"--------------g------------k---------g-----------------------g-------------rrrrrr----rr------g-----" 

For student 4362 the not challenged (k) motif indicates solving of problems on the first 
attempt without using hints.  (The (-) patterns are those which did not match any motif.)  The 
behavior is a lagging indicator, representing the current and previous 9 problem.   

Student 4363 started by gaming the tutor, game-like (g) either skipping or guessing quickly to 
find answers.  This is followed by not challenged (k), a string problems solved on first 
attempt followed by more tutor gaming.  The too difficult (r) string of r’s are where the 
student began using the hint facility but in a manner to find answers. After about 20 of these 
too difficult problems he/she returned to skipping or guessing.   

This conversion process illustrates how our discovered motifs can be used in a real-time 
application. A tutor can detect these patterns and respond based on the meaning group in order 
to have a more personalized interaction with the student.  With student 4362 a tutor could 
increase problem difficulty.  For student 4363, a tutor could intervene at problem 15 where 
gaming was detected, perhaps by introducing the hint system, or directing the student to a 
teaching video.  

8 Discussion and future work 

This paper describes a novel method for determining student behavior without linking the 
behavior to performance outcomes. We have shown a case study where a number of 
meaningful behaviors were discovered using a combination of hand chosen features and 
automatic pattern discovery. The features that have been found can be used to detect student 
behaviors so that the tutor can react in real time. However, these outcome of our study needs 
to be verified in future work. A number of future directions are discussed below. 

We will validate that the discovered motifs accurately represent student behavior by 
implementing them in the tutor. Upon motif detection, the corresponding meaning group will 
be verified by a person in real time. The student or a teacher observer will verify the meaning 
group by responding to a query during the tutoring session, e.g.. “Are you skipping problems 
because...” These responses will be compared with the predicted behaviors for validation. 

We will study automatic data categorization as modifications to our process. The data binning 
is the most user intensive part of this process. Finding methods to automate it would allow for 
broader use of these methods. 

We will compare a number of different motif window sizes in order to understand the time 
scale of problem behavior patterns. The value used in this paper, ten problems, is sufficient to 
describe behavior, and it yielded a manageable number of informative motifs. However, other 
window levels may yield motifs of different quality and quantity. 
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