

Identifying High-Level Student Behavior Using
Sequence-based Motif Discovery

David H. Shanabrook1, David G. Cooper2, Beverly Park Woolf2, and Ivon Arroyo2

dhshanab@acad.umass.edu

1Department of Education, University of Massachusetts, Amherst
2

Abstract. We describe a data mining technique for the discovery of student behavior
patterns while using a tutoring system. Student actions are logged during tutor
sessions. The actions are categorized, binned and symbolized. The resulting symbols
are arranged sequentially, and examined by a motif discovery algorithm to detect
repetitive patterns, or motifs, that describe frequent tutor events. These motifs are
examined and categorized as student behaviors. The categorized motifs can be used
in real-time detection of student behaviors in the tutor system.

Computer Science Department, University of Massachusetts, Amherst

1 Introduction

Tutoring systems have demonstrated effective learning in the classroom [11]. However, even
the most effective tutoring system will fail if the student’s behavior is not receptive to the
material being presented. For example, lack of motivation has been shown empirically to
correlate with a decrease in learning rate [2]. In addition, students often use tutors
ineffectively and adopt behavioral strategies that allow them to avoid learning, e.g.,
deliberately entering incorrect answers to elicit hints and, eventually, the correct answer from
the tutor [2]. Although tutor instruction is beneficial, its effectiveness might be increased if
maladaptive student behaviors could be identified [4].
Intelligent tutoring systems can identify student behaviors that are likely to be unproductive in
the long term. The potential to help students is much greater if their keystroke information is
logged to provide teachers with real-time data on students’ performance, formative
assessments, instead of summative assessments [8]. Recent research has utilized dynamic
assessment of students’ performance to enhance the effectiveness of their tutor sessions [4].
Previous methods for examining behavioral trends have focused on behaviors that are
correlated to specific outcomes. One example is correlating engagement (e.g. fluctuations in
attention, willingness to engage in effortful cognition, etc.) with successful and unsuccessful
problem solving [3]. A potential drawback of this traditional approach is that behavior
patterns during tutor usage can be masked in the overall data.
The work presented here approaches the goal of understanding student use/misuse of tutoring
systems in a different way. Instead of correlating to specific outcomes, we data-mine patterns
of student behavior that are frequent. Interesting frequent patterns over series of student data
emerge. This process is a variation of time-based motif discovery [7]. Continuous variables
of student tutor progress are binned into discrete categories represented by "a, b, c …" These
letters chronologically form a single string that represents one students actions over hours of
tutor use. Concatenating these strings we can create a single string representing of the work
of hundreds of students in several schools over several work sessions. Motif discovery is
applied and the discovered patterns are examined and categorized qualitatively. The
discovered patterns are a potential input for tutor interventions.

191

2 Relevant Literature

Several models have been proposed to infer high-level student behavior, such as student
motivation from behavioral measures. A latent response model [2] was learned to classify
student actions as either gaming or not gaming the system. Two cases of gaming were
identified: gaming with no impact on pretest-posttest gain and gaming with a negative impact
on pretest-posttest gain. The latent response model features consisted of a student’s actions in
the tutor, such as response time, and probabilistic information regarding a student’s latent
skills. Beck [4] proposed a function relating response time to the probability of a correct
response to model student disengagement in a reading tutor. He adapted the item
characteristic curve from Item Response Theory (IRT) to include a student’s speed,
proficiency, response time, and other problem-specific parameters. The learned model showed
that disengagement negatively correlated with performance gain. These models embody
different assumptions about the variables required to estimate student motivation (e.g. static
versus dynamic models, complex versus simple features, user specified versus learned model
parameters, generic versus domain specific models).
A dynamic mixture model was proposed that used a student’s behavior to disambiguate
between proficiency, modeled as a static, continuous variable and motivation, modeled as a
dynamic, discrete variable [6]. These assumptions were based on a student’s tendency to
exhibit different behavioral patterns over the course of a tutoring session. The model
suggested four novel principles: the model should estimate both student motivation and
proficiency, run in real time, be able to easily include other forms of unmotivated behavior,
and motivation should be treated as a dynamic variable. Empirical evidence suggests that a
student’s motivation level tends to ebb and flow in spurts [6].

Following the above literature, our method examines student interaction with the tutor during
problem solving. However, rather than correlating behaviors with outcomes, we examine
frequent behaviors to find meaning in the behaviors on their own. This involves four steps: 1)
The raw tutor data is binned and categorized both by hand and statistically. This results in a
string of symbols representing the tutor interactions of all students concatenated. 2) The
discovery algorithm searches for reoccurring motifs representing student actions over 10
problem intervals. 3) The discovered motifs are consolidated (combined) and categorized by
hand, so that they describe high-level student behaviors. 4) These motifs are applied to the
original student log and predict student behaviors during tutor usage. In the future, these will
be utilized within the tutor to predict real-time student behaviors and correlated to
performance outcomes.

3 Tutor description and method

Wayang Outpost is an adaptive tutoring system that helps students learn to solve standardized-
test type of questions, in particular state-based exams taken at the end of high school in the
USA. This multimedia tutoring system teaches students how to solve geometry, statistics and
algebra problems of the type that commonly appear on standardized tests. To answer
problems in the Wayang interface, students choose a solution from a list of multiple choice
options. Students are provided immediate feedback when they click on an answer (a check for
correct or a cross for incorrect). Students may click on a help button for hints, and

192

teachers/researchers encourage them to do so as many times as necessary, as hints are
displayed in a progression from general suggestions to bottom-out solution.

Despite efforts to emphasize the importance of going slowly through problems, students tend
to “game” the system by using a variety of speeding strategies. Students either click through
answers fast in order to get the immediate reward of a correct answers (a green check); or
they skip problems without making any attempts; or they click through hints to get to the
“bottom-out” hint that reveals the correct choice. Decisions about content sequencing are
based on a model of student effort, used to assess the degree of cognitive effort a student
invests to develop a problem solution [1].

The data involved in this paper comes from 250 high school students from a variety of math
classes in public high schools during Spring 2009. Students came to the computer lab to use
Wayang Outpost during that spring semester for about a week, one-hour periods
approximately, instead of their regular math class. Students went through various topics such
as perimeter problems, area problems, angles, triangles, Pythagorean theorem, etc. The first
day and the last day students took a mathematics pretest and posttest. For some students, the
topics in Wayang were a review to their math class, to others it was a way to encounter new
concepts (there is a short tutorial at the beginning of each topic) and for others it was a way to
practice strategies for their upcoming standardized state-wide exams.

4 Data binning and categorization

During interaction with our tutoring system, each student’s actions are logged in a central
database. We focus on the data collected during the course of a problem. We utilize four
metrics: hints seen (hints), seconds to first attempt (secFirst), seconds between subsequent
attempts (secOther), and incorrect attempts (numIncorrect). These metrics are manually
binned based on the meaning of the value. For example, there are two indicators for hints seen
in our database. There is the count of hints, and there is an indicator that the last hint was
seen. From this we have three bins. No hints seen, some hints seen, and last hint solved
(because the last hint reveals the answer).

Once the metrics are binned, each problem is represented as a four character problem string.
For any given student, the tutor interaction can be summarized by the sequence ordered
concatenation of problem strings that we will call a student string. The problem string
construction and meaning is discussed in the following paragraphs.

In motif discovery, data is sometimes binned into discrete categories to significantly reduce
the data footprint in memory. Our reasons for binning are to increase the clarity and meaning
of the data; with our understanding of the tutor we categorize each metric so that the bins
more clearly describe student behavior. Each metric is categorized in three or five categories
represented by a single character from 'a' through 'q', as follows:

hints (a, b, c) – Hints is a measure of the number of hints viewed for this problem.
Although each problem has a maximum number of hints, the hint count does not have
an upper bound because students can repeat hints and the count will increase at each
repeated view. The three categories for hints are: (a) no hints, meaning that the

193

student did not use the hint facility for that problem, (b) meaning the student used the
hint facility, but was not given the solution, and (c) last hint solved, meaning that the
student was given the solution to the problem by the last hint. As described above,
this metric combines two values logged by the tutor: the count of hints seen, and an
indicator that the final hint giving the answer was seen. The data could have been
simply binned low, medium, high hints; however, this would have missed the
significance of zero hints and using hints to reveal the problem solution.

secFirst (d, e, f) – The seconds to first attempt is an important measure as it is during
this time that the student is reading the problem and formulating their response. In
previous research [6], five seconds was determined to be a threshold for this metric
representing gaming: students who make a first attempt in less than five seconds are
considered not working on-task. We divide secFirst into three bins: (d) less than 5 sec,
(e) 5 to 30 sec, (f) greater than 30 sec. (d) represents students who are gaming the
system, (e) represents a moderate time to the first attempt, (f) represents a long time to
the first attempt. The cut at 30 seconds was chosen because it equalizes the distribution
of bins (e and f), representing a division between a moderate and a long time to the
first attempt.

secOther (g, h, i, j, k) – This variable represents actions related to answering the
problem after the first attempt was made. While the first attempt includes the problem
reading and solution time, subsequent solution attempts could be much quicker and the
student could still be making good effort. secOther is categorized in five bins: (g) skip,
(h) solved on first, (i) 0 to 1.2 sec, (j) 1.2 to 2.9 sec, (k) greater than 2.9 sec. First,
there are two categorical bins, skip and solve on first attempt. These are each
determined from an indicator in the log data for that problem. Skipping a problem
implies only that students never clicked on a correct answer; they could have worked
on the problem and then given up, or immediately skipped to the next problem with
only a quick look. Solved on first attempt indicates correctly solving the problem. If
neither of the first two bins are indicated in the logs, then the secOther metric
measures the mean time for all attempts after the first. The divisions of 1.2 sec and 2.9
sec for the latter three bins were obtained using the mean and one standard deviation
above the mean for all tutor usage; (i) less than 1.2 seconds would indicate guessing,
(j) would indicate normal attempts, and (k) would indicate a long time between
attempts.

numIncorrect – (o, p, q) - Each problem has four or five possible answer choices, that
we divide into three groups: (o) zero incorrect attempts, indicates either solved on first
attempt, skipped problem, or last hint solves problem (defined by the other metrics);
(p) indicates choosing the correct answer in the second or third attempt, and (q)
obtaining the answer by default in a four answer problem or possibly guessing when
there is five answer problem.

Some of the bins have dependencies that effect motif discovery and analysis. For example,
last hint solves (c) precludes solved on first (h) and skipped (g); solved on first (h) requires
zero incorrect attempts (o). In addition, by binning skip (g) in the secOther group, the timing
of incorrect attempts is lost when the problem is skipped.

194

479 student strings representing 3762 total problems were constructed and concatenated into a
15048 character input string for motif discovery. The first 160 characters of the string (40
words/problems, separated at problems for clarity) are:

afkq bfho cekp bfho aeho cekq bfiq bfkq bfip aeho aeho aeip
aeho aeip afip cekp aeho afip cfho aeho cfho bfkp bekp bekp
aeho aekp beho bekp aeho cfho bfkq aekp ceho cfkp bfjp aeip
bfkp aeho afip afho

In the first problem, afkq indicates no hints used, greater than 30 seconds to first attempt,
over 2.9 mean seconds in other attempts, and most or all choices were made to find the
solution. In the next problem, coded bfho, the student asks for one or two hints, greater than
30 seconds to first attempt, then solves the problem on first attempt. The sequence based
motif discovery algorithm searches the input string in step two of the process. A detailed
description follows.

5 Word-skipping sequence-based motif discovery algorithm

Our sequence-based motif discovery algorithm is a modification of the PROJECTION
algorithm [10]. It is similar to the Chiu et al. [5] projection algorithm, except that our sliding
window moves per word rather than per character. The PROJECTION algorithm is an
efficient way to find planted strings in a long sequence of characters, and our modification to
the algorithm allows us to apply it in a multivariate fashion where each character of the word
represents a variable. In order to illustrate the algorithm, we first present an example, and then
present a formal description of the algorithm.

5.1 Example word skipping projection

Take as input a string words, four characters each, with no separation. Construct a matrix S as
a 40 character sliding window that slides 4 characters (1 word) per row. The below 6 x 40
character matrix (Figure 1a) represents the first 64 characters or 16 words. Randomly select
10 columns in the S matrix as the projection highlighted below. Project the selected columns
to a new matrix (Figure 1b). If there is a string match between any pair of rows, then add a
collision to the collision matrix (Figure 1c). The highlighted rows (3 and 4) match and thus
the 3rd row and the 4th column has a collision.

5.2 Random projection multivariate motif discovery algorithm

Function Name: wordMotif

Inputs: word sequence (t), motif size in characters (n), word size (w), projection length (p),
number of iterations (m), max character distance (d), number of motifs to find (c).

Outputs: c motif lists with start index and strings of length n for each motif example.

195

Figure 1. Steps of word skipping projection. (a) the S matrix of 40 character substrings highlighted with a
random projection (b) the projected matrix with 2 matching substrings (c) the resulting collision added to

the collision matrix.

wordMotif(t,n,w,p,m,d,c)

1. Construct S matrix of size (t/w * n) by sliding an n sized window w characters at a
time.

2. Create collision matrix using project(S,p,m)
3. Compare pair of examples (A,B) with highest collision value
4. If (A,B) do not overlap and are within a hamming distance of d characters, then test

them against other members of the S matrix, adding all members that are within
hamming distance d to the motif set, and removing the collision values from the
collision matrix.

5. Repeat 3 and 4 until c motifs are found or the collision matrix is exhausted.
6. Return the lists of up to c motifs

project(S,p,m)

1. let k be the number of rows in S
2. construct an empty k x k collision matrix
3. repeat m times

a. make a k x p matrix based on a random mask of p columns of the S matrix
b. add a collision for each pair whose string is equivalent.

4. Return collision matrix

The algorithm outputs a matrix of indices into the string, with a column for each discovered
motif. For this study we found thirty motifs. The first two indices of the first 10 motifs are
shown in Table 1.

196

Table 1. The first 2 indices of the first 10 motifs.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
2305 6789 8989 8993 9485 2301 18181 29469 29301 48953
6533 7717 9101 9105 11525 18061 19557 49577 58825 67561

Each value in the matrix is an index to the first character of the motif. We can index into the
original data to determine the symbols in each of these motifs. The first instance of the motif
(in row 1) is representative of the pattern, and the other instances (in row 2, etc.) will be
identical or within 10 characters of both the first and the second instance. Table 2 shows the
first instance of the first ten motifs.

Table 2. Ten of the motifs The index of the first character is followed by the 40 character motif with a
separation each word to see problem characteristics.

M1 2305 adgo adgo adgo adgo adgo adgo adgo adgo adgo adgo
M2 6789 adgo adgo adgo adgo adgo adgo adgo adgo adgo adgo
M3 8989 adiq adgo adgo adgo adgo adgo adgo adgo adgo adgo
M4 8993 adgo adgo adgo adgo adgo adgo adgo adgo adgo adgo
M5 9485 adgo adgo adgo adgo adgo adgo adgo adgo adgo adgo
M6 2301 cdgo adgo adgo adgo adgo adgo adgo adgo adgo adgo
M7 18181 adgo adgo adgo adgo adgo bdgo adgo adgo adgo adgo
M8 29469 afho aeho aeho aeho aeho aeho aeho afho aeho aeho
M9 29301 aeho aeho aeho aeho aeho aeho aeho afho afho aeho
M10 48953 aeho afho afho afho aeho aeho aeho aeho afho aeho

6 Discovered motifs

In the third step, we examine and analyze the discovered motifs to determine the high level
behavior that each motif discovered. We group motifs with similar behaviors. For this study
we used the algorithm to detect thirty motifs. Chiu et al. [5] suggest a need to eliminate
degenerate motifs, which are motifs that have no informational content, such as a sequence of
repeated characters. In the case of the tutor data, repeated words are not degenerate because
they inform us that the student is repeating a particular behavior. Repetition of undesired
behavior is an important feature to capture, so we do not remove such motifs as degenerate.

In the 30 discovered motifs, there were a number of repeated motifs. This is because a number
of motifs were essentially straight, i.e. repetitions of a motif word, so there are cases of motifs
that have essentially the same structure; these would overlap with each other, so they are
considered distinct patterns. By grouping these exact match motifs, and also by comparing
the different motifs by eye, we grouped the 30 motifs into 7 distinct meaning groups coded g,
f, F, k, r, z, n:

Game-like (g). adgo (10), adip (10), or adiq (10) – Student is not reading the problems and
either skipping or making quick guesses.

197

Frustration (guess) (f). adiq (1) adgo (9) – Guessing to find solution, then skipping the next 9
problems. This could be an indication of frustration.

Frustration (hints) (F). cdgo (1) adgo (9) – Using the hints to find solution, then skipping the
next 9 problems. This also could indicate frustration, and was grouped together with the
previous motif.

Not challenged (k). a[ef]ho (10) – Solving the problem on first attempt, not using hints, not
guessing. This student is using the tutor appropriately, but not being challenged.

Too difficult (r). ceho (10) - student is taking time to read the problem, then using hints to
find the answer. These students could be working but the material is too difficult for them to
solve the problem themselves.

Skipping (z). adgo (5) aeho (5) – Student skips 5 problems, then solves 5 normally on first
attempt. Taking time to read all problems, then answering or skipping depending on whether
the answer is known.

On-task(n) aeiq aeho aeho aekp aeho aeiq aeho aeip aeho aeip - This is the most
complex motif found and seems to indicate “on task learning” tutor usage; the student is
always reading the problem and making a good first attempt, with a mixture of solving on first
attempt (aeho), solving after some attempts (aekp, aeip) and guessing (aeiq). The student is
not using the hints nor skipping.

With these groups coded as a single character, we can look a the progress of one student by
converting the string of words to a string of motif groups for quicker interpretation. For
example, in the too difficult (r) grouping, these problems show the student is taking 5 to 30
seconds before taking any action. However, if the student initially chose the wrong answer,
subsequent attempts were quick guesses or gaming hints. In contrast, in the game-like (g)
grouping the student was not reading the problem, simply skipping, or making quick guesses.
In the frustration (guess) (f) grouping the student was skipping after an attempt. This could
just be an indication of skipping problems, or possibly the error in the first attempt triggering
a frustration response to skip the next 9 problems. And the on-task(n) grouping appears to be
a mixture of responses for on task tutor use.

7 Evaluating student interaction

The final step in the process is to apply the 7 meaning groups to individual students. To do
this we can convert each student string into a student motif string. This is done by scanning
the student string and replacing each problem string with a dash (-) until a motif is detected; at
this point, the problem string is replaced with the meaning group code associated with the
motif. The meaning group code is only placed at the final problem of each motif (the last four
characters). The conversion is shown below for two students.

Using the meaning group code, we generated the student number followed by patterns for
each student representing their tutor interaction. We examine two students below:

198

4362,"---------k-kkkkkk---k-------k-kkkkk-----------------------kkkk-kkkkkkkk------------kkkkkk-kkkk-k----k---kk---------"

4363,"--------------g------------k---------g-----------------------g-------------rrrrrr----rr------g-----"

For student 4362 the not challenged (k) motif indicates solving of problems on the first
attempt without using hints. (The (-) patterns are those which did not match any motif.) The
behavior is a lagging indicator, representing the current and previous 9 problem.

Student 4363 started by gaming the tutor, game-like (g) either skipping or guessing quickly to
find answers. This is followed by not challenged (k), a string problems solved on first
attempt followed by more tutor gaming. The too difficult (r) string of r’s are where the
student began using the hint facility but in a manner to find answers. After about 20 of these
too difficult problems he/she returned to skipping or guessing.

This conversion process illustrates how our discovered motifs can be used in a real-time
application. A tutor can detect these patterns and respond based on the meaning group in order
to have a more personalized interaction with the student. With student 4362 a tutor could
increase problem difficulty. For student 4363, a tutor could intervene at problem 15 where
gaming was detected, perhaps by introducing the hint system, or directing the student to a
teaching video.

8 Discussion and future work

This paper describes a novel method for determining student behavior without linking the
behavior to performance outcomes. We have shown a case study where a number of
meaningful behaviors were discovered using a combination of hand chosen features and
automatic pattern discovery. The features that have been found can be used to detect student
behaviors so that the tutor can react in real time. However, these outcome of our study needs
to be verified in future work. A number of future directions are discussed below.

We will validate that the discovered motifs accurately represent student behavior by
implementing them in the tutor. Upon motif detection, the corresponding meaning group will
be verified by a person in real time. The student or a teacher observer will verify the meaning
group by responding to a query during the tutoring session, e.g.. “Are you skipping problems
because...” These responses will be compared with the predicted behaviors for validation.

We will study automatic data categorization as modifications to our process. The data binning
is the most user intensive part of this process. Finding methods to automate it would allow for
broader use of these methods.

We will compare a number of different motif window sizes in order to understand the time
scale of problem behavior patterns. The value used in this paper, ten problems, is sufficient to
describe behavior, and it yielded a manageable number of informative motifs. However, other
window levels may yield motifs of different quality and quantity.

199

References

[1] Arroyo, I., Mehranian, H., Woolf, B.P.: Effort-based Tutoring: An empirical approach to
Intelligent Tutoring. EDM 2010, this volume.

[2] Baker, R.S., Corbett, A.T., Koedinger, K.R., Roll, I. Detecting when students game the
system, across tutor subjects and classroom cohorts. In Ardissono, L., Brna, P., Mitrovic, A.
(Eds.) UM 2005. LNCS (LNAI), 2005. 3538, p. 220–224. Heidelberg: Springer.

[3] Beal, C. R., Cohen, P.R. Temporal Data Mining for Educational Applications. In Ho, T.-B.
& Zhou, Z.-H. (Eds.) Trends in Artificial Intelligence: 10th

[4] Beck, J. Engagement tracing: Using response times to model student disengagement. In
Looi, C., McCalla, G., Bredeweg, B., Breuker, J. (Eds.) Artificial Intelligence in Education:
Supporting Learning through Intelligent and Socially Informed Technology, 2005. p. 88–95.
Amsterdam: IOS Press.

 Pacific Rim International
Conference on Artificial Intelligence, PRICAI 2008, LNAI, 2008. p. 66–77. Springer

[5] Chui B., Keogh E., Lonardi S. Probabilistic discovery of time series motifs. Proceedings
of Knowledge Discovery in Data, 2003. p. 493–498.

[6] Johns, J., Woolf, B.P. A Dynamic Mixture Model to Detect Student Motivation and
Proficiency, Proceedings of the National Conference on Artificial Intelligence,2006. p. 163.

[7] Lin, J., Keogh, E., Lonardi, S., Patel, P. Finding motifs in time series. Proceedings of the
2nd Workshop on Temporal Data Mining, 2002. p. 53-68.

[8] Stevens, R., Johnson, D., Soller, A. Probabilities and prediction: Modeling the
development of scientific problem solving skills. Life Sciences Education, 2005, 4(1), p. 42–
57.

[9] Stevens, R., Soller, A. ,Cooper, M.,Sprang, M. Modeling the Development of Problem-
Solving Skills in Chemistry with a Web-Based Turtor, 7th International Conference on
Intelligent Tutoring Systems , 2004. p. 580-591.

[10] Tompa, M., Buhler, J.. Finding motifs using random projections. Proceedings of the 5th
Int’l Conference on Computational Molecular Biology. 2001. p 67-74.

[11] VanLehn, K., Lynch, C., Schulze, K., Shapiro, J., Shelby, R., Taylor, L., Treacy, D.,
Weinstein, A., Wintersgill, M. The Andes Physics Tutoring System: Lessons Learned.
International Journal of Artificial Intelligence in Education ,2005,15(3), p. 147–204.

200

	5.1 Example word skipping projection
	5.2 Random projection multivariate motif discovery algorithm

