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Abstract. Recent progress has been made by using sensors with Intel-
ligent Tutoring Systems in classrooms in order to predict the affective
state of students users. If tutors are able to interpret sensor data with
new students based on past experience, rather than having to be individ-
ually trained, then this will enable tutor developers to evaluate various
methods of adapting to each student’s affective state using consistent pre-
dictions. In the past, our classifiers have predicted student emotions with
an accuracy between 78% and 87%. However, it is still unclear which sen-
sors are best, and the educational technology community needs to know
this to develop better than baseline classifiers, e.g. ones that use only
frequency of emotional occurrence to predict affective state. This paper
suggests a method to clarify classifier ranking for the purpose of affec-
tive models. The method begins with a careful collection of a training
and testing set, each from a separate population, and concludes with a
non-parametric ranking of the trained classifiers on the testing set. We
illustrate this method with classifiers trained on data collected in the Fall
of 2008 and tested on data collected in the Spring of 2009. Our results
show that the classifiers for some affective states are significantly bet-
ter than the baseline model; a validation analysis showed that some but
not all classifier rankings generalize to new settings. Overall, our analy-
sis suggests that though there is some benefit gained from simple linear
classifiers, more advanced methods or better features may be needed for
better classification performance.

1 Introduction

Student affect plays a key role in determining learning outcomes from instruc-
tional situations [1, 2]. For instance, learning is enhanced when empathy or
support is present [3, 4]. While human tutors naturally recognize and respond
to affect [5, 6], doing so is quite challenging for Intelligent Tutoring Systems
(ITS), in part due to the lack of directly-observable information on a student’s
affect. A promising avenue for increasing model bandwidth, i.e., the quality and
degree of information available to a student model, in terms of affect recognition
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is sensing devices that capture information on students’ physiological responses
as they interact with adaptive systems. With the advent of inexpensive sensor
technology, we have been able to deploy such sensing systems and use their out-
put to infer information on student affect. Specifically, in the Fall of 2008 we
performed a number of experiments in the classrooms of schools in both West-
ern Massachusetts and Arizona, with a total of just under 100 students. In each
experiment, students were queried about four emotional states (confident, inter-
ested, frustrated, and excited), providing the standard for validating our models.
The study data was used to construct a number of linear classifiers for each
emotional state, as we reported in [7]. The best classifiers for a given emotion
obtained accuracies between 78% and 87% according to a leave-one-student-out
cross-validation.

While these results are promising, it is important to validate the classifiers
and verify that their performance generalizes to a new and/or larger population.
This is particularly the case for our data, obtained from a classroom setting
which involves a higher degree of noise and other distractions than standard
controlled laboratory experiments. One aspect of validation involves verifying
that our classifiers perform better than the baseline classifier (i.e., one that
always outputs yes if the labels are yes most of the time, or no if the labels are
no most of the time). In addition to validating our classifier performance, we also
wanted to investigate if and how the sensors (or subsets of sensors) improved
model performance over using only features from the tutor data (e.g. the number
of hints requested). With an understanding of how each combination of sensor
and tutor features predicts a given emotion, we can recommend which sensors
to use for emotion recognition, and we can also rank the classifiers so that if
some sensor data is unavailable, for instance due to an error, a comparable (or
the next best) sensor set can be selected.

Thus, in this paper, we report on how we realized these objectives by utilizing
a large data set for validation from experiments that we conducted in the Spring
of 2009 with over 500 students. Our results show that our method is successful
on three of our four target emotions: for each success, at least one linear classifier
performs better than the baseline classifier and generalizes to a new and larger
population.

We begin by presenting the related work in Sect. 2, and then describing in
Sect. 3 the setup and apparatus of the experiments used to collect the data.
Section 4 outlines the method for constructing and validating the student emo-
tion classifiers. Section 5 describes the comparison of classifiers. Section 6 sum-
marizes the results, discusses the design of affective interventions based on the
classifier output, and suggests future work on improving the classifiers.

2 Related Work

The results of a feature selection competition in 2004 suggest that feature selection
can be very useful for improving classifiers [8]. In addition to using simple correla-
tion coefficients as criteria for selection (as stepwise linear regression does), treed
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methods, wrapper and embedded methods have been used for feature selection.
[9] compares features of a number of individual sensors used for detecting affective
state with an ITS, but does not compare disparate sensors, nor are multiple sen-
sors used in conjunction in a classifier. In this paper we use a method from [10] to
compare and rank the different feature sets used in the linear classifiers as a way
of ranking our features selected by stepwise linear regression.

There are a number of adaptive systems in existence that use real-time in-
formation about a student in order to address the student’s affective state. Re-
cent work includes [11], which discusses the use of electromyogram (EMG) data
to improve an affective model in an educational game. This work does careful
collection, cross-validation, and uses a pairwise t-test (a parametric test) for
ranking the classifiers. [12] aimed to predict learners’ affective states (boredom,
flow/engagement, confusion, and frustration) by monitoring variations in the
cohesiveness of tutorial dialogues during interactions with an ITS with conver-
sational dialogs; here, both student self reports and independent judges were
used to identify emotional states. The study compared the correlation between
self-reports and independent judges, and used tutor and dialogue features auto-
matically classify emotion with accuracies between 68% and 78%.

Other work, such as [13, 14], does not incorporate any sensor data to construct
affective models. [13] uses Dynamic Bayesian Networks and Dynamic Decision
Models specified by an expert to determine and respond to each student’s af-
fective state, while [14] uses self-reports to determine affective state and focuses
on how affective feedback changes the student’s experience. This work does use
cross-validation and a parametric ranking for classifiers, but does not do a feature
comparison or a validation with a separate population.

Much of this past research has focused on constructing models based on a
fixed set of sensors or solely on expert knowledge. In contrast, our research
compares the utility of different sensors as well as sensor and tutor interaction
features in a variety of empirically-based models. Another difference relates to
the source of the data: Since our data is obtained from actual schools rather
than the laboratory, the ecological validity of our results is strengthened. Our
features are ranked using non-parametric procedures and take an extra step of
validating on a separate population in order to address the additional artifacts
created by a classroom setting.

3 Data Collection: Sensors with Wayang Outpost in the
Classroom

3.1 Setup

In the Fall of 2008 and the Spring of 2009 the geometry tutor Wayang Outpost
was deployed with a set of sensors into real classroom environments [7, 15, 16].
The set of sensors included: a mouse that captured degree of pressure placed
on its various points, a bracelet that measured skin conductance of the wrist, a
chair that sensed the level of pressure on the chair back and seat, and a camera
supplemented with software for facial emotion recognition.
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These four sensors collected data on students’ physiological responses while
students worked with Wayang Outpost. Each student’s physiological data and
interactions with the tutor were logged. Subsequently, the interaction and sensor
data were time-aligned and converted into tutor and sensor features, as described
in [7]. At intervals of five minutes in the Fall, and three minutes in the Spring,
students were presented with an emotional query about one of four affective
states (confident, interested, frustrated, or excited) selected from a uniform ran-
dom distribution. The queries were presented as shown in Fig. 1; to respond,
students selected from the options shown in Table 1. The sensor and tutor fea-
tures were used as predictors for the levels of the self-reported affective states.

Fig. 1. An example of the Emotion query. Table 1 below has the values for each <>
enclosed word, except for (<Name>), which is the name of the student.

Table 1. The mapping of tags to text in Fig. 1 above

<emotion> <Left> <Right>

confident I feel anxious I feel very confident

interested I am bored I am very interested

frustrated Not frustrated at all Very frustrated

excited I’m enjoying this a lot This is not fun

The Fall 2008 data collection involved 93 students using the Wayang Tutor.
Of the 93 students 85 of them had at least one working sensor connected to them
while using the tutor. Students used the tutor as part of a class, and class sizes
ranged from three to twenty-five students with one teacher in the classroom and
between one and three experimenters. The students had between two and five
sessions with Wayang Outpost, based on teacher preference and availability of
the student. The student ages were 15-16, 18-22, and 22-24. These data were
used as our training set.

The Spring 2009 data collection involved over 500 students using the Wayang
Tutor. 304 of the students were connected to at least one working sensor. The
Spring collection differed from the Fall collection as follows: (1) The students
in the Spring were from different schools; (2) The ages of Spring students were
13-14, and 15-16; (3) The camera sensor in the Spring had upgraded software.
The Spring data was used purely for validation of the Fall Data.

3.2 Tutor and Sensor Features

We considered nine tutor features and forty sensor features as potential predic-
tors for the emotion classifiers (see Table 2). The forty sensor features are based
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on four ways of summarizing ten specific features: the mean, the standard devi-
ation, the min value, and the max value over the course of a problem. Since the
sensor and tutor logging happens asynchronously, their data are interpolated in
a piecewise constant fashion with the constraint that only data from the past
is used to predict missing sensor or tutor values. The tutor logs when a prob-
lem is opened and closed, creating boundaries for summarizing the interpolated
sensor data (i.e. to compute each feature, we use data over the span of a single
problem). When there is an emotional query after a problem, the result becomes
the affective state label for that problem. For each student and for each emotion
there are between two and five affective-state labels. For more detail on the full
specification of these features see [7].

Table 2. Features used for each problem that includes an affective state label in order
to train the emotion classifiers (features are shown in abbreviated form). The nine tutor
features are shown on the left and the ten sensor features are on the right. Features
used in a classifier that is significantly better than the baseline (p < 0.05) are in bold.

Tutor feature Definition Sensor feature Definition
Solv. on 1st 1st attempt correct Agreeing

camera mental states
Sec. to 1st time to 1st attempt Concentrating
Sec. to solv. time to a correct Thinking
# incorrect responses Interested
# hints requested Unsure
LC learning companion Mouse sum of pressure

Group
which LC Sit Forward

movement in chair(Jake, Jane, or none) Seat change
Time in session same day Back change
Time in tutor all days Skin conductance value from wrist

4 Method

The current standards for evaluating affective classifiers do not address our need
to rank classifiers for the purpose of actionable affect detection. Though each
individual step in our method has been established and tested, the combination
of these steps yields a more robust test for the classifiers constructed. The use
of our classifiers in a classroom environment necessitates our method described
in the rest of this section and summarized in Table 3.

4.1 Collection

The data collection described in Sect. 3 is the first step in our methodology for
building affect classifiers. The key parts of the data collection are that the emotion
labels are made at the time of the experience, and the training and validations
sets are taken from distinct populations using the same basic setup, allowing the
validation results to be more likely to generalize. Here, the Fall collection is our
training data set and the Spring collection is our validation data set.
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Table 3. Our affect detection method summarized

1. Data Collection
– in situ self-reports of emotion
– training and validation sets from different population

2. Feature Selection
– remove central self-report values
– use step-wise linear regression to select features and train classifiers

3. Cross-validation (leave-one-student-out)
– compute the mean accuracy, sensitivity, and specificity per student

4. Classifier ranking
– parametric and nonparametric ranking using p < 0.05

5. Validation
– run steps 3 and 4 on validation set using classifiers from step 2

4.2 Predictor Selection

Once the data were collected and summarized as described in Sect. 3.2, we used
the entire set of labeled training data to create a subset of predictors using a
combination of tutor and sensor features. For each combination of features, a
subset of the data set that was not missing data for the features was selected.
Then stepwise linear regression was performed in R to select the ‘best’ subset of
features from those available. The subset of features was stored as a formula for
use in training the classifiers and performing cross validation.

4.3 Cross Validation

For each set of features determined by the feature selection, we performed leave-
one-student-out cross-validation on linear classifiers for each affective state. Dur-
ing the cross-validation, we calculated the mean accuracy, sensitivity, and speci-
ficity for each test student. We also performed the same cross-validation on a
linear classifier with a constant model, which we used as our baseline. This step
differs from [7] in two ways: 1) The mean was taken across each test student
instead of across tests. 2) We calculated sensitivity and specificity in addition to
accuracy.

Though the cross-validation described above provides a general indication of
the performance of each classifier, the information is not sufficient to enable
appropriate pedagogical action selection by an ITS for new populations of stu-
dents. Thus, we validated that the classifiers are generalizable and so can be
used with a new population without having to be retrained. We also ranked the
classifiers according to how sensors and features impact accuracy, allowing us
to make informed decisions about sensor selection (e.g. if some sensors become
unavailable, to select the next best alternative).

4.4 Classifier Ranking

A number of alternative techniques exist for classifier comparison. One is to use
classifier accuracy, which identifies the overall performance of a classifier, but
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does not express accuracy on positive vs. negative instances. To do so, the fol-
lowing two measures can be used: (1) sensitivity, also referred to as the true
positive rate, which provides information about the accuracy of a positive re-
sponse; (2) specificity, the true negative rate, which provides information about
the accuracy of negative responses.

Since the purpose of our classifiers is to help an ITS make decisions of how
to appropriately respond to student emotion, one approach would be to only
make a decision when there is confidence in the prediction. So, if one classifier
has very good sensitivity relative to the baseline, then the ITS would act when
the classifier reports a positive result. Similarly, if a classifier has a very good
specificity relative to the baseline, then the ITS would act when the classifier
reports a negative result.

In order to compare our classifiers’ accuracy, sensitivity, and specificity for
each affective state, we first performed a one-way analysis of variance (ANOVA),
with classifier as the independent variable and either accuracy, sensitivity, or
specificity as the dependent variable. When there was a significant difference
between classifiers, we performed Tukey’s HSD test to rank the differences in
the means.

There is some question about the soundness of the ANOVA and Tukey’s HSD
test for these comparisons because the design is not balanced (not every student
had all sensors available), and the responses are not normally distributed. So,
in addition to the ANOVA, a Kruskal-Wallace test was performed; when there
was a significant difference between classifiers, a Nonparametric Multiple Com-
parison Procedure (NPMC) for an unbalanced one-way layout was performed,
as described in [10].

We conducted both parametric and non-parametric tests because the para-
metric tests are known to be robust to violations of the assumptions, so per-
forming both was a way to verify the findings. Here, for all tests, we only report
results with significant differences.

4.5 Validation with Follow-on Data

As mentioned above, we used the Spring data set to validate the classifiers trained
on the Fall Data set (the Spring data set was not used to inform any of the train-
ing). The validation consisted of the following three steps. First, for each feature
set selected by the feature selection step, a linear classifier was created using
the entire subset described in Sect. 4.2. Second, each classifier was tested on the
relevant subset of data from the Spring data set. Third, the accuracy, sensitivity,
and specificity values and rankings were compared to the cross-validated values
and rankings to determine how the classifiers generalized to a new and larger
population.

5 Results

The classifier sets were designed to compare the performance of (1) a classifier
using just tutor features vs. (2) one using features from one sensor in addition
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to the tutor features vs. (3) a classifier using all of the available features. The
collection, feature selection, and cross validation results from the training data
(Fall 2008) are described in [7]; however, a couple of important details are needed
here. First, although the feature selection has the option of using both tutor data
and other sensor data, sometimes it only selected tutor data. Table 4 shows the
results of the feature selection. Second, we extended the cross-validation results
to include sensitivity and specificity. Third, we modified the grain size, in that
the samples in this work are on a per student rather than per test basis. The
ranking and validation results are discussed below.

Table 4. These are the results of the feature selection. The baseline classifier for each
emotion is just a linear model trained on a constant. The classifier names are the
concatenation of an abbreviated emotion and the contributing sensor features. If there
are no sensor features, then Tutor comes after the emotion, and when there is more
than one classifier with the same feature set a letter is added to disambiguate the
names. Names in bold are for classifiers that performed significantly better than the
baseline for that emotion in at least one way.

Classifier name Features

confBaseline constant
confTutorA Solv. on 1st + Hints Seen
confTutorM # Incorrect + Solv. on 1st + Session
confSeat # Incorrect + Solv. on 1st + sitForward Std Dev.

intBaseline constant
intMouse Group + # Hints + mouse Std Dev + mouse Max
intCamera Group + # Hints + interestedMin

excBaseline constant
excTutor Group + # Incorrect
excCamera interested Mean + # Incorrect
excCameraSeat netSeatChangeMean + interestedMin + sitForwardMean

5.1 Classifier Ranking

Accuracy had a significant main effect on both the interested and excited affective
states, but not for the confident and frustrated states. For the interested state,
the classifier using the mouse and tutor features is significantly better than the
baseline with a mean of 83.56% vs. 42.42%, according to both Tukey’s HSD and
NPMC tests. For the excited state, the classifiers with the tutor features were
significantly better than the baseline with a mean of 73.62% vs. 46.31%.

As far as sensitivity is concerned, there is a significant main effect for confident,
interested, and excited affective states using both parametric and nonparametric
tests. However for confident, no classifier performed better than the baseline. For
interested, both the camera and tutor, and mouse and tutor features were better
than the baseline. For excited, the camera with seat sensors, camera sensors, and
tutor only performed better than the baseline.
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For specificity, there is only a significant main effect for confident, with Tu-
torA, TutorM, and Seat classifiers performing better than the baseline. The
details of these results are shown in Table 5.

Table 5. Classifier ranking using cross-validation data (p < 0.05)

Confident Tukey HSD NPMC

Specificity (confTutorA ∼ confTutorM ∼
confSeat) > confBaseline

(confTutorA ∼ confTutorM) >
confBaseline

Interested Tukey HSD NPMC

Accuracy intMouse > intBaseline intMouse > intBaseline

Sensitivity (intCamera ∼ intMouse) >
intBaseline

(intCamera, intMouse) >
intBaseline

Excited Tukey HSD NPMC

Accuracy excTutor > excBaseline excTutor > excBaseline

Sensitivity (excTutor ∼ excCamera ∼
excCameraSeat) > excBaseline

(excTutor ∼ excCamera ∼
excCameraSeat) > excBaseline

Given these results, our findings suggest that the tutor could generate in-
terventions more reliably when it detects interest and excitement. If the tutor
wanted to intervene when the student is interested, then using the mouse and
tutor features or the camera and tutor features would be most appropriate. If
the tutor wanted to intervene when the student is excited then either the cam-
era with seat features, camera features, or tutor features classifier would all be
appropriate.

It may be more relevant to intervene when a student is not interested or
not excited, or not confident. Our results do not provide information on which
features to use to predict low interest or low excitement, but to detect lack of
confidence, we could use either the TutorA, TutorM, or Seat features trained on
confident. The corresponding features are shown in Table 4.

5.2 Validation with Follow-on Data

In order to verify that our classifier ranking generalizes to new data sets, we
tested the classifiers by training them with all of the Fall data and testing them
with the Spring data. Performance results of the significantly ranked classifiers
from the cross-validation done above are compared to the validation set and
shown in Table 6. Since the data are from an entirely separate population, it is
likely that the overall performance will degrade somewhat; however, if each clas-
sifier’s performance is similar, then that will provide evidence that the classifiers
should be preferred as they were ranked during the cross-validation phase.

When comparing mean accuracy for the training vs. test sets, there is a general
drop in accuracy of between 2% and 15%, though in some cases, there is a much
larger difference of up to 37%. The larger differences suggest that some of the
features do not generalize well to new populations.
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Table 6. This shows validation results of all classifiers that performed better than the
baseline classifier during training. All values are the mean value per student. Fall spec-
ifies the training set based on the leave-one-student-out cross-validation, and Spring
specifies the results of the classifiers trained on the training set (Fall Data), and tested
on the validation set (Spring Data). Values in bold are significantly better (p < 0.05)
than the baseline.

model Accuracy Sensitivity Specificity
Fall Spring Fall Spring Fall Spring

confBaseline 65.06% 62.58% 72.22% 76.13% 55.56% 44.14%
confTutorA 70.49% 65.49% 47.07% 46.04% 90.43% 84.88%
confTutorM 68.64% 67.53% 52.31% 52.26% 82.41% 80.68%
confSeat 65.70% 67.13% 54.63% 60.17% 79.26% 70.32%

intBaseline 42.42% 78.30% 0.00% 0.00% 81.82% 100.00%
intMouse 83.56% 63.34% 29.73% 5.09% 90.54% 81.60%
intCamera 69.44% 57.65% 52.08% 12.11% 64.58% 68.53%

excBaseline 46.31% 74.31% 0.00% 0.00% 96.15% 100.00%
excTutor 73.62% 62.99% 36.54% 12.45% 87.88% 77.28%
excCamera 66.33% 51.53% 38.67% 28.39% 72.00% 52.24%
excCameraSeat 70.67% 43.34% 32.00% 15.97% 83.00% 54.07%

Results of ranking the classifiers on the validation data are shown in Table 7.
Note that the accuracy rankings no longer hold, and the mouse classifier for the
interested affective state is no longer significantly better than the baseline.

Table 7. Classifier ranking using validation data from the Spring of 2009. All differ-
ences indicated by ‘>’ are significant with p < 0.01.

Confident Tukey HSD NPMC

Specificity (confCameraA ∼ confTutorA ∼
confTutorM) > (confSeat ∼
confTutorW ) > confBasline
confCameraB > confTutorW >
confBaseline

(confCameraA ∼ confTutorA ∼
confTutorM) > (confSeat ∼
confTutorW ) > confBasline
confCameraB > confTutorW >
confBaseline

Interested Tukey HSD NPMC

Sensitivity intCamera > intBaseline intCamera > intBaseline

Excited Tukey HSD NPMC

Sensitivity ((excCamera > excTutor) ∼
excCameraSeat) > excBaseline

excCamera > excCameraSeat >
excTutor > excBaseline

6 Discussion

In this paper we describe a method for discovering actionable affective classifiers
for Intelligent Tutoring Systems (ITS). Though the method was used with spe-
cific sensors, features, ITS and classifiers based on linear models, each of these
could conceivably be swapped out for another system.
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Our results identify a clear ranking for three classifiers designed to detect
low student confidence, one classifier to detect interest, and three classifiers for
detecting excitement. For not confident, two different sets of tutor only features
performed better than the tutor and seat features, so it is unlikely that there
would be a time that we would use the classifier with the seat sensor.

Now that we have actionable classifiers for three affective states, our ITS
will be able to leverage the results to make a decision. For instance, the ITS
could intervene whenever the classifier detects low student confidence, in order
to help the student gain self efficacy. This intervention will have to also take into
account other emotions detected, e.g., the detection of high excitement and/or
high interest may change the type of intervention that is most appropriate.

Future work will involve implementing these various affect-based interven-
tions, and evaluating their impact on student learning, affect and motivation.
We also plan to explore how we can design classifiers for affect recognition that
perform better than the baseline for the subset of affective states that our classi-
fiers performed poorly on. One approach for doing so that we plan to implement
is to identify more complex features based on the sensor data than those cur-
rently used. A more complete set of affective classifiers will likely improve the
ITS interventions. For example, if we had a classifier that had good sensitivity
for confidence, then that classifier could be used to stop interventions relating
to low confidence.
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