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Abstract
Emotional communication skills are dominant
in biological systems. Although the rules that
govern creating and broadcasting emotional cues
are inherently complex, their effectiveness makes
them attractive for biological systems. Emotional
communication requires very low bandwidth and
is generally easy to interpret. Despite the ad-
vantages of emotional communication, little or
no research has explored which emotional cues
are the most effective when used by a robot.
To study this question, we introduce an interac-
tive environment in which a person can learn the
robot’s emotional responses through interaction.
We then present a one player game in which a
person attempts to attract the robot’s attention,
make it move towards and stay close to the per-
son. We further develop this concept into a two
player version, in which the players engage in
a Tug of War game, competing for the robot’s
heart. We propose our system as a potential test
bed for human-robot interaction, both for engi-
neers, and clinical psychologists.

1. Introduction
Emotional communication is a complex interactive pro-
cess. It may involve multiple agents with different desires
and goals. Each agent communicates its emotional state
and can deliberately try to manipulate the other’s emotional
state through interaction. This complex communication
process becomes even more intricate when considered in
the context of a multi-agent, dynamic and complex envi-
ronment. Despite its inherent complexity, emotional com-
munication is an efficient way to communicate goals and
desires. In this paper, we hypothesize that humans can ac-
quire and adapt to the emotional mechanism that governs
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the behavior of a robot. Moreover, we evaluate how ef-
fective using facial expressions as secondary feedback in
facilitating the acquisition of the robot’s emotional behav-
ior.

To explore our hypothesis, we have developed an emotional
robot with which human participants can interact. Through
interactions with the robots, the participants are able to de-
velop a model of its emotional behavior. A reliable model
can predict the outcome of future interactions, thus en-
abling the participant to manipulate the robot to a desired
emotional state. The participant’s ultimate goal in our ex-
periments is to make the robot happy. Much like preverbal
communication with infants, this can be achieved through
motion and voice.

Our main contribution is a simulated robot experimentation
platform that can interact using visual and auditory sensors
and a video representation of the robot’s motion and facial
expression. The robot must provide cues that can be under-
stood by the human participants. Moreover, the robot must
possess enough sensor capabilities to observe cues gener-
ated by the human participants. Based on these cues, both
the robot and the human participant can interact. The robot
demonstrates its desires, and human participants learn what
pleases the robot.

Successful implementation of this robot-human emotional
interface would create a platform for testing how well hu-
mans can model the emotional state of the robot given dif-
ferent feedback from the robot. This platform will enable
us to investigate whether people can successfully attribute
cause and effect relations to the behavior of the robot, and
then use these relations to manipulate the robot into a state
of happiness.

The testing platform is in the form of a game. The goal
of the game is to get Danny, the robot, to come and stay
close to the player. This is done by performing actions that
Danny likes. The score in the game allows us to measure
whether Danny is able to accurately and effectively com-
municate its desires. Danny communicates implicitly by
moving back and forth. In addition, Danny can communi-



cate with facial expression, and the system as a whole can
communicate by accumulating a score for the player.

We consider two versions of this game for our experiment.
The first is a one-player version in which a human tries to
convince the robot to move towards it. This can be achieved
through emotional communication — by making the robot
happy, the robot will be enticed to move towards the hu-
man. This version of the game enables us to explore the ef-
fectiveness and ease of use of our emotional interface. The
second version is a two-player game. This version is a type
of Tug of War (also known as rope pulling). In Tug of War,
two teams are competing against each other. A team wins
the competition by pulling the other team towards it. Suc-
cessful teams utilize physical strength, mental strength, and
coordination. In the two player version, competitors try to
gain the robot’s trust and affection. This is more intricate
than two simultaneous one-player games, as the effect of
direct competition between humans adds a new dimension
of emotional communication. Tug of War will enable us to
explore the reliability of emotional communication when
the primary expression of approach and withdraw does not
always correlate with the robots feelings.

Our implementation relies on cues that are very common
in human communication. Running away represents fear.
Getting closer signifies trust. Smiling, or putting on an
angry face are strong ways to communicate an emotional
state. In much the same way, a robot that plays Tug of War
can elicit and express emotions by moving closer or run-
ning away, smiling or frowning.

The proposed platform provides an opportunity to conduct
clinical psychological research on human participants. The
emotional response that the robot generates in humans as
part of the competition, as well as the emotional response
that the competitors induce on the robot, create a complex
emotional interactive environment. Observing this interac-
tive emotional communication will provide an interesting
test bed for interdisciplinary research on human and robot
emotional communication. We hope that with the devel-
opment of this test bed, researchers in psychology will be
able to provides new insights and develop new models of
human-robot emotional interactions.

On the application side, we believe that adding an emo-
tional aspect to existing Human-Machine interfaces will
create a new layer of security. For instance, in the bat-
tlefield, robots could choose to cooperate only with people
they consider reliable and trustworthy. Databases could be
protected by providing information only to the person that
convinces the robot it is the rightful owner of that infor-
mation. Although these applications are very promising,
they all can be emotionally manipulated. Our platform will
provide a test bed for exploring what measures needs to be
taken to overcome this difficulty and guarantee both effec-

tive and reliable emotional communication.

In the following sections, we discuss related work, the de-
tails of the hardware and software components of our plat-
form, as well as the experimental setting and results.

2. Related Work
(Takeuchi & Naito, 1995) compare the usefulness of a sit-
uated 3-D animated face pointing compared to an arrow
pointing. A person is shown to perform better from just
the arrow, but the face is better at grabbing the person’s at-
tention. In this case there is a neutral facial expression the
whole time.

Cynthia Breazeal pioneered the use of an emotional
model and emotional expression using her robot,
named Kismet,((Ferrell), 1998),(Breazeal & Scassel-
lati, 1999),(Breazeal, 2002), and (Bar-Cohen & Breazeal,
2003). Kismet was shown to be able to regulate its internal
state based on social interaction. Kismet also used facial
expressions, sounds, head and eye motion to convey
its emotional state. Though a persons interactions were
influenced by these expressions, no work was done to show
how much each individual expressive feature accounts for
the influence. In addition no work was done on whether
Kismet’s emotion could help in learning.

(Kringelbach & Rolls, 2003) used neutral and angry faces
as a reinforcement signal for humans to learn to change
their selection from one face to the other. The response
time was a little bit slower with the neutral reinforcement
signal, but both faces were learned. In this case the faces
presented were black and white photos from Paul Ekman’s
collection(Ekman & Friesen, 1971). This work shows that
faces can be used as a reinforcer, but they were not used in
conjunction with other feedback.

(Bruce et al., 2002) used a robot speaking robot with a
screen as a head to show that facial expressions and head
tracking each independently had an effect on a person stop-
ping to listen to what a robot is saying and to answer a
polling question by stepping up to a microphone. The fa-
cial expressions were on a 3-D animated face. In the no fa-
cial expression condition, the screen was blank. The exper-
iment showed that facial expressions caused an increased
probability of stopping, head tracking caused a slightly
higher probability of stopping, and the combination of head
tracking and facial expression caused a significantly higher
probability of stopping than just the facial expression. The
facial expressions of the robot were based on the robot’s
ability to get the person to follow the script. It was happy
at first, and got less happy as the person did not participate
as asked.



3. Emotional Communication Algorithm
3.1. States and Transitions

The emotional algorithm continuously evaluates and acts
upon the robot’s internal emotional state. The state is rep-
resented by an emotional state vector. In the current imple-
mentation, the state vector has three states: friend, foe, and
self interest. That is s = [sfriend, sfoe, sabsorbed]. Each
state is updated as follows:

sfriend ← sfriend + w · ffriend(Input)
sfoe ← sfoe + w · ffoe(Input)

sabsorbed ← sabsorbed + w · fabsorbed(Cycle)

where w is a constant multiplier between 0 and 1 acting as
a low pass filter and all states si are between 0 and 1, and
all functions fi return a value between 0 and 1. The state
vector is always normalized by the L1 Norm after each up-
date.

The expressed emotional state is then dependent on the val-
ues of the state vector. If sfriend or sfoe are above 1

2 , then
the state will be non-neutral as shown in figure 1. Since
the values of the vector are normalized after each update,
at most one such value can exist. If neither the friend or the
foe state are above 1

2 , then the expressed state is neutral.
In order to alleviate fast switching between states, a state
must be expressed for a minimum of 3 time steps. The ex-
pressed states have 3 values for friend and 3 values for foe,
and one neutral state. A state can change by at most one
degree each step. Our implementation is easily extendible
to support more dimensions, such as surprise, fear, disgust,
and sadness.

The self absorbed state represents times when the robot is
incapable of handling inputs. This behavior models periods
in which the robot has other needs that have to be fulfilled.
These needs include replenishing the battery, some non-
interactive tasks, performing off-line learning, and other
events that dictate an anti-social behavior. When the robot
is in this self-absorbed state, it takes on the neutral expres-
sion. The self-absorbed cycle increases at a slow rate for
one third of a period, and then decreases at a fast rate for
the other two thirds of the period. As the self absorbed
value gets larger, it becomes increasingly more difficult to
keep the state away from neutral.

3.2. Input Features

The emotional algorithm uses the following 10 visual input
features: amount of motion on the screen or face, bright-
ness of screen or face, whether or not the person is facing
the robot, the position of the person’s face, the amount of
motion on the persons face, jittering motion of the face,
continuous motion of the face, no motion of the face, and

Figure 1. An example of our faces with the emotion, robot be-
havior, and game score output at each step. The threshold values
on the left show when sfriend and sfoe will activate a particular
expression.

the variance of the face motion. In the experiments de-
scribed in this paper, we have focused on two of these vi-
sual features: whether the person is facing the robot, and
the motion variance of the person’s face.

The emotional algorithm uses the following 4 audio fea-
tures: beats per minute (sampled from a second, or using
a whole minute), average pitch in the last second (parti-
tioned to high, medium, and low pitch), the mode pitch of
the last second, and variance of the pitch. In the experi-
ments described in this paper, we have only used one of
these features: the variance of pitch.

We have explored several mappings from inputs to emo-
tional state (the functions ffriend and ffoe described in
section 3.1). In the experiments described in this paper,
the mapping we use measures whether the person is facing
the robot, and the variance in the person’s pitch and motion.
Figures 2 and 3 show the two Decision Trees that compute
the function on the input. Facing the agent with which we
communicate is an important feature of human communi-
cation. The motion variance and the pitch variance measure
the jitteriness of the person.

The motion variance of the face is computed over a seven
step period. Relatively low variance reflects little change
in motion, which makes it easier for the robot to predict
what the person is doing. Non-jittery behavior is indica-
tive of comfortable and friendly communication. The pitch
variance estimates the change in pitch that is typical of hu-
man speech. This was calibrated by the developer’s speech



Figure 2. Emotional Input Decision Tree based on a variance
threshold. Three thresholds were used: low: 1.0 < P < 1000.0,
0.2 < M < 1.5, medium: 1000.0 < P < 40000.0, 1.5 < M <
3.5, and high: 10000.0 < P < 40000.0, 3.5 < M < 10.0 .

Figure 3. Emotional Input Decision Tree based on existence of
motion or pitch.

and variance is computed over the last second. Regular
speech, as opposed to yelling for example, is considered by
the robot as a desired method for communication. Finally,
we note that the system is designed to allow new input func-
tions to include other inputs such as hand gesture detection
or the human’s facial expression.

3.3. Output Features

The emotional algorithm is composed of two features:
the robot’s facial expression, and the robot’s motion to-
wards/away from the person. The robot’s facial expres-
sion and motion is updated after each processing step. Fig-
ure 1 shows an example of emotional output with transi-
tions based on emotional state, and the faces we use. The
system’s design makes it trivial to add more output features
in the future. Possible new outputs can range from adding

more facial expressions. to verbal communication.

Currently, the output has 7 options for faces, and 7 options
for motion, (approach 1-3, withdraw 1-3, and no motion).
This creates a wealth of variety for how emotion is ex-
pressed in the physical space. Emotion can be expressed by
how close the robot is to the person it is interacting with,
how fast it is moving towards or away from the person, and
whether it is oscillating back and forth. Currently, the ges-
tures of motion are simple. However, extending the motion
patterns to express particular emotions would be straight
forward.

3.4. Implementation

Our model, which is inspired by (Breazeal, 2002; Bar-
Cohen & Breazeal, 2003), is simple in order to focus purely
on the emotional representation. Our model uses sensors,
feature extraction, emotional transitions, and emotional ex-
pressions, while Breazeal’s model has a visual attention
system, a cognitive evaluation of the stimuli and drives, a
set of higher level drives, an affective evaluation, an affec-
tive appraisal, emotion elicitors, emotion activation, behav-
ior, and motor expression. This simplified model separates
out the cognitive and reasoning aspects in order to get at the
core concept of emotional representation. Rather than the
three dimensional space in which emotions lie, we explic-
itly hold a value for each emotional state. This makes it so
that more than one internal emotional state can change at
the same time. In this way there can be strict breaks based
on one state overwhelming the other states, or smooth tran-
sitions over a continuum as the states compete for expres-
sion.

Figure 4 shows examples of the emotional states being ex-
pressed from screenshots we took of a set of interactions
with the simulated robot.

We now describe an example of an interaction between a
human and the robot is as follows: The human faces the
robot and rocks from left to right slowly for a short time
with low variance. This behavior increases the friendliness
state, and results in a friendly state (See Figure 1). The
robot smiles and approaches the human. Next, the per-
son starts to move faster, which displeases the robot as it
makes predicting the person’s behavior more difficult. In
response, the robots changes its facial expression to less
friendly values.

4. Experimental Validation
4.1. Experimental Platform

We use a simulated robot and a graphical environment
(OGRE 3D) to display robot emotions. When the robot
decides to approach the person with whom it interacts, it



(a) Friendship being expressed by the robot: The robot ap-
proaches and shows a smile as it likes the participant

(b) Dislike being expressed by the robot: The robot withdraws
with a scowl as it dislikes the participant.

(c) Indifference being expressed by the robot. The robot stops
and has a Neutral face

Figure 4. An example of 3 emotions elicited by a person and ex-
pressed by the robot. a) is Friendship, b) is Dislike c) is Indiffer-
ence

moves forward in the simulated world. The robot accu-
mulates sensory data from a camera and a microphone, and
uses it to decide on transitions between its emotional states.
In addition, the robot can express its emotional state using
a facial expression.

The emotional architecture is composed of the emotional
communication algorithm (described above), integrated
with two sensor processing systems, and a 3D simulated
robot environment. We use two open source libraries to
processes sensor data: OpenCV for vision and MARSYAS
for sound processing. With these libraries we were able
to quickly produce some basic sensor processing. Conse-
quently, we could focus on the development of the emo-
tional algorithm.

OGRE is a 3 dimensional simulated environment which
simulates the motion and cameras of the robot in its en-
vironment. In addition, participants can be simulated in
the environment by projecting the video from a real cam-
era onto the simulated environment. This allows the robot
to move closer and further from the person while the real
camera can stay stationary. The software is designed so that
the drivers for the simulated cameras and robot control can
be swapped for the drivers of the real cameras and robot.

The robot can be friend or foe: it can either trust or mistrust
the human with whom it interacts. The emotional cues that
the robot provides are of two types. The first is a facial
expression. The robot has three levels of trust, and three
levels of mistrust, and can be indifferent. The second is
the distance between the robot and the user. The robot can
choose to move closer or further away at three different
rates, based on its emotional model.

The sensors we are using are a mono microphone and a web
camera. The microphone records at 44.1 kHz. The Web-
Cam has 640 x 480 pixel resolution with 24 bit color and a
10 fps maximum capture rate. The computer that runs the
simulation, including sensor and emotional processing, is a
2.33 GHz Intel Core 2 Duo MacBook Pro with 2 gigabytes
of RAM.

4.2. Experimental Setup

We conducted an experiment with 16 participants. A 4 x
4 mixed factorial design was used with Factor A as the
Emotional Feedback, and Factor B as the Desired Behavior
from the robot. Emotional Feedback types were, just mo-
tion (control), motion with facial expressions, motion with
score, and motion with both facial expression and score.
The goal of the participant was to determine what the robot
likes given that the robot can detect the motion of their face,
and the pitch of their voice.

Participants were randomly divided into 4 groups of 5.
Each group received a different type of Emotional Feed-



back. Each participant interacted with the robot for 3 trials
per desired behavior for a total of 12 one minute trials with
a user specified break in between. The order of the desired
behavior was randomized for each participant, and trials for
a desired behavior were grouped together. One example or-
der of trials is 3 low variance, 3 either pitch or motion, 3
high variance, and 3 medium variance trials.

The first hypothesis that we evaluate is whether there is
a main effect between the emotional feedback conditions.
An analysis of variance shows an F-score of 1.92 and a p-
value of 0.127 which leaves us with a failure to reject the
null hypothesis that there is no difference between the mean
scores of the participants based on the emotional feedback
received. Given that there were only 16 participants, there
may not be enough power to accept the null hypothesis.

The second hypothesis that we evaluate is whether there is
a main effect between the desired behavior conditions. An
analysis of variance shows an F-score of 8.86 and a p-value
of 0.003 which allows us to reject the null hypothesis. This
is further explored below.

4.3. Experiments

Figure 5 shows box plots of the scores in the different
behavior conditions. The medium variance condition is
clearly the hardest, and both the low variance and either
pitch or motion conditions are the two easiest conditions.

Figure 6 shows how the different feedback conditions af-
fect the score in each behavior condition. The medium
variance condition is the only condition where there is a
big difference. Figure 7 shows the individual differences
for each participant in each trial of the medium variance
condition separated by the emotional expression group that
they were in. In the future, we will use more participants
to test whether the reason for the drop can be explained by
fatigue.

In addition to our quantitative results, we also performed a
survey asking which was the hardest and which was the
easiest condition. The survey also asked which type of
feedback was the most useful, and what feedback would
they like to see. All participants labeled the medium vari-
ance trials the hardest. The easier behaviors were also de-
tected. The participants that had facial expression said that
it was useful, and the participants that didn’t have facial
expression asked for it in the survey.

Despite the simplicity of our model, the robot expresses
enough to let the user know how it feels, which allows the
user to continue or change his behavior based on this feed-
back.

Figure 5. A box plot of the Score over the Desired Behavior fac-
tor. An analysis of variance shows an F-score of 8.86 and a p-
value of 0.003, hence we reject the null hypothesis that there is
no effect between desired behaviors. The box plot shows that the
medium variance behavior was the hardest to learn, and both low
variance and the either/or behavior were the easiest to learn.

5. Conclusion
The experimental results show that the framework we cre-
ated has promise as an interactive test bed for emotional
communication. The emotions elicited by the robot were
clear enough for users to know whether or not their actions
were pleasing or displeasing for the robot. The simulated
environment also allows for repeated testing without hav-
ing to utilize fragile robotic hardware.

More advanced sensor information could allow for many
more options to make the robot happy. For instance if the
robot is could do basic speech processing, then there may
be words that the robot likes or dislikes. If the robot could
do visual shape processing, then certain shapes may be po-
tential inputs. With music processing, certain songs could
effect the robot’s emotional state.

Improved expressive output would also contribute to mak-
ing the robot more believable. For instance, if the robot
had arms, it could use them to express emotions by ges-
tures. If it had speakers, it could play different sounds or
music. And, with speech software, the robot could say dif-
ferent phrases or change its tone of voice.

We believe that competitive interaction with the robot, such
as emotional Tug of War, is a useful framework for testing



Figure 6. These box plots are a break down of the previous box
plot. Each box plot represents a particular desired behavior, and
each box represents a specific type of feedback. The feedback
types are shown from left to right: just motion, motion with face,
motion with score, and motion with both face and score.

Figure 7. These plots detail the scores of each of the 16 partic-
ipants for the Medium Variance desired behavior. Each plot
shows 4 participants’ individual scores on the 3 trials for one type
of feedback. top left just motion, top right: score bot left: face,
bot right: face and score.

other emotional interactions. With the addition of more ad-
vanced input and output capabilities, we believe that this
platform could develop even further and provide a more in-
teresting environment for research.

The next phase would be to extend our implementation to
create a real Tug-of-War game. This will require using two
computers, one associated with each contestant. It will also

require addressing issues such as synchronizing behaviors
based on multiple users, communication over a wireless
medium, and doubling the number of sensors used.

Once the system has been tested in a simulated environ-
ment, the final step would be putting it onto an actual robot.
There are several robotic platforms that could make use of
our emotional software (Azad et al., 2007; Brock et al.,
2005; Brooks et al., 2004; Deegan et al., 2006; Edsinger &
Kemp, 2006; Katz & Brock, 2007; Khatib et al., 1999; Neo
et al., 2006; Nishiwaki et al., 2007; Saxena et al., 2006;
Wimboeck et al., 2007). UMan, for example, is a poten-
tial future platform. UMan is a mobile manipulator, a robot
that is both mobile and capable of manipulating its envi-
ronment. More importantly perhaps, UMan has the height
of a human, and is able to create an impression on peo-
ple. UMan can support multiple sensors, among which are
multiple cameras, force sensors, and laser scanners.

Future work would include discovering ways to character-
ize the set of human emotions that are easy for the robot
to perceive. Once this is done, the input space of the
robot could be tuned to human emotion rather than arbi-
trary sounds or motions. One version of the robot could
then have an affinity to happy and angry people. Another
version could be attracted to sad and scared people, and put
off by happy people.

Finally, we intend to add learning into the emotional agent.
One notable characteristic of emotional behavior is the
ability to adapt to new circumstances. We would like to
create similar behavior in our robot. An agent should learn
what is annoying for other people, as well as what is not
pleasant for itself. Learning how to achieve goals using
emotional reaction can be very beneficial. A robot that can
take advantage of emotional communication may be able to
communicate more efficiently, and change the state of the
world in a mutually beneficial way.
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