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Abstract

Emotional communication skills are dominant in biological
systems. Despite the apparent complexity of creating and
broadcasting emotional cues, the expression is concise, mak-
ing them effective and advantageous for multi-agent envi-
ronments where communication bandwidth is limited and in
high demand. However, social robots run the risk of being
deceived and used by an opponent using friendly emotional
cues. To study this security glitch, we present an interactive
environment in which a person can learn the robot’s emo-
tional responses through interaction. We then present Tug
of War, a game where two people compete for the heart of
one robot. The system described is a potential test bed for
human-robot interaction, both for engineers, and clinical psy-
chologists.

Introduction
Emotional communication is a complex interactive process.
It may involve multiple agents with different desires and
goals. Each agent communicates its emotional state and
can deliberately try to manipulate the other’s emotional state
through interaction. This complex communication process
becomes even more intricate when considered in the context
of a multi-agent, dynamic and complex environment. De-
spite its inherent complexity, emotional communication is
an efficient way to communicate goals and desires. In this
paper, we hypothesize that humans can acquire and adapt
to the emotional mechanism that governs the behavior of a
robot. Moreover, we demonstrate the crucial role of emo-
tional feedback in facilitating the acquisition of the robot’s
emotional behavior.

To explore our hypothesis, we have developed an emo-
tional robot with which human participants can interact.
Through interactions with the robots, the participants are
able to develop a model of its emotional behavior. A reli-
able model can predict the outcome of future interactions,
thus enabling the participant to manipulate the robot to a de-
sired emotional state. The participant’s ultimate goal in our
experiments is to make the robot happy. Much like preverbal
communication with infants, this can be achieved through
motion and voice.
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Our main contribution is creating a simulated robot that
provides a level of expressiveness that is easily understood
by the human participants. The robot’s behavior must be
able to be interpreted within the context of human emotions,
in order to enable us to explore this new emotional human-
robot interface. To that end, the robot must provide cues
that can be understood by the human participants. Moreover,
the robot must possess enough sensor capabilities to observe
cues generated by the human participants. Based on these
cues, both the robot and the human participant can interact.
The robot demonstrates its desires, and human participants
learn what pleases the robot.

Successful implementation of this robot-human emo-
tional interface would create a platform for testing the de-
gree to which humans can model the emotional state of the
robot. This platform will enable us to investigate whether
people can successfully attribute cause and effect relations
to the behavior of the robot, and then use these relations to
manipulate the robot into a state of happiness.

The effectiveness of communication cannot be tested
without a task in mind. Only in the presence of some well
defined goals can we measure whether an agent is able to
accurately and effectively communicate its desires. There-
fore, we have added this task dimension to our platform. We
chose a simple task that is directly associated with emotional
communication: making the robot happy. We describe this
task in terms of the popular game Tug of War (also known
as rope pulling). In Tug of War, two teams are competing
against each other. A team wins the competition by pulling
the other team towards it. Successful teams utilize physical
strength, mental strength, and coordination.

We consider two versions of this game for our experi-
ment. The first is a one-player version in which a human
tries to convince the robot to move towards it. This can be
achieved through emotional communication — by making
the robot happy, the robot will be enticed to move towards
the human. This version of Tug of War enables us to ex-
plore the effectiveness and ease of use of our emotional in-
terface. The second version is the standard two-player game.
In this version, two competitors try to gain the robot’s trust
and affection. This version is more intricate than two simul-
taneous one-player games, as the effect of direct competition
between humans adds a new dimension of emotional com-
munication. This version will enable us to explore the relia-



bility of emotional communication for security applications.
In these applications, emotional interfaces must be reliable,
as they are susceptible to a manipulating enemy that may be
able to convince the robot to cooperate with him.

Our implementation relies on cues that are very common
in human communication. Running away represents fear.
Getting closer signifies trust. Smiling, or putting on an angry
face are strong ways to communicate an emotional state. In
much the same way, a robot that plays Tug of War can elicit
and express emotions by moving closer or running away,
smiling or frowning.

In this paper, we describe the implementation of the one-
player Tug of War game. In this version, the goal is making
the robot move towards the human participant. This can be
achieved in multiple ways, which the participants have to
discover during interaction. In some experiments the par-
ticipants could only see the robot’s motion, in others facial
expressions were included. To stress the importance of the
task, the experiments are scored online. We believe that
scores serve as a motivator for the participants to do bet-
ter. Our experimental results demonstrate that humans can
quickly understand the robot’s behavior, and are able to in-
terpret it in terms of their own emotions and behavior.

The proposed platform provides an opportunity to con-
duct clinical psychological research on human participants.
The emotional response that the robot generates in humans
as part of the competition, as well as the emotional response
that the competitors induce on the robot, create a complex
emotional interactive environment. Observing this interac-
tive emotional communication will provide an interesting
test bed for interdisciplinary research on human and robot
emotional communication. We hope that with the develop-
ment of this test bed, researchers in psychology will be able
to provides new insights and develop new models of human-
robot emotional interactions.

On the application side, we see believe that adding an
emotional aspect to existing Human-Machine interfaces will
create a new layer of security. For instance, in the battlefield,
robots could choose to cooperate only with people they con-
sider reliable and trustworthy. Databases could be protected
by providing information only to the person that convinces
the robot it is the rightful owner of that information. Al-
though these applications are very promising, they all can
be emotionally manipulated. Our platform will provide a
test bed for exploring what measures needs to be taken to
overcome this difficulty and guarantee both effective and re-
liable emotional communication.

In the following sections, we discuss in details the hard-
ware and software components of our platform, as well as
the experimental setting and results.

Emotional Communication Algorithm
States and Transitions
The emotional algorithm continuously evaluates and acts
upon the robot’s internal emotional state. The state is rep-
resented by an emotional state vector. In the current imple-
mentation, the state vector has three states: friend, foe, and
self interest. Each state is updated according to the follow-

ing rule: si ← si + wi · fi(I), where i is the index of the
state vector s, w is the weight vector and fi is function for
state i on the input I at the current time step. All weights
wi and states si are between 0 and 1, and all functions fi

return a value between 0 and 1. The state vector is always
normalized so that the states’ values sum to 1.

The expressed emotional state is then based on a which
of the state values is above 1

2 . Since the values of the vector
are normalized after each update, only one such value can
exist. In order to alleviate fast switching between states, a
state must be expressed for a minimum of 3 time steps. The
expressed states have 3 values for friend and 3 values for foe,
and one neutral state. The neutral state must be entered be-
fore transitioning between friend and foe states, and a state
can change by at most one degree each step. Our implemen-
tation is easily extendible to support more dimensions, such
as surprise, fear, disgust, and sadness.

The self absorbed state represents times when the robot
is incapable of handling inputs. This behavior models peri-
ods in which the robot has other needs that have to be ful-
filled. These needs include replenishing the battery, some
non-interactive tasks, performing off-line learning, and other
events that dictate an anti-social behavior. When the robot is
in this self-absorbed state, it takes on the neutral expression.
The self-absorbed cycle increases at a slow rate for one third
of a period, and then decreases at a fast rate for the other two
thirds of the period. As the self absorbed value gets larger,
it becomes increasingly more difficult to keep the state away
from neutral.

Input Features
The emotional algorithm uses the following 10 visual input
features: amount of motion on the screen or face, brightness
of screen or face, whether or not the person is facing the
robot, the position of the persons face, the amount of motion
on the persons face, jittering motion of the face, continuous
motion of the face, no motion of the face, and the variance of
the face motion. In the experiments described in this paper,
we have focused on two of these visual features: whether
the person is facing the robot, and the motion variance of
the person’s face.

The emotional algorithm uses the following 4 audio fea-
tures: beats per minute (sampled from a second, or using a
whole minute), average pitch in the last second (partitioned
to high, medium, and low pitch), the mode pitch of the last
second, and variance of the pitch. In the experiments de-
scribed in this paper, we have only used one of these fea-
tures: the variance of pitch.

We have explored several mappings from inputs to emo-
tional state (the function fi). In the experiments described
in this paper, the mapping we use measures whether the per-
son is facing the robot, and the variance in the person’s pitch
and motion. Facing the agent with which we communicate
is an important feature of human communication. The mo-
tion variance and the pitch variance measure the jitteriness
of the person.

The motion variance of the face is computed over a seven
step period. Relatively low variance reflects little change in
motion, which makes it easier for the robot to predict what



the person is doing. Non-jittery behavior is indicative of
comfortable and friendly communication. The pitch vari-
ance estimates the change in pitch that is typical of human
speech. This was calibrated by the developer’s speech and
variance is computed over the last second. Regular speech,
as opposed to yelling for example, is considered by the robot
as a desired method for communication. Finally, we note
that the system is designed to allow new input functions to
include other inputs such as hand gesture detection or the
human’s facial expression.

Output Features
The emotional algorithm is composed of two features:
the robot’s facial expression, and the robot’s motion to-
wards/away from the person. The robot’s facial expression
and motion is updated after each processing step. Figure 3
shows an example of emotional output with transitions based
on emotional state, and Figure 1 are the faces we use. The
system’s design makes it trivial to add more output features
in the future. Possible new outputs can range from adding
more facial expressions. to verbal communication.

Figure 1: An example of our faces with the emotion, robot
behavior, and game score output at each step.

Currently, the output has 7 options for faces, and 7 options
for motion, (approach 1-3, withdraw 1-3, and no motion).
This creates a wealth of variety for how emotion is expressed
in the physical space. Emotion can be expressed by how
close the robot is to the person it is interacting with, how fast
it is moving towards or away from the person, and whether
it is oscillating back and forth. Currently, the gestures of

motion are simple. However, extending the motion patterns
to express particular emotions would be straight forward.

Implementation
Our model, which is inspired by (Breazeal 2002; Bar-Cohen
& Breazeal 2003), is simple in order to focus purely on
the emotional representation. Our model uses sensors, fea-
ture extraction, emotional transitions, and emotional expres-
sions, while Breazeal’s model has a visual attention system,
a cognitive evaluation of the stimuli and drives, a set of
higher level drives, an affective evaluation, an affective ap-
praisal, emotion elicitors, emotion activation, behavior, and
motor expression. This simplified model separates out the
cognitive and reasoning aspects in order to get at the core
concept of emotional representation. Rather than the three
dimensional space in which emotions lie, we explicitly hold
a value for each emotional state. This makes it so that more
than one internal emotional state can change at the same
time. In this way there can be strict breaks based on one
state overwhelming the other states, or smooth transitions
over a continuum as the states compete for expression.

Figure 2 shows examples of the emotional states being
expressed from screenshots we took of a set of interactions
with the simulated robot.

We now describe an example of an interaction between
a human and the robot is as follows: The human faces the
robot and rocks from left to right slowly for a short time with
low variance. This behavior increases the friendliness state,
and results in a transition of type e1 (See Figure 4). The
robot smiles and approaches the human (see Figure 3). Next,
the person starts to move faster, which displeases the robot
as it makes predicting the person’s behavior more difficult.
In response, the robots changes its facial expression to less
friendly values.

Experimental Validation
Experimental Platform
We use a simulated robot and a graphical environment
(OGRE 3D) to display robot emotions. When the robot de-
cides to approach the person with whom it interacts, it moves
forward in the simulated world. The robot accumulates sen-
sory data from a camera and a microphone, and uses it to
decide on transitions between its emotional states. In addi-
tion, the robot can express its emotional state using a facial
expression.

The emotional architecture is composed of the emo-
tional communication algorithm (described above), inte-
grated with two sensor processing systems, and a 3D simu-
lated robot environment. We use two open source libraries to
processes sensor data: OpenCV for vision and MARSYAS
for sound processing. With these libraries we were able
to quickly produce some basic sensor processing. Conse-
quently, we could focus on the development of the emotional
algorithm.

OGRE is a 3 dimensional simulated environment which
simulates the motion and cameras of the robot in its envi-
ronment. In addition, participants can be simulated in the
environment by projecting the video from a real camera onto



(a) Friendship being expressed by the robot: The robot
approaches and shows a smile as it likes the participant

(b) Dislike being expressed by the robot: The robot with-
draws with a scowl as it dislikes the participant.

(c) Indifference being expressed by the robot. The robot
stops and has a Neutral face

Figure 2: An example of 3 emotions elicited by a person and
expressed by the robot. a) is Friendship, b) is Dislike c) is
Indifference

the simulated environment. This allows the robot to move
closer and further from the person while the real camera can
stay stationary. The software is designed so that the drivers

Figure 3: Transitions from emotion expression state to out-
put.

Figure 4: Emotional Input Function based on sensory pro-
cessing.

for the simulated cameras and robot control can be swapped
for the drivers of the real cameras and robot.

The robot can be friend or foe: it can either trust or mis-
trust the human with whom it interacts. The emotional cues
that the robot provides are of two types. The first is a facial
expression. The robot has three levels of trust, and three lev-
els of mistrust, and can be indifferent. The second is the dis-
tance between the robot and the user. The robot can choose
to move closer or further away at three different rates, based
on its emotional model.

The sensors we are using are a mono microphone and a
web camera. The microphone records at 44.1 kHz. The
WebCam has 640 x 480 pixel resolution with 24 bit color and
a 10 fps maximum capture rate. The computer that runs the
simulation, including sensor and emotional processing, is a
2.33 GHz Intel Core 2 Duo MacBook Pro with 2 gigabytes
of RAM.

Experimental Setup
We have conducted an experiment with 10 participants.
Each participant interacted with the robot. Participants expe-
rienced two conditions which varied based on the feedback
from the robot. In Condition 1 (Face), the robot displays fa-
cial expressions and approaches or withdraws from the sub-
ject in order to communicate. In addition, a numeric score
is displayed. The score is an accumulation of the happy fa-
cial expressions. The score increases based on the robot’s



perception of the friendliness of the human subject. At each
time step, the score remained the same or increased by 1, 2,
or 3. The score does not change when the robot perceives
the human subject as unfriendly, or feels neutral towards it.
A score increase of 3 represents the maximal level of friend-
liness. In condition 2 (No Face), the robot did not change
facial expressions. Instead, the robot was constantly dis-
playing a neutral face. The robot displayed a score that was
a function of the distance from the subject. At each time
step, the score increased by 0 (no motion or moving away
from the subject), 1, 2, or 3 (maximum amount of motion
per time step towards the subject). The score increased 1
point for each time step that it maintains the minimum al-
lowed distance from the participant.

Participants were randomly divided into two groups of 5.
Each participant interacted with the robot in 2 separate ses-
sions. Each session was composed of 2 trials. Both trials
were of the same condition, either 2 Face trials or 2 No Face
trials. Members of Group A had a face session first and then
a No Face session. Members of Group B had a No Face
session first, and then a Face session.

The first hypothesis that we evaluate is whether people
can improve their interaction with the robot through experi-
ence. To verify this hypothesis, we will compare the scores
of the second session of each group with the scores of the
first session of the other group. For each condition, Face
or No Face, if the group that experienced that interaction in
the second session (trials 3 and 4) performed better than the
other group (which experienced the same condition in their
first session (trials 1 and 2), than we can conclude that ex-
perience is an important factor in improving the quality of
interaction.

The second hypothesis that we evaluate is to what degree
facial expressions facilitate the interaction. To verify this
hypothesis, we will compare the scores achieved in the first
session by each of the groups. If in the first session Group
A, which has the Face session first, outperforms Group B,
then we have an indication that facial expressions are an im-
portant component of communication.

Experiments
Our first hypothesis, that participants will learn through ei-
ther interaction condition, is explored in Figures 5 through 7.
The higher average score in session 2 of each condition com-
pared with session 1 of the same condition, between groups,
indicates that participants do in fact learn the behavior that
is needed to make the robot happy in either condition.

Figure 7 shows that there appears to be a trend in the No
Face condition. The second trial of each No Face session
is an improvement over the first trial. Figure 6 shows that
in the Face condition, the opposite effect can be detected.
This may be an indication of fatigue in the case of the Face
condition. This would suggest boredom if it happened in
the second trial of all sessions, but we have only observed
this trend for the Face condition. The difference in average
values within a session are not statistically significant. In
the future, we will use more participants to test whether the
reason for the drop can be explained by fatigue.

Figure 5: Average score, with standard deviation markers,
among each group per session. The values based on the faces
condition are on the left and the no faces condition is shown
as the right two points. The higher value of Session 2 in
each condition indicates that previous exposure to the face
condition improves the performance of the no face condition
and vice versa. The results are not statistically significant.

Figure 6: Average score, with standard deviation markers,
among the Face trials. The values based on the faces con-
dition appear to increase at later trials, but the second trial
of each session decreases. The results are not statistically
significant.

To verify our second hypothesis, that facial expressions
facilitate the interaction, we look at the values of session 1
in Figure 5. In order for the second hypothesis to be true,
the With Faces Session 1 Group A value would need to be
higher than the No Faces Session 1 Group B value. The
values are very close and not significantly different, so it
is not clear that the facial expressions improved interaction
significantly. This result can be interpreted to mean that the
display of a numeric score overrides the importance of the
robot’s facial expression.

Despite the simplicity of our model, the robot expresses



Figure 7: Average score, with standard deviation markers,
among each group per Session. The values based on the
faces condition appear to increase at later trials, but the sec-
ond trial of each session decreases. The results are not sta-
tistically significant.

enough to let the user know how it feels, which allows the
user to continue or change his behavior based on this feed-
back. Example videos of the robot interaction are available
at: http://binds.cs.umass.edu/EmotionalRobotics.html

Conclusion
The experimental results show that the framework we cre-
ated has promise as an interactive test bed for emotional
communication. The emotions elicited by the robot were
clear enough for users to know whether or not their actions
were pleasing or displeasing for the robot. The simulated
environment also allows for repeated testing without having
to utilize fragile robotic hardware.

More advanced sensor information could allow for many
more options to make the robot happy. For instance if the
robot is could do basic speech processing, then there may
be words that the robot likes or dislikes. If the robot could
do visual shape processing, then certain shapes may be po-
tential inputs. With music processing, certain songs could
effect the robot’s emotional state.

More advanced expressive output would also contribute
to making the robot more believable. For instance, if the
robot had arms, it could use them to express emotions by
gestures. If it had speakers, it could play different sounds
or music. And, with speech software, the robot could say
different phrases or change its tone of voice.

We believe that competitive interaction with the robot,
such as emotional Tug of War, is a useful framework for test-
ing other emotional interactions. With the addition of more
advanced input and output capabilities, we believe that this
platform could develop even further and provide a more in-
teresting environment for research.

The next phase would be to extend our implementation
to create a real Tug-of-War game. This will require using
two computers, one associated with each contestant. It will

also require addressing issues such as synchronizing behav-
iors based on multiple users, communication over a wireless
medium, and doubling the number of sensors used.

Once the system has been tested in a simulated envi-
ronment, the final step would be putting it onto an ac-
tual robot. There are several robotic platforms that could
make use of our emotional software (Azad, Asfour, & Dill-
mann 2007; Brock et al. 2005; Brooks et al. 2004; Dee-
gan, Thibodeau, & Grupen 2006; Edsinger & Kemp 2006;
Katz & Brock 2007; Khatib et al. 1999; Neo et al. 2006;
Nishiwaki et al. 2007; Saxena et al. 2006; Wimboeck, Ott,
& Hirzinger 2007). UMan, for example, is a potential future
platform. UMan is a mobile manipulator, a robot that is both
mobile and capable of manipulating its environment. More
importantly perhaps, UMan has the height of a human, and
is able to create an impression on people. UMan can support
multiple sensors, among which are multiple cameras, force
sensors, and laser scanners. For more details, see (Katz et
al. 2006).

Future work would include discovering ways to char-
acterize the set of human emotions that are easy for the
robot to perceive. Once this is done, the input space of the
robot could be tuned to human emotion rather than arbitrary
sounds or motions. One version of the robot could then have
an affinity to happy and angry people. Another version could
be attracted to sad and scared people, and put off by happy
people.

Finally, we intend to add learning into the emotional
agent. One notable characteristic of emotional behavior is
the ability to adapt to new circumstances. We would like
to create similar behavior in our robot. An agent should
learn what is annoying for other people, as well as what is
not pleasant for itself. Learning how to achieve goals using
emotional reaction can be very beneficial. A robot that can
take advantage of emotional communication may be able to
communicate more efficiently, and change the state of the
world so that it benefits with the robot.
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