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Abstract

We consider probabilistic automata on a general state space and study their com-
putational power. The model is based on the concept of language recognition by
probabilistic automata due to Rabin [20] and models of analog computation in a noisy
environment suggested by Maass and Orponen [12], and Maass and Sontag [13]. Our
main result is a generalization of Rabin’s reduction theorem that implies that under
very mild conditions, the computational power of such automata is limited to regular
languages.

Keywords: probabilistic automata, probabilistic computation, noisy computational sys-
tems, regular languages, definite languages, Markov operators.

1 Introduction

Probabilistic automata have been studied since the early 60’s [18]. Relevant to our line of
interest is the work of Rabin [20] where probabilistic (finite) automata with isolated cut-
points were introduced. Rabin showed that such automata recognize regular languages,
and identified a condition which restricts them to definite languages, also known as “fading
memory” languages. Recall that a definite language is one for which there exists an integer r
such that any two words coinciding on the last r symbols are both or neither in the language.
Paz generalized Rabin’s condition for definite languages and called it weak ergodicity. He
showed that Rabin’s stability theorem holds for weakly ergodic systems as well [17, 18].

In recent years there has been much interest in analog automata and their computational
properties. A model of analog computation in a noisy environment was introduced by Maass
and Orponen in [12]. For a specific type of noise it recognizes only regular languages (see
also [2]). Analog neural networks with Gaussian-like noise were shown by Maass and Sontag
[13] to be limited in their language-recognition power to definite languages. This is in sharp
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contrast with the noise-free case where analog computational models are capable of sim-
ulating Turing machines, and when containing real constants, can recognize non-recursive
languages [22, 23]. It is also important to note the difference between probabilistic au-
tomata and randomized Turing machines; the latter formulate the concept of probabilistic
or randomized computation. A randomized Turing machine updates its state in a precise,
noise-free manner, and has also access to a stream of random bits. Also note that when
the underlying probability distribution has a non-recursive component, such a machine can
recognize non-recursive languages (see [23] for the case of analog machines).

In this work we unravel the mechanisms that restrict the computational power of prob-
abilistic automata. We propose a model which includes the discrete model of Rabin and
the analog models suggested in [12, 13], and find general conditions related to the ergodic
properties of the stochastic kernels representing the probabilistic transitions of the automa-
ton that restrict its computational power to regular and definite languages. The results
concerning definite languages first appeared (without proofs) in the conference paper by the
authors [24].

The probabilistic automata we consider are homogeneous in time, in that their transitions
may depend on the input, but do not depend on time. We denote the state space of the
automaton by Ω and the input alphabet by Σ. We assume that a σ-algebra B of subsets
of Ω is given, thus (Ω,B) is a measurable space. In our general probabilistic model, the
measurable space (Ω,B) as well as the alphabet Σ can be arbitrary.

We denote by P the set of probability measures on (Ω,B) and refer to it as the distribution
space. When dealing with systems containing inherent elements of uncertainty (e.g., noise)
we abandon the study of individual trajectories in favor of an examination of the flow of
state distributions. The discrete-time dynamics we consider is defined by operators acting
in a space of measures, and are called Markov operators.

More precisely, let E be the Banach space of finite signed measures on (Ω,B) with the
total variation norm1

‖µ‖1 := sup
A∈B

µ(A) − inf
A∈B

µ(A),

and let L be the space of bounded linear operators in E with the norm2 ‖P‖1 = sup
‖µ‖1=1

‖Pµ‖1.

Definition 1.1. An operator P ∈ L is said to be a Markov operator if for any probability
measure µ, the image Pµ is again a probability measure. A Markov system is a set of Markov
operators T = {Pu : u ∈ Σ}.

With any Markov system T , one can associate a probabilistic computational system as
follows. At each computation step the system receives an input signal u ∈ Σ and updates
its state. If the probability distribution on the initial state is given by µ0 ∈ P, then the
distribution of states after n+1 computational steps on inputs w = w0, w1, ..., wn, is defined
by

Pwµ0 = Pwn
· . . . · Pw1

Pw0
µ0.

1 A signed measure µ is a function µ : B → R such that µ (∪∞
i=1Ai) =

∑∞
i=1

µ(Ai) for any countable
collection of disjoint sets Ai ∈ B, i = 1, 2, . . . . It is finite if supA∈B |µ(A)| < ∞. For any µ ∈ E , the state
space Ω can be written as the union of disjoint sets Ω+ and Ω−, such that ‖µ‖1 = µ(Ω+)−µ(Ω−) (the Hahn
decomposition) (see e.g. [5] or [15]).

2 Using the Hahn decomposition it can be seen that for any P ∈ L, ‖P‖1 = supµ∈P ‖Pµ‖1 (see e.g. [8]).
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If the probability of moving from state x ∈ Ω to set A ∈ B upon receiving input u ∈ Σ is
given by a stochastic kernel3 Pu(x, A), then Puµ(A) =

∫
Ω

Pu(x, A)µ(dx).
Let A and R be two subsets of P with the property of having a ρ-gap

dist(A,R) = inf
µ∈A,ν∈R

‖µ − ν‖1 = ρ > 0 (1)

A Markov computational system becomes a language recognition device by agreement that
an input string is accepted or rejected according to whether the distribution of states after
reading the string is in A or in R.

Finally, we have the definition:

Definition 1.2. Let µ0 be an initial distribution and let A and R be two bounded subsets
of E that satisfy (1). Let T = {Pu : u ∈ Σ} be a set of Markov operators on E . We say that
the Markov Computational System (MCS) M = 〈E , A,R, Σ, µ0, T 〉 recognizes the subset
L ⊆ Σ∗ if for all w ∈ Σ∗:

w ∈ L ⇔ Pwµ0 ∈ A

w /∈ L ⇔ Pwµ0 ∈ R.

In the following we outline the main results of this paper. As usual, the set of all words
of length r is denoted by Σr and Σ∗ := ∪r∈NΣr. We recall that two words u, v ∈ Σ∗ are
equivalent with respect to L if and only if uw ∈ L ⇔ vw ∈ L for all w ∈ Σ∗. A language
L ⊆ Σ∗ is regular if there are finitely many equivalence classes. L is definite if for some
r > 0, wu ∈ L ⇔ u ∈ L for all w ∈ Σ∗ and u ∈ Σr. If Σ is finite, then definite languages are
regular (see e.g. [20, 21]).

A quasi-compact MCS can be characterized as a system such that Σ is finite and there is
a set of compact operators4 {Qw ∈ L : w ∈ Σ∗} such that lim|w|→∞ ‖Pw −Qw‖1 = 0. Section
2 is devoted to MCSs having this property. Our main result (Theorem 2.4) states that quasi-
compact MCSs can recognize regular languages only. The condition of quasi-compactness
holds under very weak assumptions on the stochastic kernels Pu, and in particular we have:

Theorem A. Let M be an MCS such that B is countably generated5 and the alphabet Σ
is finite. Assume that there exist constant K > 0 and probability measure µ such that
Pu(x, A) ≤ Kµ(A) for all u ∈ Σ, x ∈ Ω, A ∈ B. Then, if a language L ⊆ Σ∗ is recognized by
M, it is a regular language.

3A stochastic kernel on (Ω,B) is a function P (x, A) : Ω × B → R, which is measurable on x for each
A ∈ B, and such that P (x, ·) is a probability measure for any x ∈ Ω.

4An operator Q ∈ L is compact if it maps bounded subsets of E into compact ones. If P is a bounded
operator and Q is compact, then PQ and QP are compact operators. If {Qn}n≥0 are compact operators
(e.g. have finite-dimensional ranges) and limn→∞ ‖Qn − Q‖1 = 0 for some Q ∈ L, then Q is a compact
operator [5].

5 That is, B is generated by a countable collection of sets [16, p. 5]. The assumption is rather standard
in the theory of Markov chains (see e.g. [14, p. 516] and [16, pp. 5–6]) and holds in arguably all practically
interesting cases. This is the case if, for example, Ω is a Borel subset of a Polish space (separable topological
space that is metrizable by a complete metric) and B is its Borel σ-field. The examples of Polish spaces
include : countable discrete sets, R

n, [0, 1]n, R
N, [0, 1]N, and all compact metric spaces (e.g. [10]).
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We consider another condition on the set of operators: an MCS is weakly ergodic if there is
a set of probability measures {νw ∈ P : w ∈ Σ∗} such that lim|w|→∞ supµ∈P ‖Pwµ−νw‖1 = 0.
In Section 3 we carry over the theory of discrete weakly ergodic systems developed by Paz
[17, 18] to our general setup. In particular, if a language L is recognized by a weakly ergodic
MCS, then it is a definite language. In the discrete case such automata were introduced
by Rabin in [20] and in the context of analog computation were first considered in [13]. In
Section 3 we discuss the connection between quasi-compact and weakly ergodic systems. We
find that for a finite alphabet weak ergodicity implies quasi-compactness. This is consistent
with the fact that in this case definite languages are a subclass of regular languages.

As mentioned, the model of language recognition with a gap between accepting and
rejecting spaces agrees with Rabin’s model of probabilistic automata with isolated cut-points
[20] and the model of analog computation in a noisy environment [12, 13].

Example 1.3. In [12, 13], it is assumed that Pu(x, A) = Q (f(x, u), A), where the function
f : Ω × Σ → Ω is responsible for the noise-free dynamics of the computational system, and
Q(x, A) is a stochastic kernel representing the noise. This is interpreted as follows: upon
receiving an input u ∈ Σ the system jumps to f(x, u) and then is dispersed by the noise into
a set A ∈ B with probability Q (f(x, u), A).

We refer to [12] for a long list of examples of analog computational models, including
recurrent analog neural nets (see also in [13]) and stochastic spiking neurons, where the noise
effects can be modelled by stochastic kernels of the form Pu(x, A) = Q (f(x, u), A) . Since
we do not assume that Ω is a subset of a finite-dimensional Euclidean space, our model also
includes: neural networks with an unbounded number of components, networks of variable
dimension (e.g., “recruiting networks”), stochastic cellular automata and stochastic coupled
map lattices [24].

The stochastic kernels Pu we consider are arbitrary. Thus our model addresses both
“noisy computational systems” where the stochastic dynamics is a result of noise that was
added to an underlying deterministic rule, and computational systems which have no under-
lying deterministic rule, but rather update probabilistically. The formulation of the additive
noise model chosen in [12, 13], where Pu(x, A) = Q(f(x, u), A), is one example of a noisy
system; one can consider a more general form of additive noise that depends on the state
and the input as Pu(x, A) = Qx,u (f(x, u), A). The abstract formulation of our results makes
them directly applicable to all such systems. Moreover, it allows us to clarify the underlying
mechanism leading to the restriction of the computational power of probabilistic or noisy
systems, helps us reveal connections between discrete and analog systems, and relates our
results to the work of Rabin [20] on probabilistic finite automata on the one hand, and to
the classical theory of Markov chains in general state spaces on the other hand. Our main
results in Section 2 (and in particular, Theorem A) are expressed for systems with a finite
alphabet Σ, and in this case significantly improve Theorem 3.1 of Maass and Orponen [12]
(see Example 2.12).
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2 The Reduction Lemma and Quasi-compact MCSs

We prove here a general version of Rabin’s reduction theorem (Lemma 2.1) which makes
the connection between a measure of non-compactness of the set {Pwµ0 : w ∈ Σ∗} with the
computational power of MCSs. Then we introduce the notion of a quasi-compact MCS and
show that these systems satisfy the conditions stated in Lemma 2.1.

If S is a bounded subset of a Banach space E, Kuratowski’s measure of non-compactness
α(S) of S is defined as follows [1]:

α(S) = inf{ε > 0 : S can be covered by a finite number of sets

of diameter smaller than ε}. (2)

A bounded set S is totally bounded if α(S) = 0.

Lemma 2.1. Let M be an MCS, and assume that α(O) < ρ, where O = {Pwµ0 : w ∈ Σ∗}
is the set of all possible state distributions of M, and ρ is defined by (1). Then, if a language
L ⊆ Σ∗ is recognized by M, it is a regular language.

Proof. If ‖Puµ0−Pvµ0‖1 < ρ, then u and v are in the same equivalence class with respect to
L. Indeed, using the contraction property of Markov operators6, we obtain for any w ∈ Σ∗,

‖Puwµ0 − Pvwµ0‖1 = ‖Pw (Puµ0 − Pvµ0) ‖1 ≤ ‖Puµ0 − Pvµ0‖1 < ρ.

There are at most a finite number of equivalence classes, since there is a finite covering of O
by sets with diameter less than ρ.

Lemma 2.1 is a natural generalization of Rabin’s reduction theorem [20], where the state
space Ω is finite, and hence the whole space of probability measures P is compact.

Since O ⊂ ∪w∈ΣrPwP for any r ∈ N, it follows from the lemma that if Σ is finite and all
Pw, w ∈ Σr, are compact operators for some r ∈ N, M recognizes regular languages only.

Example 2.2. Let Σ be a finite alphabet. If L ⊆ Σ∗ is recognized by any one of the following
systems, it is a regular language.

(i) Let M be an MCS such that Ω = Z
n and for each u ∈ Σ the sums Σ|j|<mPu(i, j) converge

uniformly in i when m goes to infinity. Then, the operators Pu, u ∈ Σ are compact [3]7.

(ii) Let M be an MCS such that Ω is a compact metric space and B is its Borel σ-field. If
the functions Pu(·, A) are continuous for every u ∈ Σ and A ∈ B, then Pw are compact for
all w ∈ Σ2 (see Theorem 3.1.28 and the end of the proof of Theorem 3.1.31 in [7]).

(iii) Let M be an MCS such that Pu(x, A) =
∫

A
pu(x, y)µ(dy) for some µ ∈ P and functions

pu(x, y) : Ω2 → R, u ∈ Σ, are bounded and measurable in x and y. Then, Pw is compact for
any w ∈ Σ2 (see Lemma A.1 in the appendix).

6Any Markov operator P has unit norm and hence is a contraction: ‖P‖1 = 1 and ‖Pν‖1 ≤ ‖ν‖1 for any
ν ∈ E [15].

7Each Pu, u ∈ Σ is compact as the limit Pu = limm→∞ Pu,m (in the ‖ · ‖1 norm) of the finite-dimensional
projections defined by Pu,m(i, j) = Pu(i, j) if |j| < m and Pu(i, j) = 0 otherwise.
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Recall that a Markov operator P is called quasi-compact if there is a compact operator
Q ∈ L such that ‖P − Q‖1 < 1 [15].

Definition 2.3. An MCS M is called quasi-compact if the alphabet Σ is finite, and there
exist constants r, δ > 0 such that for any w ∈ Σr there is a compact operator Qw which
satisfies ‖Pw − Qw‖1 ≤ 1 − δ.

If an MCS M is quasi-compact, then there exist a constant M > 0 and a collection of
compact operators {Qw : w ∈ Σ∗} such that ‖Pw − Qw‖1 ≤ M(1 − δ)|w|/r, for all w ∈ Σ∗.

The next theorem characterizes the computational power of quasi-compact MCSs.

Theorem 2.4. If M is a quasi-compact MCS, and a language L ⊆ Σ∗ is recognized by M,
then L is a regular language.

Proof. Fix any ε > 0. There exist a number n ∈ N and compact operators Qw, w ∈ Σn

such that ‖Pw − Qw‖1 ≤ ε for all w ∈ Σn. For any words v ∈ Σ∗ and w ∈ Σn, we have
‖Pvwµ0 − Qw(Pvµ0)‖1 ≤ ‖Pw − Qw‖1 ≤ ε. Since Qw (Pvµ0) is an element of the totally
bounded set Qw (P), then the last inequality implies that the set O = {Puµ0 : u ∈ Σ∗} can
be covered by a finite number of balls of radius arbitrarily close to ε.

Doeblin’s condition which follows, is a criterion for quasi-compactness (it should not be
confused with its stronger version, defined in Section 3, which was used in [13]).

Definition 2.5. Let P (x, A) be a stochastic kernel defined on (Ω,B). We say that it satisfies
Condition D if there exist positive constants θ < 1, η < 1, and a probability measure µ on
(Ω,B) such that

µ(A) ≥ θ ⇒ P (x, A) ≥ η for all x ∈ Ω, A ∈ B. (3)

For a set A ∈ B let Ac be its complement in Ω. Since µ(Ac) = 1−µ(A) and P (x, Ac) = 1−
P (x, A), we have the following equivalent formulation of Condition D:

µ(A) ≤ 1 − θ ⇒ P (x, A) ≤ 1 − η for all x ∈ Ω. (4)

Example 2.6. [4] Condition D is satisfied if one of the following conditions holds:

(i) P (x, A) ≤ Kµ(A) for some K > 0 and µ ∈ P. Indeed, in this case (4) holds with
1 − θ = 1/(1 + K) and 1 − η = K/(1 + K).

(ii) Ω = R
n and

∫
|y|<m

P (x, dy) converges to 1 uniformly in x when m goes to infinity.

(iii) P (x, A) ≥ cµ(A) for some c > 0 and µ ∈ P. MCSs defined by means of such stochastic
kernels are considered in [13] and in Section 3 of this paper.

Recall the definition of a countably generated σ-field from footnote 5.

Theorem 2.7. Let M be an MCS such that B is countably generated and Σ is finite. If
for some r ∈ N, all stochastic kernels Pw(x, A), w ∈ Σr, satisfy Condition D, then M is
quasi-compact.
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This theorem together with part (i) of Example 2.6 yield Theorem A announced in the
introduction. The proof, given in Appendix A, follows the proof in [25] that Condition D
implies quasi-compactness for an individual Markov operator.

Example 2.8.

(i) If Ω = {1, 2, . . . , n} for some n ∈ N, any Markov operator is compact. Moreover, (3)
trivially holds with θ = (n − 0.5)/n, any η ∈ (0, 1), and the uniform probability measure
µ. Note that the stochastic matrix representing P can be arbitrarily sparse. It is shown in
[20] that finite probabilistic automata with isolated cut-points (MCSs in a finite space Ω) can
recognize any regular language (see also [12, Theorem 4.1]).

(ii) For some n ∈ N, let Ω = ∪n
i=1Ωi be a partition of the state space Ω into n disjoint subsets

Ωi ∈ B, i = 1, 2, . . . , n. Assume that for any i ≤ n and for all x ∈ Ωi, P (x, A) ≥ γiµi(A)
for some γi ∈ (0, 1) and a probability measure µi concentrated on Ωi. The linear operator

Q ∈ L, associated with the (not stochastic) kernel Q(x, dy) = 1
n
∑n

i=1
γiµi(dy) and defined

by Qν(A) =
∫
Ω

Q(x, A)ν(dx), ν ∈ E , has a finite dimensional range8 and hence is compact.

Letting γ = min1≤1≤n γi, we have ‖P − Q‖1 = 1 − 1
n
∑n

i=1
γi ≤ 1 − γ < 1.

A particular case of this example is: Ω = [0, 1), Ωi =
[
i − 1

n , i
n

)
, and for x ∈ Ωi,

P (x, A) = nλ(A ∩ Ωi), where λ is the Lebesgue measure.

(iii) Consider a model of N MCSs that update asynchronously. Let {Mi}N
i=1 be a set of MCSs

that differ only by their Markov systems. At each computational step one MCS is activated
and the current state of the aggregate is represented by the state of its active component.
The active component is chosen at random: the system Mi is chosen with probability εi.
The aggregate system is then described by the stochastic kernels Pu(x, A) =

∑N
i=1

εiP
i
u(x, A).

It is straightforward to verify that the resulting MCS is quasi-compact if at least one set of
operators {P 1

u : u ∈ Σ}, . . . , {P N
u : u ∈ Σ} is quasi-compact.

The following lemma, whose proof is deferred to Appendix B, gives a complete charac-
terization of quasi-compact MCSs in terms of its associated Markov operators.

Lemma 2.9. If an MCS M is quasi-compact, then α(T ∗) = 0, where T ∗ = {Pw : w ∈ Σ∗}.

It is easy to see that α(O) < supu∈Σ α(PuP) + α(T ), where T = {Pu : u ∈ Σ}. This
observation leads to the following extension of Theorem 2.4 to infinite alphabets, whose
proof is included in Appendix C.

Theorem 2.10. Let M be an MCS such that α(T ) = 0. Assume that there exist constants
r, δ > 0 such that for any w ∈ Σr there is a compact operator Qw which satisfies ‖Pw −
Qw‖1 ≤ 1 − δ. Then, if a language L ⊆ Σ∗ is recognized by M, it is a regular language.

The condition α(T ) = 0 holds if Σ is a compact set and the map P (u) = Pu : Σ → L is
continuous. Consider the following example.

8For any ν ∈ E , Qν can be represented as a linear combination
∑n

i=1
fiµi, where fi are real numbers that

depend on ν.
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Example 2.11. Let M be an MCS such that Σ = [0, 1]m and Pu(x, A) =
∫

A
pu(x, y)µ(dy)

for a probability measure µ and a set of jointly measurable functions pu(x, y), u ∈ Σ, uni-
formly bounded by a constant K > 0 : pu(x, y) < K for all x, y ∈ Ω, u ∈ Σ. Furthermore,
assume that the family of functions {px,y : x, y ∈ Ω}, where px,y(u) = pu(x, y) : Σ → R, is
equicontinuous9. By part (iii) of Example 2.2 and Theorem 2.10, if a language L ⊆ Σ∗ is
recognized by M, it is a regular language.

We conclude this section with comparison of our result to Theorem 3.1 of Maass and
Orponen [12]. In the framework of Example 1.3 they assumed that Ω is a bounded subset of
R

n and the noise has a bounded and piecewise uniformly continuous10 density q(x, y) with
respect to a probability measure µ : Q(x, A) =

∫
A

q(x, y)µ(dy). They showed that such sys-
tems are restricted in their computational power to regular languages. If Σ is a finite set, this
result is a very particular case of Theorem A. If the alphabet is not finite, Theorem 3.1 in [12]
can be modified to fit our general setup as follows. Assume that Pu(x, A) =

∫
A

pu(x, y)µ(dy)
for some µ ∈ P and jointly measurable functions pu(x, y), u ∈ Σ such that pu(x, y) < K for
all x, y ∈ Ω, u ∈ Σ, and some K > 0. Then, for any initial distribution µ0, there exists a
family of measurable functions Π = {πw : w ∈ Σ∗} such that Pwµ0(A) =

∫
A

πw(y)µ(dy) for
all w ∈ Σ∗.

Example 2.12. (A modification of [12, Theorem 3.1]) Assume that Ω is a totally
bounded metric space and, letting px,u(y) = pu(x, y) : Ω → R, x, y ∈ Ω, w ∈ Σ∗, that the
family {px,u(·) : x ∈ Ω, u ∈ Σ} is equicontinuous (or, more generally, piecewise uniformly
continuous). Then, there exist continuous densities πw(y) and the conditions of Lemma 2.1
can be verified by using the Ascoli-Arzela theorem [1, 5] (see also a related [5, Theorem
IV.8.21]).

Interestingly, if Σ is finite and Ω is compact, Example 2.2 (ii) yields a ”dual” to this
one: the system is quasi-compact if the family of functions pu,y(·) = pu(·, y) : Ω → R,
y ∈ Ω, u ∈ Σ, is equicontinuous.

3 Weakly Ergodic MCSs

This section is devoted to MCS with ”fading memory”. We adopt here the terminology
introduced by Paz [17, 18] in the context of discrete automata and refer to such computational
systems as weakly ergodic MCS. Following earlier works of Rabin [20], Paz [17], and Maass
and Sontag [13], we show that the computational power of abstract weakly ergodic systems
is limited to definite languages, and that the computational system is stable with respect to
small perturbations.

9Let Ω be a metric space and denote its metric by ‖ · ‖. A family of functions fa(x) : Ω → R, a ∈ A,

indexed by a set A, is equicontinuous if for any ε > 0 there exists δ > 0 such that ‖x − y‖ < δ implies
|fa(x) − fa(y)| < ε for every a ∈ A.

10That is, there is a finite partition of Ω into disjoint sets Ω1, Ω2, . . . , Ωn such that the functions
qx,i(·) = q(x, ·) : Ωi → R, x ∈ Ω, i = 1, 2, . . . , n, are continuous and the family Qi = {qx,i : x ∈ Ω} is
equicontinuous for each i = 1, 2, . . . , n.
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For any Markov operator P define Dobrushin’s coefficient

δ(P ) := sup
µ,ν∈P

1

2
‖Pµ − Pν‖1 = sup

x,y
sup
A∈B

|P (x, A) − P (y, A)|. (5)

Another characterization of δ(P ) is [6, 8] :

δ(P ) = sup
λ∈N\{0}

‖Pλ‖1

‖λ‖1

, (6)

where N = {λ ∈ E : λ(Ω) = 0}.

Definition 3.1. A Markov system {Pu, u ∈ Σ} is called weakly ergodic if there exist
constants r, δ > 0 such that δ(Pw) ≤ 1 − δ for any w ∈ Σr. An MCS M is called weakly
ergodic if its associated Markov system {Pu, u ∈ Σ} is weakly ergodic.

It follows from the definition and (6) that δ(Pw) ≤ M(1 − δ)|w|/r, for any w ∈ Σ∗ and
some M > 0. Let ν0 be any probability measure and Hw ∈ L, w ∈ Σ∗ one-dimensional (and
hence compact) operators defined by Hwµ = Pwν0 for every µ ∈ P 11. Then (for the second
equality see footnote 2),

‖Pw − Hw‖1 = sup
‖µ‖1=1

‖Pwµ − Hwµ‖1 = sup
‖µ‖1∈P

‖Pw(µ − ν0)‖1 ≤ 2M(1 − δ)|w|/r.

It follows that if Σ is finite, every weakly ergodic MCS is quasi-compact. Moreover, let n ∈ N

be such a large number that supx∈Ω,A∈B |Pw(x, A)− Pwν0(A)| ≤ ‖Pw −Hw‖1 ≤ 0.1 for every
w ∈ Σn. Then, Pwν0(A) ≥ 0.2 implies that Pw(x, A) ≥ 0.1 for all x ∈ Ω, and hence the
stochastic kernel Pw(x, A) satisfies Condition D.

Maass and Sontag used a strong Doeblin’s condition (see Definition 3.4 below) to bound
the computational power of noisy neural networks [13]. They essentially proved (see also
[18, 20]) the following result:

Theorem 3.2. Let M be a weakly ergodic MCS. If a language L can be recognized by M,
then it is definite.

Example 3.3. [24] Consider the aggregate MCS introduced in part (iii) of Example 2.8. It
is weakly ergodic if at least one set of operators {P 1

u : u ∈ Σ}, . . . , {P N
u : u ∈ Σ} is weakly

ergodic.

The ability of a computational system to recognize only definite languages can be in-
terpreted as saying that the system forgets all its input signals, except for the most recent
ones. This property is reminiscent of human short term memory. Definite languages were
introduced by Kleene [11] and studied in detail by Rabin et al in [19, 20, 21]. If the alphabet
is finite, all definite languages are regular, but this is not always the case for an infinite
alphabet12.

11It follows from the Hahn decomposition (see footnote 1) that a linear operator in E is completely defined
by its actions in the subspace of the probability measures.

12Consider the following example: Let Σ = N, and L = Σ ∪ {w ∈ Σ≥2 : w|w| = w|w|−1 + 1}. In this
language, each word of length one must belong to a different equivalence class, and thus the language is not
regular.
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Definition 3.4. Let P (x, A) be a stochastic kernel defined on (Ω,B). We say that it satisfies
Condition D0 if there exist a constant c ∈ (0, 1) and a probability measure µ on (Ω,B) such
that

P (x, A) ≥ cµ(A) for all x ∈ Ω, A ∈ B.

If the stochastic kernel P (x, A) corresponding to a Markov operator P satisfies Condition
D0 with a constant c, then δ(P ) ≤ 1−c [4]. The following example shows that this condition
is not necessary.

Example 3.5. Let Ω = {1, 2, 3} and P (x, y) = 1

2
if x 6= y. Then δ(P ) = 1

2
, but P does not

satisfy condition D0.

We next state a general version of the Rabin-Paz stability theorem [18, 20], which shows
that all weakly ergodic MCSs are stable with respect to small perturbations of the associated
Markov system, i.e. are robust with respect to architectural imprecisions and environmental
noise. We first define two MCSs, M and M̃ to be similar if they share the same measurable
space (Ω,B), alphabet Σ, and sets A and R, and differ only in their Markov operators.

Theorem 3.6. Let M and M̃ be two similar MCSs such that the first is weakly ergodic.
Then there is α > 0, such that if ‖Pu − P̃u‖1 ≤ α for all u ∈ Σ, then the second is also
weakly ergodic. Moreover, the two MCSs recognize the same language.

For the sake of completeness we give a proof in Appendix D.
We conclude with an example of a weakly ergodic MCS where the one-step transition

probabilities Pu(x, A) are localized in an arbitrarily small neighborhood of x (in contrast to
the results of [13], where the kernels are required to have ”wide support”).

Example 3.7. This is a modification of Example 2.8 (ii). Let M be an MCS such that

Ω = [0, 1) and Σ = {0, 1}. Further, let Ωi =
[
i − 1

n , i
n

)
and for x ∈ Ωi, set (with the

convention that n + 1 = 1 and n + 2 = 2)

P0(x, A) =
n

2
λ
(
A ∩ (Ωi ∪ Ωi+1)

)
and P1(x, A) =

n

3
λ
(
A ∩ (Ωi−1 ∪ Ωi ∪ Ωi+1)

)
,

where λ is the Lebesgue measure on [0, 1]. That is, all the transitions are into an inter-
val of length at most 3/n. Since at each computational step, the system may stay in the
set Ωi where it is now located or move to the set Ωi+1, both with probability at least 1/3,

Pw(x, A) ≥
(

1
3

)n−1

· n
3λ(A) for any w ∈ Σn. Thus, Condition D0 holds for any Pw, w ∈ Σn,

and hence M is weakly ergodic.

Appendices

A Proof of Theorem 2.7

For simplicity we assume that r = 1. The proof for the general case is similar, with the only
difference that expansion (7) below should be used for w ∈ Σrm rather than for w ∈ Σm.
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Lemma A.1. [25] Let K(x, A) and N(x, A) be two stochastic kernels defined by

K(x, A) =

∫

A

k(x, y)µ(dx), |k(x, y)| ≤ CK ,

N(x, A) =

∫

A

n(x, y)µ(dx), |n(x, y)| ≤ CN ,

where k(x, y) and n(x, y) are measurable and bounded functions in Ω × Ω, and CK , CN are
constants. Then NK ∈ L is compact.

The proof in [25] is for a special case, so we give here an alternative proof13.

Proof. Let {nm(x, y) : m ∈ N} be a set of simple14 and measurable functions such that
∫

Ω

∫

Ω

|nm(x, y) − n(x, y)|µ(dx)µ(dy) ≤
1

m
,

and define stochastic kernels Nm(x, A) =
∫

A
nm(x, y)µ(dy). Without loss of generality [9,

Lemma 2.10] we can assume that these functions are finite linear combinations

nm(x, y) =

im∑

k=1

ck1{Bm,k×Cm,k}(x, y)

of indicator functions of sets of the form Bm,k × Cm,k, where Bm,k, Cm,k ∈ B. Since the
corresponding operators Nm ∈ L have finite dimensional ranges they are compact. On the
other hand

‖NK − NmK‖1 = sup
‖ϕ‖1=1

‖NKϕ − NmKϕ‖1 ≤ CK/m,

thus, NK = limm→∞ NmK is a compact operator.

Since operators Pu, u ∈ Σ satisfy Condition D, they can be represented as Pu = Qu +Ru,
where the Qu are defined by stochastic kernels having bounded and measurable on Ω × Ω
densities qu(x, y) with respect to µ, and ‖Ru‖1 ≤ 1 − η [25]15. Consider the expansion of
Pw =

∏m
k=1

(Qwk
+ Rwk

), w ∈ Σm in 2m terms:

Pw =

m∏

k=1

Qwk
+

m∑

j=1

(
j−1∏

k=1

Qwk
Rwj

m∏

k=j+1

Qwk

)
+ . . . +

m∏

k=1

Rwk
. (7)

By Lemma A.1, the terms containing Qwi
at least twice as factor are all compact operators in

L. Since there are at most m+1 terms where Qwi
appear at most once, then we obtain that

for any w ∈ Σm there is a compact operator Qw such that ‖Pw−Qw‖1 ≤ (m+1) · (1−η)m−1.

13The lemma follows from Theorems IV.8.9 and VI.8.12 in [5], but we prefer to give here a simple
self-contained proof.

14That is, functions which have only a finite set of values in Ω2\B, where B ⊂ Ω2 is a null-set of the
measure µ ⊗ µ. Simple and µ ⊗ µ-measurable functions are dense in L1(Ω

2,B ⊗ B, µ⊗ µ) [5, p. 125].
15Here the assumption that B is countably generated is used to ensure (by [16, Proposition 1.1]) that there

exists a jointly measurable density.
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B Proof of Lemma 2.9

We need the following proposition suggested to us by Leonid Gurvits.

Proposition B.1. Let Q1, Q2 ∈ L be two compact operators, and let H = {Pj} ⊆ L be a
bounded set of operators. Then, the set Q = {Q2PQ1 : P ∈ H} is totally bounded.

Proof. Let K = {µ ∈ E : ‖µ‖1 ≤ 1} and Xi ⊆ E : i = 1, 2 be two compact sets such
that QiK ⊆ Xi. Define a bounded family F = {fj} of continuous linear functions from X1

to X2 by setting fj = Q2Pj. Since H is bounded, then F ⊆ C (X1, X2) is bounded and
equicontinuous, that is by the Ascoli-Arzela theorem it is conditionally compact. Fix any
ε > 0 and consider a finite covering of F by balls with radii ε. If fi and fj are included in
the same ball, then

‖Q2PiQ1 − Q2PjQ1‖1 ≤ sup
x∈X1

‖fi(x) − fj(x)‖1 ≤ 2ε.

Therefore α(Q) ≤ 2ε. This completes the proof since ε is arbitrary.

From Proposition B.1 it follows that the set {QuPQv : u, v ∈ Σn, P ∈ L, ‖P‖1 = 1} is
totally bounded.

Fix any ε > 0. There exist a number n ∈ N and compact operators Qw, w ∈ Σn such
that ‖Pw − Qw‖1 ≤ ε for all w ∈ Σn. Since any word w ∈ Σ≥2n+1 can be represented in the
form w = uŵv, where u, v ∈ Σn, and

‖Pw − QvPŵQu‖1 = ‖PvPŵPu − QvPŵQu‖1 ≤

≤ ‖PvPŵPu − PvPŵQu‖1 + ‖PvPŵQu − QvPŵQu‖1 ≤

≤ ‖Pu − Qu‖1 + ‖Pv − Qv‖1 ≤ 2ε,

we can conclude that α(T≥2n+1) ≤ 2ε, where T≥2n+1 = {Pw : w ∈ Σ≥2n+1}. It follows that
α(T ∗) = α(T≥2n+1) ≤ 2ε, completing the proof since ε > 0 is arbitrary.

C Proof of Theorem 2.10

The proof is by adaptation of some standard arguments for powers of individual quasi-
compact operators (see Section 5.3 in [15]).

First, letting T n = {Pw : w ∈ Σn}, we observe that α(T n) = 0 for any n ∈ N. Indeed, the
triangular inequality and the contraction property of Markov operators imply, by induction
on n, that for any v, w ∈ Σn

‖Pv − Pw‖1 ≤
n∑

i=1

‖Pvi
− Pwi

‖1. (8)

Roughly, this inequality implies that any finite covering of T by sets of diameters less that
δ yields a finite covering of T n by sets with diameters less that nδ. More precisely, fix any

12



ε > 0 and let {Aj}m
j=1 be m disjoint subsets of T with diameter less than ε/n, whose union

is T. Such a finite covering exists, since T is totally bounded. Let

Bj1,j2,...,jn
= {Pw ∈ Σn : Pwk

∈ A
jk

, k = 1, 2, . . . , n}, jk = 1, 2, . . . , m.

Then, by (8), mn sets Bj1,j2,...,jn
, jk = 1, 2, . . . , m; k = 1, 2, . . . , n, constitute a finite covering

of T n by sets with diameters less than ε. Since ε is arbitrary, it follows that α(T n) = 0.
Next, we will prove that for any ε > 0 there exist nε ∈ N and compact operators

Qw, w ∈ Σnε , such that ‖Pw − Qw‖1 < ε for every w ∈ Σnε . In particular PwP can be
covered by a finite number of balls of radius ε, and hence α(PwP) ≤ 2ε for every w ∈ Σnε .

Let Pu and Pv be any two operators in T r and define Quv = QvPu +PuQu −QvQu. Since
Pu and Pv are bounded, Quv is a compact operator. Moreover,

‖Puv − Quv‖1 = ‖(Pv − Qv)(Pu − Qu)‖1 ≤ ‖Pv − Qv‖1 · ‖Pu − Qu‖1 ≤ (1 − δ)2.

Using the induction, we conclude that for any w ∈ Σmr, m ∈ N, there exists a compact
operator Qw such that ‖Pw − Qw‖1 ≤ (1 − δ)m. For m large enough, (1 − δ)m will be less
than ε.

Fix now any ε > 0. We are in the position to build, using a finite covering of T nε by
sets with diameters at most ε, a finite covering of ∪w∈Σnε PwP = ∪w∈Σ∗PwP by sets with
diameters at most 4ε. Clearly, this will complete the proof because ε is arbitrary.

Let {Cj}n
j=1 be n disjoint subsets of T nε with diameter at most ε, whose union is T nε.

Suppose that Pv ∈ T nε and Pw ∈ T nε are included in the same set, say C1. Consider a finite
covering of PwP by E-balls of radius ε. Since ‖Pv − Pw‖1 ≤ ε, the set PvP can be covered
by the balls with the same centers, but of radius 2ε.

Since v is arbitrary, we conclude that α (∪Pv∈C1
PvP) < 4ε. Therefore, since {Cj}n

j=1 is a
finite covering of T nε, α (∪Pv∈T nε PvP) < 4ε, completing the proof.

D Proof of Theorem 3.6

This result is implied by the following lemma:

Lemma D.1. Let M and M̃ be two similar MCSs, such that the first is weakly ergodic and
the second is arbitrary. Then, for any β > 0 there exists ε > 0 such that ‖Pu − P̃u‖1 ≤ ε for
all u ∈ Σ implies ‖Pw − P̃w‖1 ≤ β for all words w ∈ Σ∗.

Proof. It is easy to verify by using the representation (6) that:

(i) For any Markov operators P, Q, and R, we have ‖PQ − PR‖1 ≤ δ(P )‖Q − R‖1.

(ii) For any Markov operators P, P̃ we have δ(P̃ ) ≤ δ(P ) + ‖P − P̃‖1.

Let r ∈ N be such that δ(Pw) ≤ β/7 for any w ∈ Σr, and let ε = β/r. If ‖Pu − P̃u‖1 ≤ ε for
any u ∈ Σ, then ‖Pw − P̃w‖1 ≤ nε for any w ∈ Σn. It follows that ‖Pw − P̃w‖1 ≤ β for any
w ∈ Σ≤r. Moreover, for any v ∈ Σr and w ∈ Σ∗, we have

‖Pvw − P̃vw‖1 ≤ ‖Pvw − Pv‖1 + ‖Pv − P̃v‖1 + ‖P̃v − P̃vw‖1 ≤

≤ 2δ(Pv) + ‖Pv − P̃v‖1 + 2δ(P̃v) ≤ 4δ(Pv) + 3‖Pv − P̃v‖1 ≤ β,

completing the proof.

13



Acknowledgments

We are grateful to Leonid Gurvits for valuable discussions. We also thank the referee for his
very helpful comments.

References
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