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Overcoming Selective Ensemble Averaging: Unsupervised
Identification of Event-Related Brain Potentials

Daniel H. Lange, Hava T. Siegelmann, Hillel Pratt, and Gideon F. Inbar

Abstract—We present a novel approach to the problem of event-related
potential (ERP) identification, based on a competitive artificial neural net-
work (ANN) structure. Our method uses ensembled electroencephalogram
(EEG) data just as used in conventional averaging, however without the
need for a priori data subgrouping into distinct categories (e.g., stimulus-
or event-related), and thus avoids conventional assumptions on response
invariability. The competitive ANN, often described as awinner takes all
neural structure, is based on dynamic competition among the net neurons
where learning takes place only with the winning neuron. Using a simple
single-layered structure, the proposed scheme results in convergence of the
actual neural weights to the embedded ERP patterns.

The method is applied to real event-related potential data recorded
during a commonodd-balltype paradigm. For the first time, within-session
variable signal patterns are automatically identified, dismissing the strong
and limiting requirement of a priori stimulus-related selective grouping of
the recorded data. The results present new possibilities in ERP research.

Index Terms—Artificial neural network, evoked electrical comprehen-
sive learning.

I. INTRODUCTION

A. Evoked Potentials

Ever since H. Berger’s discovery, that the electrical activity of the
brain can be measured and recorded via surface electrodes mounted on
the scalp [1], there has been major interest in the relationship between
such recordings and brain function. The first recordings conducted by
Berger and his followers were concerned with the spontaneous elec-
trical activity of the brain, appearing in the form of rhythmic voltage
oscillations, which later received the term “electroencephalogram” or
“EEG.” More recent research has concentrated on time-locked brain
activity, related to specific events, external or internal to the subject.
Such evoked signals, also referred to as event-related potentials
(ERP’s), are regarded as manifestations of brain processes related to
preparation for or in response to discrete events that are meaningful
to the subject (e.g., [2]–[4].

The ongoing electrical activity of the brain, the EEG, is comprised
of relatively slow fluctuations, in the range of 0.1–100 Hz, with mag-
nitudes of 10–100�V. ERP’s are characterized by overlapping spectra
with the EEG, but with significantly lower magnitudes of 1–10�V. The
processing method described herein is applicable to a range of vari-
able magnitude brain responses, such as visual-, cognitive-, and move-
ment-related ERP’s, whose signal-to-noise ratio (SNR) ranges from 0
dB downto�15 dB.

The unfavorable SNR requires filtering of the raw signals to enable
analysis of the time-locked evoked brain responses. The most common
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method used for this purpose is signal averaging, synchronized to re-
peated occurrences of a specific event [5]. Averaging-based techniques
assume a deterministic signal within the averaged session, and thus
signal variability can not be modeled unlessa priori stimulus- or re-
sponse-based categorization is available. However, brain research has
evolved to a point where interest is arising to analyze nonstationary
brain processes, where deterministic repeating responses are not likely
(e.g., [6]). In addition, cognitive neuroscience introduces experiments
involving learning, habituation, and memory handling, where again
the evoked brain responses need to be classified and analyzed on a
trial-to-trial basis. It is the purpose of this paper to provide an alter-
native working method to enhance conventional averaging techniques
by automatic identification of the variable signal patterns, thus, facili-
tating the analysis of variable brain responses.

B. Competitive Learning

Competitive learning is an established branch of the general theme
of unsupervised learning [7]. The elementary principles of competitive
learning are [8] as follows:

• Start with a set of units that are all the same except for some ran-
domly distributed parameter which makes each of them respond
slightly differently to a set of input patterns.

• Limit the “strength” of each unit.
• Allow the units to compete in some way for the right to respond

to a given subset of inputs.

Applying these three principles yields a learning paradigm where in-
dividual units learn to specialize on sets of similar patterns and, thus,
become “feature detectors.” Competitive learning is a mechanism well-
suited for regularity detection [9], where there is a population of stim-
ulus patterns each of which is presented with some probability. The de-
tector is supposed to discover statistically salient features of the input
population, without requiring ana priori set of categories into which
the patterns should be classified. Thus the detector needs to develop
its own featural representation of the population of input patterns cap-
turing its most salient features.

Finally, it is worth noting that competitive representations have some
generic disadvantages over distributed representations [10]: they need
one output neuron for each category, thus,N neurons can model only
N categories, compared to2N for a binary code; they are not robust
to neuron failure, which would cause loss of the whole respective cat-
egory; and they cannot represent hierarchical knowledge—there is no
way to have categories within categories (unless thewinner takes all
principle is relaxed).

C. Problem Statement

The major problem lies in the extremely unfavorable SNR of the
evoked responses embedded within the ongoing background brain ac-
tivity. Classification and estimation of the single evoked responses are,
thus, difficult tasks, further complicated due to nonstationarities of the
signal and noise.

A common assumption among most researchers is that the measured
waveform is the sum of a signal component (ERP) and a statistically
independent noise component (EEG). This is more of a definition than
an assumption, since it is only natural to define the signal as the com-
ponent which is correlated with the applied stimulus [11]. It should be
noted that a different hypothesis was also proposed, referring to the
phase spectrum of the post-stimulus EEG; while such phase values are
random at the absence of stimulus, aggregated phase values appear with
repeating stimulus presentation [12]. In practice, however, identical
stimuli do not necessarily evoke identical responses [13]; trial-to-trial
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Fig. 1. The architecture of a competitive learning structure. Competitive
learning takes place in a context of hierarchically layered units, which are
presented as filled (active) and empty (inactive) dots. The winning neurons
suppress the activity of neighboring neurons while exciting following layers.

variability can be substantial, and ERP waveform, amplitude, and la-
tency can change abruptly or progressively in time. Thus, the basic as-
sumption underlying signal averaging and spectral analysis is gener-
ally violated. Several ERP classification procedures have been recently
proposed (e.g., [14]–[16]), however none of them can actually iden-
tify embedded variable ERP waveforms without prior classification or
clustering of the ensembled data and are, thus, unsuitable for on-line
implementation.

The complicated, generally unknown relationships between the
stimulus and its associated brain response, and the extremely low SNR
of the brain responses which are practicallymaskedby the background
brain activity, make the choice of a self organizing structure for
post-stimulus epoch analysis most appropriate. The competitive
network, implemented so that its weights directly converge to the
actual embedded signal patterns while inherently averaging out the
additive background EEG is, thus, a powerful development [17],
lending itself to real time on-line implementations.

II. THE COMPETITIVE NEURAL NETWORK STRUCTURE

A. Theory

A competitive neural network consists of a set of hierarchically lay-
ered neurons in which each layer is connected via excitatory connec-
tions to the following layer. Within a layer, the neurons are divided into
sets of inhibitory clusters in which all neurons within a cluster inhibit
all other neurons in the cluster, which results in a competition among
the neurons to respond to the pattern appearing on the previous layer;
the stronger a neuron responds to an input pattern, the more it inhibits
the other neurons of its cluster.

There are many variations of the competitive learning scheme. We
have selected a single layer structure, where the output neurons are
fully connected to the input nodes and the nonlinearity is implemented
in the learning-phase only. The advantage of using this simple structure
lies in enhanced analysis capabilities of the converged network, as the
weights actually converge to the embedded signal patterns and, thus,

Fig. 2. A sample single realization (dotted) and its constituents (signal-solid,
noise-dashed). SNR = 0 dB. Such realizations, at variable SNR levels, are used
in the simulation study.

form a pattern identification network. The general network structure is
depicted in Fig. 1.

For neuronj to be the winning neuron, its net internal activity level
vj for a specified input patternxi must be the largest among all neurons
in the network. The output signalyj of a winning neuronj is set equal
to one, and all other neural outputs that lose the competition are set
equal to zero.

Letwji denote the synaptic weight connecting input nodei to neuron
j: Each neuron is given a fixed positive synaptic weight, which is dis-
tributed among its input nodes

i

w
2

ji = 1; for all j: (1)

A neuron learns by shifting synaptic weights from its inactive to ac-
tive input nodes. If a neuron does not respond to some input pattern, no
learning occurs in that neuron. When a single neuron wins the compe-
tition, each of its input nodes give up some proportion of its synaptic
weight, which is distributed equally among the active input nodes. Ac-
cording to the standard competitive learning rule, for a winning neuron,
the change�wji applied to synaptic weightwji is defined by

�wji = �(xi � wji) (2)

where� is the learning rate coefficient. The effect of this rule is that
the synaptic weight of a winning neuron is shifted toward the input
pattern; thus, in each learning cycle, the weights of the single winning
neuron actually move toward the respective input pattern. Assuming
zero-mean additive background EEG, once converged, the network op-
erates as amatched filterbank classifier.

B. Simulaton Study

A simulation study was carried out to assess the performance of the
competitive network classification system. A moving average (MA)
process of order eight (selected according to the AIC condition ap-
plied to ongoing EEG [18]), driven by a deterministic realization of
a Gaussian white noise series, simulated the ongoing background ac-
tivity x(n): An average of 40 single-trials from a cognitive odd-ball
type experiment (to be explained in the Experimental Study), was used
as the signals(n): Then, five 100-trial ensembles were synthesized,
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Fig. 3. Dynamic representation of the learning process. The solid line refers to the noise-only trials and the dashed line refers to the signal plus noise realizations.
The convergence patterns and classification confidence values are shown for five SNR levels. The classification confidence breaks down with the fall of SNR,
exhibiting a sharp fall in the range of�10 to�20-dB. RHO refers to (22), and the convergence pattern horizontal axes correspond to the number of iterations.

TABLE I
CLASSIFICATION

RESULTS

Fig. 4. Stimulus-related selective averaging versus spontaneous
categorization. Top row: sample raw target and nontarget sweeps. Middle
row: target and nontarget ERP templates. Bottom row: the neural-network
categorized patterns. The spontaneously categorized ERP’s appear similar to
the stimulus-related averages.

to study the network performance under variable SNR conditions. A
sample realization and its constituents, at an SNR of 0 dB, is shown

in Fig. 2. The simulation included embedding the signals(n) in the
synthesized background activityx(n) at five SNR levels (�20,�10,
0,+10, and+20 dB), and training the network with 750 sweeps (per
SNR level). Fig. 3 shows the convergence patterns and classification
confidences of the two neurons, where it can be seen that for SNR’s
lower than�10 dB the classification confidence declines sharply.

The classification results, tested on 100 input vectors, 50 of each cat-
egory, for each SNR, are presented in Table I; due to the competitive
scheme, Positives and False Negatives as well as Negatives and False
Positives are complementary. These empirical results are in agreement
with corresponding analytical results presented in [19], where exten-
sive statistical analysis of the proposed method is included.

III. EXPERIMENTAL STUDY

A. Motivation

An important task in ERP research is to identify effects related to
cognitive processes triggered by meaningful versus nonrelevant stimuli
(e.g., [4]). A common procedure to study these effects is the classic
odd-ballparadigm, where the subject is exposed to a random sequence
of stimuli and is instructed to respond only to the task-relevant (target)
stimuli. Typically, the brain responses are extracted via selective aver-
aging of the recorded data, ensembled selectively according to stim-
ulus context. This method of analysis assumes that the brain responds
equally to the members of each type of stimulus; however the validity
of this assumption is unknown in the above case where cognition it-
self is being studied. Using our proposed approach,a priori grouping
of the recorded data is not required, thus, overcoming the above se-
vere assumption on cognitive brain function. The results of applying
our method are described below.

B. Experimental Paradigm

Cognitive event-related potential data were acquired during an
odd-ball type paradigm from electrode Pz referenced to the mid-lower
jaw [20], with a sample frequency of 250 Hz. The subject was
exposed to repeated visual stimuli, consisting of the digits “3” and
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“5,” appearing on a PC screen. The subject was instructed to press a
push-button upon the appearance of “5”—thetarget stimulus (20%
of total stimuli), and ignore the appearances of the digit “3” (80% of
stimuli) [21].

With odd-ball type paradigms, the target stimulus is known to elicit a
prominent positive component in the ongoing brain activity, related to
the identification of a meaningful stimulus. This component has been
labeledP300; indicating its polarity (positive) and timing of appear-
ance (300 ms after stimulus presentation). The parameters of theP300

component (latency and amplitude) are used by neurophysiologists to
assess, among other, effects related to the relevance of stimulus and
level of attention (e.g., [21]).

C. Identification Results

The competitive network was trained with 80 input vectors, half
of which were target ERP’s and the other half were nontarget. The
network converged after approximately 300 iterations (per neuron),
yielding a reasonable confidence coefficient of 0.7 [19]. A sample of
two single-trial post-stimulus sweeps, of the target and nontarget aver-
aged ERP templates and of the ANN identified signal categories, are
presented in Fig. 4. The automatic identification procedure has pro-
vided two signal categories, resembling the stimulus-related selective
averaged signals, but requiring further examination as to the source of
the slight differences between the selectively averaged waveforms and
the categorization obtained by the ANN. The categorization process
was consequently repeated, this time using target and nontarget data
separately; the results are presented in Fig. 5. The categorization of
target data yielded 3 ERP patterns, increasing in latency and corre-
sponding to our previous findings of increased latency with prolonged
reaction times [6]. Nontarget ERP analysis yieldedtarget-like P300

waveform meaning that, at least occasionally, target-likeP300 appears
even with nontarget stimuli. This accounts for the above differences and
obviously requires further investigation as to the reliability of selective
event-related data averaging when applied to cognitive brain function
analysis.

IV. DISCUSSION

We have shown via simulation as well as with real ERP data that
variable ERP waveforms can be identified and extracted from noisy
realizations, overcoming the common assumption of response invari-
ability which is essential for stimulus-related selective averaging. The
identification process was evaluated statistically substantiating its cred-
ibility.

The simulation study demonstrated the powerful capabilities of the
proposed network in identifying and classifying the low amplitude sig-
nals embedded within the large background noise. The detection per-
formance declined rapidly for SNR’s lower than�10 dB. Empirically,
high identification performance was maintained with SNR’s of down
to�10 dB, yielding confidences in the order of 0.7 or higher; thus, the
method is applicable to a range of variable magnitude ERP’s, such as
visual- (0 dB), cognitive- (�5 dB), and movement-related (�10 dB)
ERP’s.

The experimental study presented an unsupervised identification and
classification of the raw data into target and nontarget responses, dis-
missing the requirement of stimulus- or event-related selective data
grouping. The result is twofold: 1) the identified patterns generally
resemble conventional selective-average analysis, however 2) the ob-
tained differences have been identified to be the result of unexpected
appearance ofP300-like responses in the nontarget data, further vali-
dating the method and presenting its added value compared to conven-
tional average-based analysis. The presented results indicate that the

Fig. 5. Spontaneous categorization of separated target and nontarget ERP.
(top) target and nontarget ERP (bottom). The neural network categorizations
into three categories marked with solid, dashed, and dotted lines. The
categorized nontarget patterns include aP -like waveform (dashed)
indicating that some of the nontarget trials may include a target-likeP

contribution.

noisy single-trial brain responses may be identified and classified ob-
jectively in cases where relevance of the stimuli is unknown or needs
to be determined (e.g., in lie-detection scenarios [22], and in man-ma-
chine communication [23]).

V. CONCLUSION

Common ensemble averaging suffers from two related main draw-
backs; first, it requiresa priori data categorization (e.g., according to
type of stimulus or response), to increase coherence within each cate-
gory. However, such categorization is not unbiased, as it assumes that
a single experimental parameter controls all the experimental variance.
This is obviously an oversimplification of brain function modeling,
which might introduce erronous results, as demonstrated in this paper.
Second, the analysis of variable responses, that may well be due to a
gradual change in some known experimental parameter, is greatly lim-
ited with conventional averaging. Both of these drawbacks are treated
in this work, presenting a powerful tool for automatic processing of the
noisy single-trial data utilizing the actual embedded signals for spon-
taneous categorization and identification of the hidden ERP patterns.
Overcoming stimulus-related selective averaging with a self-learning
structure provides objective insight into brain function and, thus, opens
new possibilities in ERP research.
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