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The nonparametric nature of this approach enables many
different kinds of sensor biases to be solved. As part of the
implementation we develop some modifications to the common
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all components of the training set.

Manuscript received October 28, 1997; revised February 10, 1999;
released for publication November 24, 1999.

Refereeing of this contribution was handled by S. Shrier.
IEEE Log No. T-AES/36/1/02588.

Authors’ addresses: H. Karniely, Dept. of Mathematics and
Computer Science, Bar-Ilan University, Ramat-Gan, Israel, E-mail:
(haim@interwise.co.il); H. T. Siegelmann, Dept. of Industrial
Engineering and Management, Technion, Haifa, Israel, E-mail:
(iehava@ie.technion.ac.il).

0018-9251/00/$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 1

I.  INTRODUCTION
A. Multiple Sensor Surveillance Systems

Surveillance systems appear in many civilian
and military applications. A surveillance subsystem
is a key part of air traffic control (ATC) systems,
air defense systems, naval command and control
systems and lately even some car fleet management
systems. The objective of a surveillance system is to
calculate and display the states of objects in the real
world based on “raw data” received from sensors.
The objects of interest (“targets”) could be aircraft,
ships, cars, etc. The sensors could be radar, sonar, or
any other sensors, and the state of an object could
be its position, velocities, and possibly additional
characteristics such as identification.

In order to give a complete description of the
“real world” the system is required to obtain target
trajectories. That is, to separate a set of unidentified
measurements into subsets in such a manner that all
measurements within a particular subset are originated
by the same target, while measurements that belong to
different subsets are associated with different targets.
Using techniques of interpolation, extrapolation, and
prediction of trajectory data, the state vector can
be determined at any time, as to build tracks from
targets. The process of data association into targets
and building their tracks is known in the literature as
multiple target tracking.

Fig. 1 illustrates the main functions performed in
the tracking process. This is a repetitive process by
which new measurements received from the sensors
are compared to and associated with tracks that were
build from former measurements. These measurements
are then used to update the tracks they are associated
to, or they initiate new tracks if necessary. The
multiple target tracking process is described in detail
in Section IIA.

Many surveillance systems must utilize multiple
sensors for getting enough raw data needed for their
processing. Different sensors usually have different
coverage areas due, for example, to their geographic
locations, and a system that receives data from
several sensors is able to track targets in larger areas.
Moreover, even when a target is located in an area
that is covered by several sensors, the utilization of
multiple sensors increases the probability of this target
being detected, as well as the frequency at which
measurements of this target will be reported to the
surveillance system.

B. Systematic Errors in Multiple Sensor Surveillance
System

The measurements reported by the sensors include
errors. These errors can be thought of as consisting
of two components: a random component (“noise”),
and systematic component (“bias”). In most multiple
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Fig. 1. Main functions of conventional multiple target tracking algorithm.

target tracking systems, track state estimation as
well as the estimation of track covariance matrices
used in gating calculations and measurement-to-track
correlation criteria are based on Kalman filtering
techniques [19, 20]. One of the assumptions on which
these calculations are based is that a measurement
y(k) can be presented as a linear combination of the
components of the target state vector x(k) corrupted
by uncorrelated noise. Following the notation in
[4, ch. 2]

y(k) = H"x(k) + v (k)

where H is the measurement matrix, and v(k) is a
zero-mean white Gaussian measurement noise with
a known covariance. E[v(k)] = E[y(k) — H*x(k)]

= 0. The existence of systematic errors in sensor
measurements implies that E[y(k) — H*x(k)] is
greater than zero. This results in damages to the
performance of track update, gating calculations,
and measurement-to-track correlation functions. For
these functions to perform adequately, the systematic
errors should be removed in an earlier processing
phase, namely in the preprocessing phase. The process
of removing the systematic errors of the sensor is
referred to as sensor registration, and these errors are
sometimes referred to as registration errors.

In a single sensor system, if the size of the
systematic errors is of an order similar to the random
measurement error, their effect on the accuracy of the
tracks will be of small significance. That is, the tracks
will be biased a bit. Moreover, since these errors will
usually offset measurements of targets that are close
to one another in the same direction, their position
relative to one another will be unchanged. Different
sensors, however, will have different biases which will
result in different offsets in measurements of the same
target, or targets close to one another (see Fig. 2).
Biases that are of small significance in a single
sensor system, may cause a serious degradation in the
performance of a multiple sensor system (as a result
of their effect on the measurement-to-track correlation
and track update functions). The discrepancy between
measurements of the same target received from two
different sensors, may cause the system to “believe”
that they originated from two different targets, as
measurements from one sensor will fail to correlate
to a track initiated from measurement from the other
sensor (see Fig. 3). Even if the system identifies that
the measurements from the different sensors belong to
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Fig. 2. Systematic and random measurement errors.
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Fig. 3. Multiple tracks for single target.
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Fig. 4. Loss of track stability.

the same target, the attempts to combine them into

a single track (representing that target) may cause
this track to “zigzag” as a result of false maneuver
detection, and may even result in the loss of tracking
of the target (see Fig. 4). The primary goal of sensor
registration in multiple sensor systems is therefore to
achieve relative sensor alignment. That is, to achieve
a situation in which the sensors are aligned with
respect to one another. For example, in an aircraft
tracking system with two sensors, a situation in which
measurements from both sensors include an offset
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of 1 km to the south, is much better than a situation
in which the measurements from one sensor include
an offset of 0.5 km to the south and measurements
from the other sensor include an offset of 0.5 km to
the north.

A proper solution of the registration problem
is essential for the success of a multiple sensor
surveillance system. As stated by Dana [1] and
previously by Fischer, Muehe, and Cameron [2]:
“...attempts to net multiple sensors into a single
surveillance system have met with limited success,
due in large part to the failure to register adequately
the individual sensors.”

C. Registration Procedures

Even though sensor registration is considered
a prerequisite for multiple target tracking, there
have been only few publications on the registration
problem. This problem is considered one of the least
understood and documented aspects of multiple sensor
systems [4]. A possible reason for the limited number
of publications is the fact that most research in this
field is performed by a small number of commercial
companies and government institutions which are not
interested in the publication of their developments.

Common solutions to the registration problem
are based on statistical methods: averaging, least
squares estimation, and a generalized least squares
estimation (GLSE) [1]. These solutions are based on
the assumption that the systematic errors stem from
a fixed set of offsets, most commonly fixed offsets
in the range and angle measurements or inaccuracies
in sensor location, and they attempt to estimate the
sizes of these offsets from pairs of correlated plots
(measurements) from two different sensors. In reality,
however, other causes for systematic errors may exist.
For example, different fixed errors in different regions
are a reasonable form of systematic errors, caused
possibly by different weather conditions, or other
conditions in different areas. When the assumptions
of the existing solution do not hold, these solutions
will provide poor performance and they might even
add new errors to sensor measurements.

D. Neural Networks

Neural networks (NNs) are commonly used as
nonparametric function approximators, and are used
to learn input—output mappings. Here we concentrate
on one particular technique, the “supervised” learning
process. This process involves two phases: a training
phase and a working phase. In the training phase the
network is presented with a training set composed
of input—output pairs. Each pair consists of an input
pattern, and a farget value that the network is expected
to produce for this input. The network is to “learn”
how to solve the problem by generalizing from the
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data it is presented with. In the working phase the
network is presented with new inputs and is required
to produce outputs according to what it has learned.
An important feature of NN solutions is that they
are nonparametric (model-free) solutions. The only
information on the function being estimated that is
used in the function approximation process is the
input—output pairs in the training set. Specifically, no
assumptions are made on the form of this function.
For further details on NNs and NN training refer to
[7, 8].

E. Our Contribution

We propose a new nonparametric approach to
sensor registration; that is, we utilize the great power
of NNs as general estimators [15—17] for the task of
sensor registration. This approach does not require
the nature of the systematic errors to be known in
advance, and can therefore solve different kinds
of sensor biases. This is a significant advantage
since not all the sources of registration errors are
currently known. Moreover, as sensor technology
improves, new sources of registration errors will
become significant, making a model-free registration
procedure even more valuable.

In our system a NN is taught to correct plots
from one sensor, so that they agree with the picture
generated by the other (reference) sensor.! In the
training phase, the network inputs are measurements
from the first sensor, and matching measurements
from the second (reference) sensor serve as the
target values. During the training phase the network
will “build” an internal representation of the bias
correction algorithm. When training is finished, the
network will be able to receive a biased plot from the
first sensor as its input, and produce the same plot
with the biases removed from it as its output.

Neural networks for registration purpose is indeed
novel. In our application, both the input and the target
value presented to the network in the training phase
contain random noise components. This is not the
case in most NN applications, where it is assumed
that target values are accurate. As part of our research
we develop modifications to the learning rate and
error function used in the network training algorithm
that compensate for the existence of random noise
components in the target values of the training set.

We experimented with our NN application in
models from the area of aircraft tracking systems that
use radar sensors. We used simulated scenarios to test
the performance of the network for different kinds of
biases and compare it with that of the classical GLSE

'Note that our primary goal is to achieve relative sensor alignment.
Therefore, if we get one sensor to agree with the second sensor, the
overall picture generated by the system will improve tremendously,
even if the reference sensor has biases of its own.
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(generalized least squares estimation) registration
procedure. Our methodology has produced good
results for a wide range of biases, some of which were
not solvable at all using previous methods.

We should note that while our research was
concentrated on the registration problem in aircraft
tracking systems that use radar sensors, similar
approaches are probably applicable for other areas
in which data from several sensors is integrated into
a single system. Moreover, our adjustments to the
error function and learning rate may be applicable to
a large class of network learning problems in which
target values in the training set contain random noise
components.

F. Organization of this Paper

Section II provides an overview of the processing
performed in a multiple target tracking system,
describes quantitative requirements for sensor
registration, lists known sources of registration
errors, overviews existing registration procedures,
and describes the main differences between these
procedures and our new approach. Section III
describes our solution in further detail, covering
both practical implementation issues and aspects
of NN training which we addressed as part of our
research, concentrating on our modifications to the
error function and learning rate. Section IV describes
the method we developed for evaluating network
performance. Section V describes our results and
Section VI provides a summary of our current work
and discusses its limitations as well as subjects for
future work.

II.  PRELIMINARIES: THE REGISTRATION PROBLEM
A. Multiple Target Tracking

This subsection defines some basic terms used
throughout this work, and provides a general overview
of the main functions performed by a multiple target
tracking system. This overview can provide a better
understanding of the role of sensor registration in
the overall framework of a multiple target tracking

system.
1) Definitions:
Target. A target is an object of interst in the real

world (e.g., a car, an aircraft, etc.).

Plot/Measurement. A plot is a raw measured data
reported by a sensor. The plot includes positional
coordinates (of a single target) and is sometimes
extended by more data such as Doppler speed,
identification data, etc. A plot is usually corrupted by
random noise and theoretically can be even a false
alarm. Here we use the terms plot and measurement
interchangeably.

Track. A track is an entity built by a tracking
system to represent an existing target in the
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real world. It consists of smoothed state vector
components that are position coordinates, velocity
coordinates, maneuver data, etc.

2) Main Phases of Processing in Multiple Target
Tracking Systems:

Preprocessing of measurement data: This initial
processing of the “raw” measurement data received
from the sensors prepares it for the next processing
stages. Preprocessing could for instance include
coordinate conversion and transformation, or filtering
of false alarms in areas known to be problematic.
This is also the phase in which the correction of
registration errors should be performed.

Data association: The goal of this phase is to
perform plot-to-track assignments (also known as
plot-to-track correlation). The basic criteria used when
deciding whether to assign a plot to a track is whether
the plot is located within or out of a gate surrounding
this track (see Fig. 2). The gate is calculated from
the covariance matrices of the track and the plot. The
covariance matrix of a plot is calculated from an error
model of the reporting sensor. The covariance matrix
of the track is calculated in the track update phase by
using a Kalman filter and it expresses the uncertainty
in the position of the track resulting from both errors
in the plots it was built from and from the errors
in target dynamics modeling. Much effort has been
to solve conflicts arising when more than one plot
(reported by a single sensor at a given time frame)
falls inside the gate of a single track or when one or
more plots fall in the gates of several tracks. Classical
approaches, such as the nearest neighbor attempt to
achieve unique plot-to-track pairing, where the best
data association hypotheses in terms of maximizing
likelihood is selected and this decision is irrevocable.
Other approaches, such as joint probabilistic data
association (JPDA [23-25]), associate the track with
a weighted average of all (or several) of the plots with
which it can be associated. In multi hypothesis tracking
[21, 22] the data association process can result in
several hypothesis and future plot data can be used
to resolve uncertainty.

Track initiation and update: 'The processing in
this phase depends upon the plot-to-track associations
made by the data association phase. Plots which were
not associated to any existing track serve as candidates
for initiating new tracks. Plots that are associated to
an existing track are used to update its state estimate.
The track and/or the plot are extrapolated/interpolated
to a common reference time. Then they are weighted
together to achieve the new track state estimate. Track
extrapolation and interpolation are enabled due to
target motion modeling. These calculations are based
on a priori knowledge of target dynamics. However,
more than one model can be used to describe target
motion, as done by interactive multiple model (IMM)
algorithms [26, 27]. The weighting of the track
and plot is based on the track and plot covariance
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matrices. The covariance matrix of the track (for the
next processing cycle) is also estimated in this phase.
Gating calculations: The covariance matrices

from the previous phase are used for calculating the
gates for the next phase of data association. Gating
considerations are also part of maneuver detection
algorithms (see Fig. 2). The decision that a target is
performing a maneuver, may have a significant effect

on the processing performed in the track update phase.

B. Quantitative Requirements for Registration

The damages described in Subsection IB (multiple
tracks for a single target, track zigzagging, etc.)
occur when, as a result of registration errors, plots
fall outside the “nonmaneuver gate™ of tracks that
represent their targets. As a result, it is either falsely
assumed that the target which this track represents is
performing a maneuver, or it is falsely assumed that
the plot originated from a different target than the
track. The following analysis is based on Dana [1].

The nonmaneuver gate is defined by the following
criteria:

(=Z-TEp+E)'Z-TT<G

where

Z is the plot (“raw sensor measurement”) position
in system coordinates (approximately normally
distributed),

T is the track (‘“target state estimate”) position
system coordinates (approximately normally
distributed, plot or track are predicted to a common
reference time),

Y p is the plot covariance matrix which is
calculated according to the sensor error model,

Yt is the track covariance matrix, which is
calculated as part of the tracking process,

G is selected from the central y? distribution tables
so that in probability 99% of a plot that measures the
target that the track represents will pass the criteria.

This criteria is designed so that at a required
probability (typically 99%) a plot belonging to the
same target as the track will pass it.> The existence
of systematic errors reduces this probability and
the reduction is largest when a plot from sensor
1 is compared with a track built from plots from
sensor 2. The size of the reduction in this situation is
determined by the size of A = b7 (Zpl +0.5%p2) " 'b,
where b = E[Z —T1], is the difference between the plot
and track resulting from the systematic errors. Dana
continues to derive the maximal acceptable range,

2This gate is used to test whether the difference between the track
and plot can be accounted for by the random measurement errors in
the plot and the uncertainty in the track’s position estimate.

31t is assumed that the probability that the sensor misses the target
represented by the track but reports a measurement of a new target
(or false alarm) that is close enough to the track to pass this criteria
is negligible.
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azimuth, and location offsets. We stop our overview
of his analysis at this point since we are interested
in the part of this analysis that relates to general bias
scenarios.

C. Sources of Registration Error

There are several known sources of registration
errors in radar-based systems. Some of these sources
are [2] range offsets, range scaling, atmospheric
refraction, azimuth offsets, azimuth errors due to
antenna tilt, evaluation offsets, evaluation errors
due to antenna tilt, time offsets and time scaling,
inaccurate radar location, and coordinate conversion
errors. There are sensor-level corrective measures
that are taken in order to overcome several of these
error sources. However, even when all sensor-level
measures are taken the discrepancies between plots
from different sensors are still large enough to cause
the problems described in Subsection IB. In order
to achieve relative sensor alignment a system-level
phase of registration is required. The need for this
second phase can be explained either by the accuracy
of the sensor-level measures being insufficient, or by
the existence of additional error sources which these
measures are not designed to deal with.

D. Registration Procedures

Existing procedures for relative sensor registration
aim at improving the accuracy of the solution
for a subset of the known sources of registration
errors. Registration procedures differ in the offsets
that they attempt to estimate (the error sources
that are considered significant) and in the way
the sizes of these offsets are estimated. Dana [1]
provides an overview of the registration problem,
derives quantitative requirements for registration,
describes existing registration procedures and
resupports the GLSE method previously suggested
by Fischer, Muehe, and Cameron [2] and rejected
on computational grounds. He also demonstrates the
advantages of this solution approach over a group of
earlier registration procedures. In his article, Dana
describes registration procedures designed to deal
with angle offsets, range offsets, combinations of
angle offsets and offsets in sensor location, and
combinations of angle offsets and range offsets. Blom
Hogendoorn and van Doorn [3] describe a registration
procedure developed for ATC systems. Their method
is designed to deal with range, angle, position, and
range gain (range scaling) offsets.

E. Parametric Versus Nonparametric Approaches

Each of the existing registration procedures is
designed to correct a specific set of sensor offsets.
The main advantage of a NN-based solution is that
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the same network can be trained to solve different
kinds of systematic errors. This advantage is a result
of the nonparametric nature of NN solutions. Standard
procedures assume that a certain model describes the
systematic errors, and attempts to estimate the size

of (a small number of) parameters of this model of
their “training phase” (parameter estimation phase).

In contrast, the NN training process can be viewed as
estimating both the error model and its parameters.
This is because the number of free parameters in the
NN (network weights) provides the flexibility required
to model many different bias natures.

The flexibility of our NN solution does have a
price. A procedure that makes specific assumptions on
the nature of the systematic errors will generally have
certain advantages over the NN solution if (and only
if) its assumptions hold. In this work the NN solution
was compared with the GLSE procedure designed
to solve angle and range offsets. The performance
of the GLSE procedure in certain range and azimuth
offset bias scenarios is better than that of the NN
solution. However, the results of the NN solution are
still acceptable. In such scenarios the GLSE procedure
also required less training data than the NN solution
(50-100 plot pairs instead of 150-200 plot pairs).
For training sets of 200 plot pairs the NN solution
is a little more sensitive to target distribution than
the GLSE solution. For the AR2 bias scenario (see
Appendix A), the performance of the “modified error
function” NN solution for different training sets
varied from 91% to 100% (the average was 98.4%),
while the GLSE solution provided 100% of adequate
registration for all training sets. Another advantage
of the GLSE solution over the NN solution is that it
requires less central processing unit (CPU) time for
its training phase. However, while a more specific
solution approach can be expected to provide better
performance when its assumption hold, it should be
noted that the very reason we suggest a NN solution
is the fact that it cannot always be guaranteed that
these assumptions in fact hold.

I1l.  NEURAL NETWORK SOLUTION
A. Solution Overview

1) Network Input and Output Values: We define
the goal of the network to correct a plot from one
sensor (the “unregistered sensor”) to agree with the
picture generated by a second (reference) sensor. As
stated before, our primary goal in the registration
process is to achieve relative sensor alignment. Thus
this goal is adequate even if the reference sensor has
biases of its own.

The input to the network is a plot from the
unregistered sensor, and the output is the correction
that should be applied to this plot. Both the input and
the output correction are in “system coordinates.” That
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is, they are both represented in Cartesian coordinates
relative to a common reference point. We must
emphasize that the Cartesian representation of network
input and output is specific to our implementation
while the general solution approach can support

any other form of input/output representation. The
definition of the network’s output as the correction to
be applied to the input plot (rather than the corrected
plot) is preferred because of scaling reasons. Proper
scaling was found to be crucial to the success of

the training process, and this definition enabled the
network to “concentrate” on the “important” part of
the corrected plot.*

2) Application Considerations: The training set
used to train the network is constructed from pairs
of measurements reported by two sensors which
measure same targets. Each pattern/target pair consists
of a measurement from the unregistered sensor (as
the pattern) and the difference between the two
measurements (as the target value). The pairing of
these measurements can be performed on the basis
of identification data contained in the measurements
(e.g., if and only if (IFF) systems), by the results of
the plot-to-track correlation processing of the target
system after an initial level of registration is achieved
by the use of external means (e.g., radar responders),
or even by manual association performed by the
system operator.

In practice, changes in the environment (e.g.,
changes in weather conditions) may result in changes
in the systematic errors of the sensors, resulting in a
time-dependent nature of the registration errors. The
changes in the registration errors, however, happen
over a much larger time scale than the changes in
target positions, velocities and maneuvers (handled by
track update processing). The common solution is to
periodically collect new sensor data and reestimate the
systematic errors. In our NN approach this translates
to periodically retraining the network with recently
collected data. The nonparametric nature of this
solution approach will allow answering for changes
in both the size and the nature of sensor systematic
errors.

B. Modified Learning Rate and Error Function

The development of a NN-based solution to the
registration problem required addressing different
aspects of NN training. Some of the problems we
dealt with are inherent to any network training
problem, while others are a result of the particular
nature of the registration problem. One subject which

4If we denote the unregistered plot as P’ and the registered plot

as P then ||P’ — P|| < ||P||. However, the correction (P’ — P) is the
component of P that results from the registration errors that we

are attempting to correct. The isolation of this component and its
scaling to a [—1,1] range resulted in significant improvement in the
performance of the network.
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required special attention was the existence of random
error components in both patterns and target values
in the training set. We developed two methods that
improved the performance of the network training
algorithm in the presence of such errors. These
methods involve using a modified error function and
using a different learning rate for each pattern and are
described in detail in this subsection. Other interesting
aspects of our implementation are described in IIIC.

1) Gradient Descent Learning: The network
training process is based on minimizing an error
function with respect to the network weights. It is
aimed at finding a weight vector W', that minimizes
E(W), where W is the vector of all network weights,
and E is the error function. The error E(W) can be
viewed as an estimate of the “distance” between the
function that is performed by a network with weights
W, and the “target function,” which the network is
required to learn. This “estimate” is based on the
network performance for the patterns in the training
set S.

E(W) = E(S,W) usually takes the form E(S,W) =
Y E(pi,W) where the sum runs over all pi € S. The
error for a single pattern E(pi,W) is a measure of
the difference between Oi, the network output for
pattern pi, and Di, the target value for pi. A popular
selection of E(pi,W) is the sum of squares error
E(pi,W) = |Di — Oi||?, where || || denotes the second
norm.

The training process is an iterative process of
weight updating. The required update at each step
of training is determined using the gradient descent
(steepest descent) principle. That is, the minimum
of E(w) is sought by moving in the direction
opposite to the gradient of E with respect to W. The
backpropagation algorithm [10] is used to calculate
the gradient of E with respect to W(AW) and then the
weight vector is updated by setting Wi, |, = Wi—nAW
(n is called the learning-rate parameter). An error
function that takes the form E(S,W) = X E(pi,W),
such as the “sum of squares” error function, treats
all patterns in the training set equally. For such a
function, AW takes the form AW = X AWi, where
AW i is the derivative of E(pi,W) with respect to W.

2) Measurement Errors in Patterns and Target
Values: For the registration problem both the patterns
and targets contain a noise component. The size of
these error components is different from pattern to
pattern. Moreover, we have prior knowledge on the
covariance matrices of these errors for each pattern.’
Each pattern/target pair include one plot from each

51t is a basic assumption in surveillance systems that the sensors
have a known error model from which measurement covariance
matrices can be estimated. For radars it is usually assumed that
range and angle measurements are randomly distributed with known
variances.

of the sensors. Each of the plots can be viewed as
consisting of three components:

Pl1+T+bl+el, P2=T+b2+e2

where P1,P2 are the two plots, T is the true target
position, b1,b2 are the systematic error component
in each of the plots, and el,e2 are the random noise
components in each of the plots.

Our goal is to teach the network to get a plot from
sensor 1 to agree with sensor 2, that is, to map 7 + b1
to T + b2. The size of the systematic error typically
changes very little for close plots (measured by the
same sensor), thus the systematic error at locations
T +bl+el, T+bl, would be almost the same. Since
our input plot is 7 + b1 + el, the required output for
this input is T + b2 + el. Since the plot we have for
the taret value is P2 =T + b2 + ¢2, we can say that,
for the purpose of our learning problem, the random
error in the target value is e2 — ¢l, and its covariance
matrix is (Xp;; + £ p;,), where Xp;,, X p,, are the
covariance matrices of the random error components
of the two plots el,e2.

In practice, we defined the output value for our
network as the required correction (b2 — b1)° and used
P2 — P1 as the target value. This definition does not
however change the random error component in the
output value (e2 —el) as in this case instead of the
“true” target value (b2 — b1) the target value we use is
[(b2 +€2) — (b1 + el)].

3) Modified Learning Rate: The difference
between the output and target value for a “noisy
pattern” may be a result of the noise in the target
value, rather than an error of the network. We
therefore want to learn more from these pattern/target
pairs that include less noise. One way to achieve this
goal is to use a different learning rate for each pattern.
In the weight update stage, instead of W, =W, +
nAW =W, + n(XAWi), weuse W, | =W, + Xni AWi,
where 7i is selected to be smaller for patterns with a
larger noise component.

Our first selection of ni was ni = n/te(Xp;; + X p;).
The learning rate was proportional to the inverse
of the sum of the “size” (variance) of the error
components in the target values. A practical problem
that arose when implementing this solution was that
huge learning rates were reached for patterns with
small random errors. In order to avoid this problem
we used ni = /(b + tr(Xp;; + X p;,)), where the
constant b was added to avoid 7i going to infinity for
small covariance.

Using a different learning rate for each pattern is
equivalent to using a weighted error function in which
each pattern is associated with a different weight, as

[Snil|Di — 0i||*] = Snil||Di — O0i|*] .

6This was done because of scaling considerations.
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Low and Webb suggested the use of weighted error
functions for classification problems [5, 6] in order

to compensate for differences in the distribution

of patterns in the training set and in the actual
population, and deal with different penalties associated
with different kinds of misclassifications. In our
problem the different weight assigned to each pattern
is aimed at learning more from patterns with less
noise.

4) Modified Error Function: The above approach
assigns a different weight to each pattern. Our next
approach is to assign different weights not only
different patterns, but also to different elements of the
output vector in each pattern. In sensor registration,
our goal is to maximize the probability of a plot
from sensor 1 to correlate to a track built from plots
from sensor 2. This is determined by the size of
A= b[(Xpl +0.55p2)7'1bT (see 1IB). Both £ pl and
Y p2 are different from pattern to pattern, as they
depend on the sensor-target geometry. The nature of
the sensor random errors is such that the variance of
the range measurement is typically much less than
that of the angle measurement. Depending on the
sensor-target geometry, this implies that in some cases
the difference in the x-component more dominant in A
and in others, the difference in the y-component will
be more dominant.

Since we actually want to minimize A for each
of the patterns we should replace the standard error
function ||Di—0il|> with \i = (Di — O)[(Xpl +Xp2)~']
-(Di — O0i)" (the 0.5 multiplier is omitted from ¥ p2
since Di, Oi represent two plots and not a plot and a
track). ¥ pl, ¥ p2 are generally not diagonal. However
in order to avoid mixed coefficients and simplify
computations, we used only the diagonal components
of Xpl + Xp2.

Thus for two-dimensional data instead of the
standard squared error function for a single pattern:

E([X0,Y0],[Xd,Yd]) = (Xd — X0)* + (Yd — Yo0)*
we used
E'i(([X0,Y0],[Xd,Yd])
= (Xd —X0)*/Vxi+(Yd—Y0)?/Vyi
where
Vx =Xpl(l,1)+Xp2(1,1)
Vy =2pl(2,2) + £p2(2,2).

It is clear that Ei’ is differentiable, that Ei'(O,D) — 0
as O — D and that Ei'(O,D) =0 when D = 0. E' =

Y E'i is therefore adequate to serve as an error
function. Again, to avoid Ei going to infinity when Vx
or Vy — 0, we limit them from below by replacing Vx
with max(Vx,b) and Vy with max(Vy,b). If the error
variances of all the components of the target value
vector are equal, using such a modified error function
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is equivalent to using a different learning rate for each
pattern, as described in the first part of this subsection.
Our results show that both using a different
learning rate for each pattern and using a weighted
error function each produced improved results in
comparison with backpropagation algorithm using
the classical “sum of squares” error. From these two
methods, the weighted error function produced the
best results.

C. Other Aspects of our NN Solution

1) Network Architecture: In our research we
used a feed-forward network with 2 hidden layers.
We followed the suggestion of Sontag [13] that
networks with two hidden layers are more suited for
complex problem such as control related problems.
The activation function we used for the two hidden
layers was fanh, and the output layer was linear.

Several runs were made to test the performance
of networks with different numbers of neurons in
each layer. Layer sizes of 11.73 for the first layer and
5.29 for the second layer were tested. As a result we
selected an 11-5 architecture which was the smallest
architecture which produced good results. Two of
the larger architectures, 11-29 and 31-29, produced
results that were only slightly better and the smaller
architecture was selected for simplicity. The range of
architectures that was tested was selected according
to sizes commonly used in similar problems. As an
afterthought it is possible that smaller architectures
could have been used. For us, they did not load so
well, but perhaps would have worked with extra NN
tricks and effort.

2) Training Termination: The fact that both input
and target values in the training set contain a random
error component implies that even if the network
learns to correct the bias perfectly the network output
will still not match the target value exactly. Moreover,
because of the different sizes of the random error
components in different plots in the training set,
we cannot define the goal for our training process
as a target value for the average squared error. We
tested several criteria for termination of training
including a “x~ test for goodness of fit to a theoretical
distribution” and a test of the percent of plots that
fall inside a certain gate around their target value.
However our final approach was to go on training
as long as the network performance continues to
improve. This approach provided the best results when
combined with a gradual reduction of the learning rate
as described in the next subsection.

3) Dynamic Adjustment of the Basic Learning Rate:
It is generally accepted that the learning rate should be
adjusted during the learning process’ [11, 12]. After
testing several schemes for modifying the learning

7In this subsection we refer to the adjustment of the “basic”
learning rate. This basic learning rate can then be modified as
described in Section V.
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rate, we adopted the following principle. If the
performance of the network (measured by the percent
of all the patterns for which the output value falls
“close enough” to the target value®) does not improve
for a certain number of epochs, the learning rate
parameter is reduced by 50%. This scheme provided
improved performance in comparison to using a
constant high learning rate and quicker convergence
than using a constant low learning rate.

4) Using Sensor Coordinates as Additional Network
Inputs:  Our motivation for adding sensor coordinates
as network inputs was that the intuitive translation
of most known radar biases to system coordinates
involves using the coordinates of the sensors. This is
true for example for range offsets, azimuth offsets,
regional disturbances in a sector centered at the
sensor, range and azimuth scaling offsets, etc. At first,
this additional data seemed to improve performance.
However, after the modified error function and
modified learning rate were implemented, and proper
input scaling applied, adding this data no longer
contributed to network performance and in certain
scenarios even resulted in slightly worse performance.
It seems that in our case the advantages that can be
gained from this “free data” do not justify the required
increase in the number of adjustable parameters
(network weights).

IV. NETWORK/REGISTRATION PROCEDURE
PERFORMANCE EVALUATION

The network was tested using simulated scenarios.
The use of simulated scenarios enabled testing the
performance of the network for different kinds of
biases and enabled accurate evaluation of network
performance (as the true biases simulated in the
training set can be used in the evaluation process).

The evaluation of existing registration procedures
is based on the difference between the actual and
estimated sizes of the offsets in range and angle
measurements [1]. The evaluation of NN-based
algorithm is usually based on the average squared
error over a reference set. Both these methods cannot
be used “as is” for our problem. The first because it
is adequate only for range and angle offset biases and
the second because it does not match the quantitative
requirements for registration procedures. In this
section we develop an evaluation method that uses
a reference set, but measures performance over this
set in a way that reflects the requirements for a
registration procedure (see IIB).

A. Performance Evaluation Using an Exhaustive
Reference Set

The result of a NN training process is the selection
of network weights. “What the network has learned”

8Where “close enough” is defined by a \i < M criteria.

is therefore not available in a “readable format.” The
only way to determine if the network has correctly
generalized the training data is by running the network
over a reference set (different than the training set)
and evaluating the performance of the network for the
set.

Since the network is trained using simulated
scenarios, we can generate for each training set an
exhaustive reference set that simulates the same biases
(but with no random errors). For our reference set
we selected plots from a tight grid that covers all the
surveillance area (our area of interest). The function
performed by the network is continuous. It is most
reasonable to assume that the function representing
the difference between plots from the two sensors
at a given location is also continuous (or at least
continuous almost everywhere). Therefore, if our
grid is tight enough, the performance for a plot in any
point can be approximately estimated by the average
of the performance for the four corners of the square
in the grid it is located in.

B. Measuring Performance for a Given Reference Set

In order to evaluate the performance of the
network, we propose a single “overall grade”
calculated from the results for all the patterns in this
reference set. This grade was designed to meet the
following requirements.

1) The performance of a registration procedure is
measured in terms of its contribution to the success of
the plot-to-track correlation process.

2) The same grade can be used for all kinds of
systematic errors (this implies, for example, that it
cannot be defined it terms of the maximal acceptable
offsets in range and/or angle measurements).

3) While defining a single grade for the whole
reference set, this grade should be sensitive to the
existence of specific areas where the performance of
the registration procedure is inadequate.

Following IIB the performance of a registration
procedure for a given plot in the reference set, should
be measured by the probability P of plots in that
location succeeding to correlate to their tracks after
they are “corrected” using this procedure. This
probability is determined by°:

A =b(Epl +0.55p2)b”

where b = N1 — P2,'° N1 is the network output when
presented with the plot P1 from the “unregistered”

9If we want to limit the probability for plots from any sensor
correlation a track from the other sensor we could use \ =
max(b(Epl +0.55p2)bT, b(0.55p1 + £ p2)bT). Initial tests showed
that this alternative measure does not modify results significantly.
10Note that both N1 and P2 are from the reference set and therefore
do not contain random measurement errors.
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sensor as input, and P2 is the required output (the plot
from the reference sensor).

Overall network performance is then measured by
the percent of the reference set (representing entire
region) in which the probability P of a successful
correlation (determined by ) is larger than a required
percent; in our case it is 90%. This definition of the
“overall grade” matches all the requirements specified
above.

Note that while the reference set that we use does
not include random measurement errors, the criteria
we use measures the probability of success over
all possible values of random measurement errors.
Rather than simulating random measurement errors
and testing if (b*)(Xpl + 0.5Xp2)(b*)" < G, where b*
contains both specific random errors and the portion
of the systematic errors still left after the network
processing, we test if A = b(Xpl +0.5%p2)bT < g,
where b isolates the systematic error component and
g is calculated based on the analysis presented in
Subsection IIB to guarantee the required probability
of success in the correlation process in the presence of
random measurement errors.

V. RESULTS

The goal of the tests we performed is twofold: to
demonstrate the feasibility of a NN-based registration
approach as well as its flexibility to deal with
different kinds of sensor biases, and to evaluate the
contribution of our modifications to the standard error
function and learning rate to the performance of the
backpropagation training algorithm. We tested the
network-based registration procedures for different
kinds of biases and compared their performance with
that of the GLSE registration procedure developed
to solve range and angle measurement offsets. The
GLSE procedure was selected as a reference algorithm
as it was shown to be superior to a group of earlier
registration procedures, and a detailed description
enabling its implementation can be found in [1].

The remainder of this section is organized as
follows. Subsection VA describes the different kinds
of biases we simulated in our tests; Subsection VB
describes the simulation generator used to generate
the training sets and reference sets; Subsection
VC describes the test procedure used to test each
of the bias scenarios; Subsection VD presents the
performance of the different algorithms for each of
the bias scenarios.

A. Kinds of Biases Used in Our Simulations

The bias scenarios we tested are combinations
of angle offsets, range offsets, position offsets,
range scaling offsets, and “disturbance sectors” with
different values of both range and angle offsets. In
this subsection we define each of these kinds of
biases, a description of the specific biases used in our
tests is given in Appendix A.
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Fig. 6. Network input and output.
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Fig. 7. Fixed offsets in angle measurements.

Fig. 8. Fixed offsets in range measurements.

Let X, Y, denote sensor position.

Let X;, ¥, R;, §; denote the measured values of
target position, target range from the sensor, and target
angle relative to the sensor including random errors
but without systematic errors.

Let X/, Y/, R!, 0 denote the values of plot position,
range from the sensor, and angle relative to the sensor
as reported by the sensor.

If an angle offset of A6 exists then for every plot
0. =6, + Af (see Fig. 7).

If a range offset of AR exists then for every plot
R = R; + AR (see Fig. 8).

If a range scaling offset of r exists then R, = rR;.
(To visualize this error imagine the bias in Fig. 8 with
the size of AR being a linear function of the distance
of the target from the sensor).

If position offsets of AX, AY exist then X! =
X; +AX, Y =Y + AY (see Fig. 12).

If sectorial biases of sizes Af;, AR, exist for the
sector defined by angles 6,0, then:

If 6,<6,<6, then 0 =60,+A0,, R =R, +AR,
Otherwise 6, =6,+ A0, R =R, +AR
(see Fig. 13).
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If we superimpose all these systematic errors we
receive

Xl.’ =X, +AX +r(R, + AR’)COS(HI. + A0
Y =Y, + AY + r(R, + AR")sin(d, + A8')

where A0' = Af, if 6, <6, <0,, and Af otherwise,
AR’ = AR, if §, < 6, <6, and AR otherwise.

B. Simulation Generation Tool

In order to generate training sets and reference
sets for different bias and target scenarios we built a
simulation tool that simulates the behavior of biased
sensors. This program simulates the measurements
that would be received from a pair of sensors with
given biases for a given target set.

The inputs to the simulation generation program
are two files: a sensor file and a target file. The
sensor file includes a description of the sensors,
their locations, the standard deviations of the range
and azimuth measurements of each sensor, and
sensor biases. The biases supported by the simulation
program include all the kinds of biases described in
the previous subsection: range, azimuth, and position
offsets, range scaling factors, and sectorial biases. The
target file defines the locations of the targets, which
determine where plots are measured.

The simulation program calculates the range and
azimuth from each of the sensors to the target, and
adds normally distributed random errors to the range
and azimuth measurements of each of the sensors
(according to the variances defined in the sensor
file). Then, the simulator adds systematic errors to
the “measurements” according to the target locations
and the biases defined in the sensor file. The resulting
simulated measurements are written into the output
file. This process is repeated for each of the targets in
the target file.

C. Test Procedure

How well a registration procedure is able to learn
a given bias depends on the kind of bias as well as
the amount, quality, and distribution of the data in the

training set. We wanted our simulated training sets to
resemble as much as possible real training sets, built
from plot pairs collected from a working system. For
this reason, a random error component was added to
the plots in the training set. The amount of the plot
pairs (pattern/target pairs) in the training sets was

also limited to an amount of the same order as the
amounts used by “classical” procedures (200 pairs).
This amount is limited in real systems by the time that
would be required to collect the data.

In order to avoid dependence of our results on a
specific target scenario we used 50 target files to test
each bias scenario. Each of these target files contained
200 randomly distributed targets (Fig. 9).

For each bias scenario and each of the target files
we generated (using our simulator) a training set
of simulated plot pairs that would be measured by
sensors with the defined biases for that target file. The
network was trained with each of these 50 training
sets separately, using three training algorithms: a
normal backpropagation algorithm, an algorithm that
uses a modified learning rate, and an algorithm using
a modified error function. The latter two algorithms
were designed to take advantage of prior knowledge
on the covariances of the random error components in
patterns and target values, as described in Subsection
IIIB. The GLSE algorithm was also run for each of
these training sets (Fig. 10).

After training (using a given training set) was
finished, network performance was evaluated using
an exhaustive reference set, as described in Section
IV. The performance of a given algorithm for a given
training set, was measured by the percent of the
reference set for which the probability that a plot
(in the same position as the plot in the reference set)
will succeed to correlate to its track is at least 90%
(for more details see Section IV). The performance
of a given algorithm for a given bias scenario is
measured by the average (and standard deviation) of
its performance over the 50 training sets which were
generated for this bias scenario.

D. Simulation Results

Table I and Fig. 9 present the average performance
of the three NN training algorithms as well as the
performance of the GLSE registration procedure for
the different bias scenarios. The entries in the table
display the percent of the exhaustive reference set for
which registration is still inadequate after corrections
are made using a trained network or the results of the
GLSE algorithm. We chose to display this percent,
rather than the percent for which registration is
adequate since this presentation makes the differences
in performance of the different algorithms clearer.
Each line in Table I displays the result for one of the
tested bias scenarios. For each of the four registration
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GLSE
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0.0
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position offsets,

angle, range offsets + range scaling offset,

0.0

0.1
1.3

1.2
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1.8

STD
range offset + sectorial biases (sector

with different angle, range offset).

Function
0.0
0.1
1.6
1.5
0.1
angle, range offsets 2 (range offsets 0.2 km),
angle, range
angle,

6.2
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Modified Error
The AO bias scenario simulates a situation in

which both sensors have offsets in angle
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TABLE I
Error Percents for Different Training Algorithms and Bias Scenarios
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Modified Learning
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Fig. 11.

0.0
0.1
4.5
4.5
0.0
14.8

AVG

Backpropagation
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angle, range offsets 1 (range offsets

angle offsets only,
0.1 km),

Sensors
AO
ARI1
AR2
ARP
RSC

SEC
Table I contains results of the following bias

scenarios (described in detail in Appendix A):

AO
ARI1

procedures the average error percent and standard
deviation over the 50 training sets are presented.
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measurements (but no offsets in range measurements).
This bias is adequately corrected for all the reference
set by both the network-based algorithms and the
GLSE algorithm for all of the tested training sets.
The AR1 and AR2 scenarios simulate offsets
in both angle and range measurements of both
sensors. The AR1 scenario simulates smaller range
offsets (0.1 km), while the AR2 scenario simulates
larger range offsets (0.2 km). In the AR1 scenario
the performance of all the algorithms is almost
perfect. The AR2 bias scenario demonstrates the
possible advantages of the GLSE procedure when its
assumptions hold, as well as the improvement in the
performance of the NN-based algorithm as a result of

our adjustments to the learning rate and error function.

In this bias scenario the GLSE algorithm provides
perfect results for all of the training sets, while the
standard backpropagation algorithm fails on average
to correct 4.5% of the reference set, with a standard
deviation of 3%. The “modified learning rate” and
“modified error function” fail (on average) to correct
adequately 2.6% and 1.6% of the reference set, with
standard deviations of 2.3% and 1.3%, respectively.
The standard deviations indicate that for this bias
scenario, the network-based algorithms are more
sensitive to specific target distribution in the training
set than the GLSE procedure. While this sensitivity
is significantly reduced by our modification to the
error function, the solution of this problem for a
general bias scenario may require the use of “on-line”
measures of training effectiveness as discussed in
Section VI.

The biases simulated in the ARP scenario
are similar to those in the AR2 scenario, except
that constant offsets are added to target positions
(simulating the results of inaccurate sensor location).
This scenario provides the clearest example of the
sensitivity of the GLSE algorithm to the existence
of error sources other than those assumed when it is
implemented. The GLSE algorithm, which corrected
perfectly the biases in the AR2 scenario for all of
the target scenarios, fails to adequately correct 65%
of the reference set when fixed position offsets are
added. The performance of the NN-based algorithms
is almost identical to that in the previous scenario.

The RSC scenario simulates a situation in which
in addition to fixed range and angle offsets, a range
scaling offset exists. The performance of all NN-based
algorithms for this scenario is good. They all correct
adequately 99.9% of the reference set for almost all
the tested scenarios. The GLSE algorithm is again
unable to deal with a bias of an unexpected nature,
and fails to correct adequately 46% of the reference
set.

The SEC scenario is perhaps the most interesting
one. In this scenario one of the sensors was assigned
certain fixed offsets in range and angle measurements
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for a specific sector (—5°-35°) and other offsets for
the rest of the region. Figs. 10 and 11 display the size
of A which is a “normalized error” (see Fig. 8) for
all plots in the reference set, after they are corrected
using the results of the GLSE and modified error
function algorithms that were “trained” with one of
the training sets. While the GLSE algorithm fails

to adequately correct all of the disturbance sector,
most of the errors of the modified error function
algorithm are near the borders of the “disturbance
sector.” The GLSE algorithm uses all plots in the
training set to estimate one set of radar range and
angle offsets. Therefore, the estimates it reaches are
a weighted average of the offsets inside and outside
of the disturbance sector. Because the majority of the
plots in the training set are outside the sector (about
80%), the offsets estimated by the GLSE algorithm
provide acceptable results outside the sector, but
unacceptable results for almost the whole sector. The
standard backpropagation algorithm is also unable to
correct this bias scenario, while the modified learning
rate and modified error function algorithms provide
significantly better results. The average percents

of inadequate registration of the four algorithms

are: GLSE—17.6% (standard deviation: 0.3%),
backpropagation—14.8% (standard deviation: 3.9%),
modified learning rate—7.2% (standard deviation:
2.5%), and modified error function 6.2% (standard
deviation: 1.8%).

Measuring Performance Without Sector Borders:
Since the sizes of the offsets change sharply near
sector borders it is unreasonable to expect any
procedure to identify these borders exactly (unless the
training set includes an excessive amount of data from
the area of these borders). We therefore remeasured
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TABLE II
Average Percents of Inadequate Registration When Ignoring Sector

Borders
Algorithm\nullified area ~ Normal -2 km -5 km —10 km
backpropagation 14.76 13.70  12.43 10.33
modified learning rate 7.05 5.84 4.54 2.79
modified error function 6.21 4.99 3.68 2.13
GLSE 17.65 1693 16.12  14.29

the performance of the different training algorithms
when ignoring 2 km, 5 km, and 10 km regions
around sector borders. The average performances
are given in Table II. While the improvement in the
performance of the GLSE algorithm is proportional
to the percent of the disturbance sector that was
removed, and the improvement in the performance
of the standard backpropagation algorithm is only
slightly larger, the improvement of the modified
learning rate and modified error function algorithms
is greater, indicating again that most of the areas
for which registration is inadequate are near sector
borders.

VI.  DISCUSSION

Adequate sensor registration is considered a
prerequisite for multiple-sensor multiple-target
tracking. In this paper we presented a new
nonparametric approach for sensor registration.
While standard parametric approaches may provide
better results when their assumptions hold, the main
advantage of this new approach is in its ability to
provide a reasonable (though may be not optimal)
solution for many different and unspecified kinds of
sensor biases.

The registration problem was formulated as a NN
training problem. A method to evaluate registration
performance for a general bias scenario was
developed. The network was tested against the GLSE
procedure in several bias scenarios, and the greater
flexibility of the NN solution was demonstrated. As
part of the implementation of this NN solution we
addressed the problem of random noise components
in the target values of the training set. We developed
two adjustments to the network training algorithm
designed to compensate for the existence of these
random error components and demonstrated their
contribution to training performance. Of these two
adjustments, our modification to the sum of squares
error function was shown to produce the best results.

We note that the NN-based approaches require
significantly more processing time for the training
phase than standard registration procedures. In this
paper we made no attempts to optimize this aspect of
the NN-based algorithms; in comparison with the time
required to collect the training data, this processing
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time is not unreasonable. It is nonetheless an issue to
be addressed in future works.

The goal of this work was to demonstrate the
feasibility of a NN solution as well as its potential
advantages over existing registration procedures.

The next step should be the implementation of our
approach for a commercial tracking system. The
remainder of this section discusses subjects that
require further study and suggests possible directions
for future research.

The analysis of the reasonable/expected training
sets for a given surveillance system is a difficult
problem. The required amount of training data as
well as the sensitivity of the training algorithm to the
geographical distribution of the data in the training
set may depend on the actual sensor biases. Future
research may attempt to define conditions on the
amount and/or geographical distribution of the data
in the training set that guarantee training convergence
for different kinds of biases. If such conditions are
defined attempts can be made to control the data
used to form training sets (e.g., by filtering the
collected plot pairs if enough data is available). In
the absence of any prior knowledge, it is generally
recommended to collect as much data as can be
collected under the time limitations that are defined
for this process.

A related subject is the need of an on-line estimate
of the quality/effectiveness of training the network
with a given training set. This need exists when
a priori conditions for “adequate training sets” cannot
be defined. In this case an on-line measure of training
performance can be used to decide, after training with
a given training set is finished, whether to use the
new weights (if the quality of the solution is good)
or to ignore the current training set and reset network
weights to their previous values. Such an estimate
exists for the GLSE registration procedure [1], for the
specific biases it is designed to deal with. A possible
approach for on-line evaluation of a NN registration
procedure is to use a cross-validation scheme such
as that suggested for some earlier NN problems
[9, 18]. The implementation of such an approach for
the registration problem is left for future research.

Another subject which requires further study
is an answer for possible (slow) changes in sensor
biases. This subject is addressed in [3] for a standard
registration procedure. A possible solution to this
problem in a NN environment is to implement
a “smart retraining” scheme. Such retraining is
required to take advantage of the “knowledge”
already present in network weights, while maintaining
the ability to adjust to changes in sensor biases.

NN retraining techniques have been suggested by
previous researchers (see for example [14]). The
implementation of these techniques to the registration
problem is yet another direction for future research.
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Finally we would like to emphasize that from
the point of view of NN learning problems, our

modification to the sum of squares error function and

the learning rate can be used for different learning
problems in which random error components of
different sizes appear in the target values of the

training set. This will occur whenever the target values

in the training sets are measured using sensors for

which a random error model exists. An example for
such a problem is the prediction problem in tracking
systems. Our approach may be used in an attempt to

train a network to predict the position of the target

using a certain number of previous measurements as
inputs, and their successive measurement as the target

value.

APPENDIX A.  DETAILED BIAS SCENARIOS

In this subsection we provide a detailed description
of each of the sensor bias scenarios that we use in our

tests.

Angle Only Biases (AO)

Angle Range and Position Offsets (ARP)

Range Angle X Y Range

Sensor o o, Offset Offset Offset Offset Scaling

Sensor 1 0.1 025 -0.2 046 -03 0.0 1.0
Sensor 2 0.1 025 -02 -0.23 05 03 1.0

X}, = X; — 0.3 + (R, — 0.2)cos(4;, +0.46°)
Y, = Y, + (R, — 0.2)sin(6;, +0.46°)

X!, = X, + 0.5 + (R, — 0.2)cos(6;, — 0.23°)
Yy =Y, +03 + (R, — 0.2)sin(6;, — 0.23°).

Range Scaling Bias (RSC)

Range Angle X Y Range

Sensor o o, Offset Offset Offset Offset Scaling

Sensor 1 0.1 0.265 -0.1 024 0.0 0.0 0.99
Sensor 2 0.1 0.265 0.1 -047 0.0 0.0 1.0

o o, Range Angle X Y Range
Sensor (km) (deg) Offset Offset Offset Offset Scaling

Sensor 1 0.1 025 0.0 0.57 0.0 0.0 1.0
Sensor 2 0.1 025 00 -046 0.0 0.0 1.0

0, = 6, +0.24°

0, =0, —0.47°
R, = 0.99(R,, —0.1)

Sectorial Bias (SEC)

0/, = 6, +0.57°
) =6, —0.46°,

Angle and Range Offset Biases 1 (AR1)

Sensor

Range Angle X Y Range
op o0, Offset Offset Offset Offset Scaling

Sensor 1 0.1 0.15 0.0 0.17 0.0 0.0 1.0
Sensor 2 0.1 0.15 0.0 0.8 0.0 0.0 1.0

Range Angle X Y Range
Sensor o o, Offset Offset Offset Offset Scaling

Sensor 1 0.1 025 -0.1 046 0.0 0.0 1.0
Sensor 2 0.1 025 -0.1 -023 0.0 0.0 1.0

0, = 6, +0.46°

9;/2 =0,-0.23°
R1;1 =R, +0.1
R, =R, +0.1.

Angle and Range Offset Biases 2 (AR2)

Range Angle X Y Range
Sensor o o, Offset Offset Offset Offset Scaling

Sensor 1 0.1 025 -0.2 046 0.0 0.0 1.0
Sensor 2 0.1 025 -02 -0.23 0.0 0.0 1.0

0, = 6, +0.46°

0, = 6, —0.23°
R, =R;+0.2

—5.7°-30°
Sensor 2 0.1 0.15 0.1 046 0.0 0.0 1.0
elsewhere

/ o

By = by —0.17

R;, =Ry

if —5.7° < 6,, <30° then

0y = 0, +0.8% Ry = Rjy
otherwise:

0, =6,+046° R, =R, +0.1.
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