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ABSTRACT 

Attractor systems are useful in neurodynamics, mainly in 
the modeling of associative memory. This paper presents a 
complexity theory for continuous phase space dynamical 
systems with discrete or continuous time update, which 
evolve to  attractors. In our framework we associate com- 
plexity classes with different types of attractors. Fixed 
points belong to the class BPPd, while chaotic attrac- 
tors are in NPd. The BPP=NP question of classical com- 
plexity theory is translated into a question in the realm 
of chaotic dynamical systems. This theory enables an al- 
gorithmic analysis of attractor networks and flows for the 
solution of various problem such as linear programming. 
We exemplify our approach with an analysis of the Hop- 
field network. 

I. INTRODUCTION 

A digital computer can be viewed as a dynamical 
system. It starts at some input state, follows a tra- 
jectory in state space and may converge to an output 
state. Classical physical systems can also be represen- 
ted by dynamical systems; if a system is dissipative, 
flow to an attractor takes place. The fundamental 
difference is that  for physical systems the state space 
is continuous, while for computers the state space is 
discrete. In addition the attractors of physical sys- 
tems are not limited to fixed points but may be chao- 
tic as well. This establishes a correspondence between 
computers and physical systems through the common 
description by dynamical systems. We interpret the 
attractor t o  which a system flows as the output, the 
initial condition plays the role of the input, and the 
flow is the process of computation. What determines 
the output is the location of the initial condition rela- 
tive to the basin boundaries of the various attractors. 
These boundaries may be fractal even if the attrac- 
tors are regular [1,2]. Generally, there is no way to 
predict analytically the basins and their boundaries, 
and thus the general evolution is unpredictable and 
can be very complicated. 

The goal of this research (an extended version will 
be published elsewhere [3]) is twofold: t o  develop an 

interpretation of the physical world as performing a 
processes of computation, and provide a theoretical 
background for an algorithmic and complexity analy- 
sis of computation in an analog computation frame- 
work. There seems to be an algorithmic advantage 
in using analog computers for specific problems. A 
good example is the linear programming problem. In 
another paper we demonstrate that a flow based on 
the principle of Karmark ’ s  interior point algorithm 
has optimal performance [4]. This exemplifies the po- 
wer of using a continuous rather than discrete phase 
space. 

In the rest of the introduction we show the connec- 
tion of our work to other lines of research. In the field 
of neurodynamics both content addressable memory 
and the associative memory are frequently modeled 
by dissipative dynamical systems, for which an energy 
(Lyapunov) functional can be defined. Recalled pat- 
terns reside in the location of local minima of the 
energy. The most popular model is probably the Hop- 
field network [5-71. Consequently, the computational 
capabilities of dynamical systems that are relevant to 
neurodynamics - non-linear dissipative systems - are 
of great interest. 

A similar view of the process of computation from 
an initial condition to an attractor has been used 
to design continuous time algorithms. Brockett in- 
troduced a set of ODE’S that perform various tasks 
such as sorting and solving linear programming pro- 
blems IS]. In the book of Helmke and Moore 193 one 
can find numerous other applications and references. 
Our theory is a continuation of their work, in that it 
provides a natural framework for the complexity ana- 
lysis of continuous time algorithms. Furthermore, we 
allow for attractors which are not fixed points or limit 
cycles. 

We differentiate our work from the following see- 
mingly related work. In an effort to bound the com- 
putational power of continuous systems, one line of 
work was done on performing step by step simula- 
tion of discrete computational models [lo]. Whereas 
this type of work does not express the inherent com- 
putational capabilities of continuous systems, we take 
continuous systems as is, and interpret their evolution 
as a process of computation. 

Analog computation can be utilized to  test possible 

0-7803-43 16-6/98/$10.00 01998 IEEE 

237 



1998 Second International Conference on Knowledge-Based Intelligent Elechonic Systems. 21-23 April 1998, Adelaide, Australia. Editors, LC. Jain and R.KJain 

theoretical limitations of the “physical Church-Turing 
thesis” [ll] that states that the computational capa- 
bilities of any physical device should not exceed (in 
idealization) that of a Turing machine [12]. If a device 
that computes problems that cannot be computed by 
the Turing machine (and therefore digital computers) 
is found, it will challenge the “physical Church-Turing 
thesis” and will therefore be of great interest. Some 
theoretical analog models of computation have the ca- 
pability of computing beyond the Turing limit [13,14], 
but no realizable super-Turing system has been no- 
ted. We do not suggest the current work as providing 
a step towards the identification of super-Turing na- 
tural systems. We rather concentrate on perceiving 
physical systems as efficient special purpose compu- 
ters. 
1.1 The Dynamical Model 

A dynamical system is defined by a set of equations 
that allow to predict the evolution. Such systems may 
be continuous in time, e.g. 

dx - = F ( x ( t ) )  
d t  

where x( t )  is a d-dimensional vector and F is a d- 
dimensional vector function of x. They can also take 
the form of a map: 

x,+1 = T(x,). (1.2) 

Maps can be related to physical systems defined by 
continuous equations like (1.1) by a Poincare‘ map 
[15], by the stroboscopic map and in various other 
ways. For the stroboscopic map, the position is moni- 
tored in intervals of length T, namely at times t = nr, 
where n is an integer. Our results will be presented 
for continuous systems but they hold for maps as well 

Dynamical systems can be classified into two 
classes. Hamiltonian systems which preserve the vc- 
lume of their phase space. For dissipative systems, on 
the other hand, the phase space volume decreases in 
time. As a consequence, dissipative systems typically 
are characterized by the presence and the nature of 
attractors. 

An attractor may be either regular, for example a 
fixed point or a limit cycle; it may also be chaotic. 
The region of phase space that flows to a certain at- 
tractor is called the basin of attraction [15-171. These 
basins are separated by basin boundaries; the basin 
boundaries are either smooth or fractal. 

An attractor is called chaotic if the following two 
conditions exist: (1) Locally, the separation between 
most nearby pairs of points that reside on the attrac- 
tor grows apart exponentially; (2) The attractor is 

[31. 

bounded in phase space. Because of this exponen- 
tial growth, prediction becomes exponentially diffi- 
cult. Their irregularity is part of the intrinsic dyna- 
mics as opposed to  the case of stochastic systems. 

Our interest is in physically realizable, dissipa- 
tive dynamical systems with the extra feature that 
the convergence t o  the attractor is exponentially fast. 
This last requirement does not constrain our theory 
much because such systems are abundant in nature, 
although other possibilities exist (see [3]). These re- 
quire vanishing Lyapunov exponent, that is an addi- 
tional constraint, and therefore these possibilities are 
scarce. We also assume that the initial conditions are 
not in the vicinity of the boundaries. This is true for 
most initial conditions in presence of isolated attrac- 
tors. In this simplified model the richness of com- 
putation stems from the physical complexity of the 
attractors. More general cases are of great interest 
and should be considered in future work. 

1.2 The Computational Model 
The following computational question will be exa- 

mined: starting from some point in phase space, to 
which attractor will the trajectory flow? Our purpose 
is to evaluate the computability and to estimate the 
computational difficulty (e.g. P, NP, etc.), involved in 
answering this question for various types of dynamical 
systems. 

We define a computation for general dissipative 
dynamical systems as follows. The initial condition 
corresponds to the input. The system evolves until 
approaching an attractor. Because the actual conver- 
gence to an attractor takes an infinite time, we do not 
require complete convergence but rather define that 
the calculation is completed when an +vicinity of the 
attractor is approached and the system is verified to 
be confined there. Deciding to stop the computation 
after it is found that the trajectory is attracted to the 
€-vicinity of the attractor may sound obscure because 
the +vicinity may contain several attractors that can 
be resolved only for smaller values of E. This is ac- 
tually not a problem but rather a manifestation of the 
richness of the corresponding computation. As the re- 
solution is increased, new and more refined results are 
found. 
1.3 Computational Complexity 

In discrete time computational models, the compu- 
tation time is quantified by the number of steps until 
halting, and this is used to measure the complexity of 
the process. This definition can be adapted for maps; 
it is however meaningless for continuous time systems. 
A different definition is required, and is considered an 
important issue in computer science (e.g., [18-211). 

To see why the problem of definition of a compu- 
tation time scale is challenging, assume we wish to 
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describe computation by a system of the type (1.1). 
If F is multiplied by a constant a, the computation 
time changes but the complexity should stay unchan- 
ged. Our suggestion is to  introduce a concept related 
to a natural physical time scale: this is the characte- 
ristic computation time scale that will be defined 
by the rate of convergence of the underlying physical 
system. The complexity of the process will be then 
measured as the time - quantified in multiples of the 
time scale - required to complete the process. This 
definition is applied to both continuous and discrete 
time systems. For the discrete case the relation to the 
classical definition of computation time is transparent 
and the difference between these definitions is clear. 

We next wish to emphasize the importance of ha- 
ving the input and output in form of bits, that is, the 
input to the machine can be thought of as a string of 
binary digits and the output adheres to the same res- 
triction. The finiteness of the input and output is a 
crucial requirement in the theory of computing, assu- 
ring that the power of models is purely based on the 
internal structure rather than on higher input/output 
precision. The complexity of computation is defined 
with respect to the length of the input. We take a 
similar approach: to comply with the finiteness of in- 
put and output, and with the decision of ending a 
computation, the computation in a dynamical system 
is defined relatively to a grid. The spacing of the grid 
is of the order of the precision in the initial conditions. 
If the flow converges to  some fixed point x*, the out- 
put will be taken as the closest point on the grid. The 
convergence time t ,  will be so that for all t > t ,  the 
distance from the fixed point satisfies Ix(t) - x*l < e. 
The connection between the precision in the dynami- 
cal evolution and the number of bits in the input is 
given by the log ratio; that is, for grid spacing of size 
E the number of “input bits” is I log e/ .  

We next define the characteristic time scale for 
our class of exponentially converging dissipative sys- 
tems: assume first that the relevant stable attractor 
is a fixed point z*, one can linearize (1.1) around this 
point, to  obtain 

where 6x = x - x* and M is the stability matrix. The 
eigenvalues of the stability matrix are the Lyapunov 
exponents (the fixed point is assumed to  be stable, 
hence all these are negative). The rate of conver- 
gence is determined by the largest of them, that will 
be denoted by -A. In the vicinity of the fixed point 
Ix(t) - x* I N e-xt ,  and 1 /X  is the characteristic time 
scale for convergence. Since the time spent near a 
fixed point dominates the elapsed time (unless the 
initial point is very close to  the boundaries), we can 

choose l / X  as the formal characteristic time of the 
computation. It depends only on the nature of the 
fixed point and not on any details of the physical sys- 
tem. Obviously the numerical value of X depends on 
the units used to measure time. The change of the 
time scale is equivalent to  the multiplication of F in 
(1.1) by a scalar constant. Such a characteristic time 
scale will be found any time exponential convergence 
to an attractor takes place. It may be a fixed point, a 
periodic orbit or even a strange attractor. A similar 
definition can be introduced for maps. If there are se- 
veral attractors the computation time will be defined 
as the smallest characteristic time. 

Having this time scale, we can calculate the time 
complexity of the dynamical system. The convergence 
time t, is what it takes for the trajectory to  flow from 
the initial point to the point where it terminates. It 
is 

tc = t ,  + t f  + tB (1-4) 

where t ,  is the contribution from the linear regime 
(see (1.3)), t B  is the contribution from the vicinity of 
the boundary, if the initial condition is there, while 
tf is the contribution from the other regions. The 
convergence time t, does not constitute the whole 
computation; one also has to  verify that the computa- 
tion has indeed ended. Here the differences between 
the complexity of the attractors come to  sculpt the 
different computation classes in dynamical systems. 

In this paper we illustrate how the theory can be 
used for flows to fixed points and to  isolated chaotic 
attractors. For more applications see [3]. 

11. COMPUTATION FOR SYSTEMS WITH A 
LYAPUNOV (ENERGY) FUNCTIONAL 

First we calculate explicit bounds on the compu- 
tation time for simple systems for which a Lyapunov 
or energy functional satisfying 

(11.1) 

can be defined. In this case the flow (if it is bounded) 
is to fixed points. The fixed points of the continuous 
systems and of the corresponding discrete maps are 
exactly identical, since these are the zeros of F. 

When the phase space velocity of the trajectory 3 
is found to be smaller than E (in appropriate units) 
for some time, it is likely that it is in the €-vicinity of 
a stable fixed point. For some problems it is known 
that the flow is only to  stable fixed points [4]. For 
other situations, one may want to verify that it is in- 
deed in the vicinity of such a point and not near the 
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stable manifold of a hyperbolic point. Our suggestion 
is to conduct a probabilistic check. Assume we want 
to validate convergence of the point j t  that is E-close 
to a suspected fixed pint. We create k new points 
21, ..& by adding to 2 independent noise of strength 
up to E. Now the system is called repetitively on each 
of these points; each time it is stopped after time t ,  
to be specified later. Consequently a cluster of trajec- 
tories in a sphere of radius e around the k e d  point 
is generated. If the fixed point is stable the sphere 
shrinks, while if it is hyperbolic it gets stretched in 
the unstable direction at the rate exit, where A1 is 
the corresponding Lyapunov exponent. After a time 
of the order IZnfl it reaches a distance 6 >> e from 
the fixed point. For a hyperbolic point, there is a fi- 
nite probability p to find one of the IC trajectories at 
a distance between S and $5 from the fixed point. If 
one of the trajectories is found at such a distance we 
conclude that the fixed point is unstable and continue 
the computation from 2 until it runs away to another 
fixed point. The probability that non of the trajec- 
tories reaches the distance between 6 and 36 from an 
unstable fixed point is (1 - P)~, that is exponentially 
small in k.  Note that t ,  = O(JZogeJ) and therefore 
the verification time t ,  is polynomial. It was assu- 
med here that both E and S are in the linear regime 
where (1.3) holds. 

We turn now to estimate the total time of com- 
putation for such systems. The various contributions 
to convergence time (1.4) are evaluated. The time it 
takes to flow through the linear region from it distance 
S of the stable fixed point to  its E-vicinity is 

1 E  t - -1zn-1 € - A  6 (11.2) 

where -A is the largest Lyapunov exponent (note that 
all of them are negative). If the initial point is assu- 
med to be in a narrow region of width Q in the vicinity 
of the basin boundary, tg - O(lZnq1). If E << q the 
computation time is dominated by t,. We focused in 
this work on these cases only. Since at the fixed point 

vanishes, there exists a 6 so that when the dis- 
tance from the fixed point is larger than 6, > U&, 
where is a positive number. Consequently if AE 
is the difference between the maximal and minimal 
values of E ,  the time of flow t f  from the initial point 
to the point of distance S from the fixed point satis- 
fies t f  < e . The exact value v6 depends on the 
particular system at hand. 

We next estimate v6 for two examples: the gradient 
flow and the Hopfield neural network. By the chain 
rule we find 

(11.3) -=E-- dE aE dxi 
d t  axi d t  

that will be useful in what follows. We start with the 
gradient flow (such as in the case of a particle rolling 
down hill) which is defined by 

(11.4) 

In this case % = -IFI2 and vud is just the value of 
lF(x6)I2 at some point 26 at a distance d from the 
fixed point in its linear regime. 

A more sophisticated example is the Hopfield net- 
work [7]. The continuous version of the Hopfield net- 
work is defined by 

with symmetric weights Wij = Wji and oj(xj)  = 
tanhxj. Our analysis allows a generalized Hopfield 
model with the functions aj satisfying: 
(ill ajl 5 1; 
(ii) @g > 0; 

BZu.(x) (iii) is negative for positive x, positive for ne- 
gative x and tends to zero monotonically in the limits 
&too. 
The energy E is defined here by: Fi = -$E, where 
c is a positive constant, leading to 

(11.6) 
d t  

Because of condition (ii), the differential of the energy 
is indeed negative. One finds that U& is proportional 
to IF(xs)12. The convergence time of the generalized 
Hopfield network is thus 

(11.7) 

where xg is some point in the linear regime of the 
k e d  point and C is a constant. 

We conclude that for systems with a decreasing 
energy functional the computation approaches a fixed 
point within a small precision E in time t ,  = ilZng!. 
The verification time is of the same order of magni- 
tude. These systems are thus belonging to  the com- 
putation class P d  of polynomial-dynamics, that cor- 
respond to the class P in the standard computation 
theory, if verification is not required [4]. If it is requi- 
red, these are belonging to BPPd corresponding to 
BPP. 
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111. COMPUTATION FOR CHAOTIC 
SYSTEMS 

Often flow to chaotic strange attractors takes 
place. The behavior of a chaotic system can be very 
rich, exhibiting structures on all scales. These in- 
creasingly rich structures are revealed as the grid of 
resolution is decreased. Systems where the number 
of chaotic attractors is arbitrarily large can be found 
[22,23] and thus many possible output responses are 
possible in the associated computation. Such a situa- 
tion can be found when weak dissipation is applied to  
a chaotic Hamiltonian system exhibiting complicated 
structures that consist of elliptic and hyperbolic fixed 
points as well as of chaotic layers. The Kolmogorov- 
Arnold-Moser and Poincare-Birkhoff theorems assure 
the existence of such structures [15,24]. 

As in the case of regular attractors our focus is 
still on systems for which attractors are approached 
exponentially in time, namely as e-xt. The verifica- 
tion, though, is much harder here, causing longer to- 
tal computation time: determining the location of the 
attractor within a precision E ,  may require exponen- 
tially long time for chaotic systems (it is polynomial 
for fixed points). 

For many dynamical systems strange attractors are 
multifractal: their measure on various points is not 
uniform. Let the measure in a hypersphere of radius E 
on the attractor be pi = Pi . The measure is smallest 
in regions where ai = amW. The time it takes to  
reach the region of the smallest measure is inversely 
proportional to it. Therefore, the time required to  
compute the location of the attractor is 

tA  = eamal In € 1  (111.1) 

Hence: if the attractors are known (for example, 
from previous calculations), and this exponential 
amount of information is kept, the computation time 
required to determine the attractor to which the flow 
takes place is proportional to  I In cl. Otherwise, it is 
exponential in I In €1. 

However we can do better than exponential time 
when the strange attractors are chaotic: consider the 
question “Does a given point x approach a typical 
isolated attractor Q! ? ” The attractor is specified by 
one of its k e d  points, we abuse the notation, using 
Q! both to denote the fixed point and its associated 
attractor. In addition to  CP another real constant U is 
provided so that any periodic orbit that passes in the 
U neighborhood of Q! is on the attractor as well. Now 
the problem is defined as follows: 
Given an initial point with precision E decide 
whether this point is at t racted to the E vicinity 
of the at t ractor  CP. 

We next show that this problem is in the class NPd 
for our model. This is the class of the dynamical sys- 
tems corresponding to the class N P  in the standard 
computational theory. Given an initial point x, there 
is a guess point y so that y is in the U neighborhood 
of Q! and also y belongs to a periodic orbit of length 
O(l logel). These two properties are easy to verify 
and hence it is easy to know that y is on the attrac- 
tor. Furthermore, the periodic orbit of the point y 
is going to pass in the E vicinity of the trajectory of 
x in time O(IogE), provided that x converges to the 
attractor associated with the point 9. If such a point 
y is guessed, the drmat ive  answer can be indeed ve- 
rified polynomially. For this purpose we proved the 
following lemma: 

Lemma 111.1 There is a constant Y such that for any 
initial point x in the basin of attraction of an isolated 
chaotic attractor, that is denoted by one of its fixed 
points 9, there is a point yx so that: 

1. yx is in the v-vicinity of the k e d  point Q!. 

2. yz is on a periodic orbit of length O(l log €1). 
3. The periodic orbit of (2) passes in the E vicinity 

of the trajectory starting from x (towards the 
attractor) in time up to O(llog~I). 

The correctness of this lemma will validate the exis- 
tence of such y and the fact that the above problem is 
indeed in NPd. The justification of the lemma relies 
on the exponential proliferation of periodic orbits [3]. 

Is it possible to verify general chaotic attractors 
in deterministic polynomial time? For specific cases 
where a well defined structure is given by a simple 
rule an affirmative answer is possible. It is believed, 
however, that usually it is not the case. 
Conjecture: Unless all chaotic attractors can be des- 
cribed by simple rules, Pd # NPd 

So far it was assumed in our discussion that the at- 
tractors are isolated. Also the computational proper- 
ties of intermingled attractors and attractors in crisis 
were studied [3]. If the chaotic attractors are inter- 
mingled (riddled basins) only probabilistic computa- 
tion can be defined. Chaotic systems which exhibit 
crisis demonstrate natural undecidable computation. 
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