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Abstract 
W e  present a novel approach to  the problem of Event- 
Related Potential ( E R P )  identification, based o n  a 
competitive Artificial Neural Ne t  (ANN) .  Our ap- 
proach dismisses the need for stimulus- or event- 
related selective averaging, thus avoiding conventional 
assumptions on  response invariability. The  identifier 
is applied t o  real event-related potential data recorded 
during a common odd-ball type paradigm. For the 
first t ime,  within-session variable signal patterns are 
automatically identified, dismissing the strong and 
limiting requirement of a-priori stimulus-related se- 
lective grouping of the recorded data. The  results 
present new possibilities in ERP research. 

1 Introduction 

1.1 Event-Related Potentials 
The ongoing electrical activity of the brain, the EEG, 
is comprised of relatively slow fluctuations, in the 
range of 0.1 - 100 Hz, with magnitudes of 10 - 100 
uV. Event-Related Potentials are characterized by 
overlapping spectra with the EEG, but with signif- 
icantly lower magnitudes of 0.1 - 10 uV. The un- 
favorable Signal to Noise Ratio (SNR) requires fil- 
tering of the raw signals to enable analysis of the 
time-locked evoked brain responses. The most com- 
mon method used for this purpose is signal averag- 
ing, synchronized to repeated occurrences of a spe- 
cific event [l]. Averaging-based techniques assume a 
deterministic signal within the averaged session, and 
thus signal variability can not be modeled unless a- 
priori stimulus- or response-based categorization is 
available. It is the purpose of this paper to provide 
an alternative working method to enhance conven- 
tional averaging techniques by automatic identifica- 
tion of the variable signal patterns, thus facilitating 
the analysis of variable brain responses. 

This work was supported by the Ollendorff Center Research 
Fund. 

1.2 Competitive Learning 
Competitive learning is an established branch of the 
general theme of unsupervised learning [2]. The ele- 
mentary principles of competitive learning are [3]: 

0 Start with a set of units that are all the same 
except for some randomly distributed parame- 
ter which makes each of them respond slightly 
differently to a set of input patterns. 

0 Limit the "strength" of each unit. 

0 Allow the units to compete in some way for the 
right to respond to a given subset of inputs. 

Applying these three principles yields a learning 
paradigm where individual units learn to specialize 
on sets of similar patterns and thus become "feature 
detectors". 

2 The Competitive ANN 

2.1 Theory 
A typical architecture of a competitive learning net- 
work appears in Fig. 1. The network consists of a set 
of hierarchically layered neurons in which each layer 
is connected via excitatory connections to the follow- 
ing layer. Within a layer, the neurons are divided 
into sets of inhibitory clusters in which all neurons 
within a cluster inhibit all other neurons in the clus- 
ter, which results in a competition among the neurons 
to respond to the pattern appearing on the previous 
layer; the stronger a neuron responds to an input 
pattern, the more it inhibits the other neurons of its 
cluster. 

There are many variations of the competitive learn- 
ing scheme. We have selected a single layer structure, 
where the output neurons are fully connected to the 
input nodes and the non-linearity is implemented in 
the learning-phase only. The advantage of using this 
simple structure lies in enhanced analysis capabili- 
ties of the converged network, as the weights actually 
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Figure 1: Competitive learning takes place in a con- 
text of hierarchically layered units, which are pre- 
sented as filled (active) and empty (inactive) dots. 
The winning neurons suppress the activity of neigh- 
boring neurons while exciting following layers. 

converge to the embedded signal patterns and thus 
form a Pattern Identification network. The general 
network structure is depicted in Fig. 2. 
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Figure 2: Open arrows represent inhibitory connec- 
tions and dark arrows represent excitatory connec- 
tions. Lateral inhibition is used to suppress the activ- 
ity of neighboring neurons. 

Let wji denote the synaptic weight connecting in- 
put node i to neuron j .  Each neuron is given a fixed 
positive synaptic weight, which is distributed among 
its input nodes. A neuron learns by shifting synap- 
tic weights from its inactive to active input nodes. 
If a neuron does not respond to some input pattern, 
no learning occurs in that neuron. According to the 
standard competitive learning rule, for a winning neu- 
ron, the change Awji applied to synaptic weight wji 
is defined by: 

Awji = Q ( X ~  - ~ j i )  (1) 

where 77 is the learning rate coefficient. The effect 
of this rule is that the synaptic weight of a winning 
neuron is shifted towards the input pattern; thus once 

converged, the network operates as a matched filter 
bank classifier [4]. 

2.2 Statistical Evaluation 
2.2.1 Identification Property 

The essential identification feature of the proposed 
network is, ideally, an inherent convergence of the 
network weights to the embedded ERP waveforms, 
thus operating as a Pattern Identification network. 
In an optimal scenario, in which the embedded ERP 
patterns and background EIEG are uncorrelated, each 
of the competing neurons :tends to fixate on a differ- 
ent signal type by mapping itself to a specific signal 
waveform [4]. Each single measurement can be rep- 
resented as follows: 

xi( t )  = &si(t) + e i ( t )  , i = 1,2,  ..., N (2) 

where xi,Ei,si and ei represent the recorded i-th 
single-sweep, the energy of' the i-th EP, the normal- 
ized EP waveshape and the embedding background 
EEG, respectively. Assuming P < N correctly iden- 
tified signal categories, where si E {Sj}?=,, using 
normalized inputs and weights and a Gaussian model 
for the background EEG, it can be shown that in 
each iteration the winning neuron shifts its weights 
towards the respective EP pattern. First we calculate 
the neural outputs: 

ok =< xi,  wk > , k = 1..P 

Then, selecting the winning neuron I = argmax{ok}, 
we update the weights of the winning neuron only: 

(3) 1 1 w: = wn-l + 7 7 .  ( X i  - wn-l) 

The winning neuron's output to a matching single- 
trial measurement is increasing monotonically (note: 
lo".)i < 1): 

(4) 1 ~i = <: xi,wL-1 + 7 7 .  (xi - ~ n - 1 )  > 
o",_,+ < x i , q -  ( X i  - WL-1) > 
OXVl + 77' < xi,  2 i  > -77' < xi,  WL-,  > 
oi-1 + 77 * (1 - G k - 1 )  

- - 
= 
- - 

and thus: 
0; 2 C L - 1  (5) 

The pattern identification procedure is unbiased 
and the variance could be made as small as desired by 
decreasing the learning-rate coefficient, as presented 
in the following sections. 

2.2.2 Identification Bias 

The competing neurons are mapped to the input 
space, and the correlation of the neurons' weights 
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with their matching input patterns is ever increasing, 
i.e. the learning processes of the competing neurons 
are assumed to be independent. It is thus sufficient 
to evaluate a single neuron system detecting a con- 
stant signal pattern embedded within random noise 
realizations. Recalling the competitive learning rule, 
applied to the winning neuron, we have: 

W ,  = w,-I+ 77 * (xi - ~ ~ - 1 )  ; 0 < 77 << 1 (6) 

where xi is an arbitrary input vector. Rearranging 
and using the additive signal and noise model yields: 

w, = w,-1 . (1 - 77) + 7 7 .  (s + e i ) ,  (7)  

where s and ei represent the embedded signal pat- 
tern and the embedding noise realizations respec- 
tively. Taking the limit as n approaches infinity, 
where 0 5 77 5 1, E; = en-i, yields the following 
solution [4]: 

M 

e.g. for SNR's of OdB,-20dB, and -40dB, and for a 
distortion coefficient of a = 0.1, the learning rate 
coefficient should not exceed 0.18, 0.0198 and 0.002 
respectively (see Fig. 3). 

LDamhg Rate M. SNR 

5% IlUcl, 

? !  -18 -16 -14 -12 -10 -8 -6 -4 -2 0 
SNR (dB) 

Figure 3: Maximum Learning Rate as a function of 
the S N R ,  at noise fluctuation levels of 10% (solid) 
and 5% (dashed) of the signal energy (top: linear 
scale, bottom: logarithmic scale). 

i = O  

and calculating the expectancy provides the unbiased 
result: 

3 Experimental Results 

2.2.3 Identification Variance 

Assuming zero-mean Gaussian EEG with o2 vari- 
ance, and rewriting the solution of the learning rule 
equation (n indicates the iteration index): 

n--1 

wn = s + 77 * C ( 1  - q ) i .  d i ,  (11) 
i=O 

we can calculate the identification variance. Taking 
the limit as n approaches infinity yields the asymp- 
totic identification variance ( I  denotes the identity 
matrix) [4]: 

E(w, - s)(w, - s)T = - 77 . (T21 (12) 
2-7) 

2.2.4 Bounding the Learning Rate 

The weight fluctuations due to the variance of esti- 
mation can be bounded as follows. Requiring Cw, 5 
a .  E .  I where e,,, a and E are the estimation co- 
variance matrix, the distortion coefficient, and the 
energy of the signal, yields the bound: 

3.1 Experimental Paradigm 
Cognitive event-related potential data were acquired 
during an odd-ball type paradigm from electrode Pz 
referenced to the mid-lower jaw, with a sample fre- 
quency of 250 Hz. The subject was exposed to re- 
peated visual stimuli, consisting of the digits '3' and 
' 5 ' ,  appearing on a PC screen. The subject was in- 
structed to press a push-button upon the appearance 
of '5' - the Target stimulus, and ignore the appear- 
ances of the digit '3' [5 ] .  

With odd-ball type paradigms, the Target stimulus 
is known to elicit a prominent positive component in 
the ongoing brain activity, related to the identifica- 
tion of a meaningful stimulus [6]. This component has 
been labeled P300, indicating its polarity (positive) 
and timing of appearance (300 ms after stimulus pre- 
sentation). The parameters of the P300 component 
(latency and amplitude) are used by neurophysiolo- 
gists to assess, among other, effects related to the 
relevance of stimulus and level of attention (e.g. [7]). 

3.2 Identification Results 
The competitive network was trained with 80 input 
vectors, half of which were Target ERP's and the 
other half were Non Target. The network converged 
after approximately 300 iterations (per neuron). A 
sample of two single-trial post-stimulus sweeps, of 
the Target and Non-Target averaged ERP templates 
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and of the NN identified signal categories, are pre- 
sented in Fig. 4. The automatic identification proce- 
dure has provided two signal categories, resembling 
the stimulus-related selective averaged signals, but 
requiring further examination as to the source of 
the slight differences between the selectively averaged 
waveforms and the categorization obtained by the 
ANN. The categorization process was consequently 
repeated, this time using Target and Non-Target data 
separately; the results are presented in Fig. 5. The 
categorization of Target data yielded 3 ERP patterns, 
increasing in latency and corresponding to our previ- 
ous findings of increased latency with prolonged re- 
action times [5]. Non-Target ERP analysis yielded 
Target-like P300 waveform meaning that, at least 
occasionally, Target-like P300 appears even with Non- 
Target stimuli. This accounts for the above differ- 
ences and obviously requires further investigation as 
to the reliability of selective event related data aver- 
aging when applied to cognitive brain function anal- 
ysis. 
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Figure 4: Top: sample raw Target and Non-Target 
sweeps. Middle: Target and Non-Target ERP tem- 
plates. Bottom: the N N  categorized patterns. 

4 Conclusion 
It has been shown that variable ERP waveforms can 
be identified and extracted from noisy realizations, 
overcoming the common assumption of response in- 
variability which is essential for stimulus-related se- 
lective averaging. The identification process was eval- 
uated statistically substantiating its credibility. 

The experimental study presented an unsupervised 
identification of the raw Target and Non-Target re- 
sponses, dismissing the requirement of stimulus- or 
event-related selective data grouping. The result is 
two-fold: (a) the identified patterns generally resem- 
ble conventional selective-average analysis, however 
(b) the obtained differences have been identified to 
be the result of unexpected appearance of P300-like 
responses in the Non-Target data, further validating 

-4 1 -=- 
0.5 

Seconds 
0.5 

Seconds 
ANN Cacagorizetion ANN CatewlzeUon 

Figure 5:  Top: Target and Non-Target ERP’s. Bot- 
tom: The A N N  categorizations. The categorized 
Non- Target patterns include a P300 -like waveform 
(dashed) indicating that sonae of the Non- Target trials 
may  include a target-like P3oo contribution. 

the method and presenting its added value compared 
to conventional average-based analysis. 
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