
Applying Modular Networks and Fuzzy-Logic controllers to nonlinear Flexible 

Structures 

Hava T. SiegeImam*, Azmon Ofki**, Hugo Guterman+ 

*Faculty of Industnal Engineering and Management Technion, Haifa 32000 Israel 
**Dept. of Mechanical Engineering Technion ,Haifa 32000 Israel 

+Dept. of Electrical & Computer Engineering Ben-Gurion University of The Negev, Beer-Sheva, 84105 Israel 

Abstract - This paper describes a computer simulation 
analysis of modular networks and fuzzy-logic controllers for 
the motion control of 2-D nonlinear flexible structures .The 
Stochastic-Gradient Learning Algorithm using modular 
networks is presented and applied as two inputs one output 
controller. The self l e m g  process of the Modular 
Networks consists of a set of LQK. Each one of the LQR 
was optmized to control a different zone, a state space. The 
trained controller is used to actually control the system. The 
two methods are compared quantitatively though the work 
done, performance index (settling time, energy consumption 
and over shoot). The comparison shows the advantage of the 
MN control method having better performance index results 
and requires less effort in the tuning stage. 
1. Introduction 
Flexible structures such as solar panels, large 

antennas and huge frame truss structures mounted on 
space stations are designated as large space structures 
(LSS). With the increase in space activity the use of 
light flexible structures has gained importance as a 
mean to reduce the high cost of launchmg masses into 
space. LSS are characterized by IOW natural 
frequencies and inherent low damping. The decrease 
in the weight of a LSS affects its flexibility, which in 
turn demands tighter active control of the system. 
Non-linearities are from the satellites which cannot be 
determined with the precision and certainty provided 
by traditional formulations. more, structures 
undergo changes during their lifetime which 
contribute to the uncertainties and make the control 
mission even harder. For simplicity and reliability, 
LSS employ passive vibration absorbers, e.g. mass- 
dampers[ 1-21? these devices suppress vibration and 
maintain displacements of the structure within an 
admissible operation envelope. In the last decade, 
combinations of active and passive controls were 
introduced 131 and the use of active controllers to 
achieve accuracy in the motions of flexible structures 
became a major factor in their construction because of 

their ability to increase the performance of the system 
and suppress it’s vibrations[4-61. The non-linearities, 
introduced by excitation inputs and the large 
displacements of the structure, can be controlled only 
by a complex non-linear active control. 
In th~s  paper we present and compare numerical 
simulations of two methods for nonlinear control of 
flexible solar panel mechanics, based on the ‘mass- 
parameters’ method. The control law strategy for the 
flexible solar panel model was to reach steady state 
x = 3 = 0 by fast suppression of the structure’s 
vibrations. In the first meth@ the non-linear control 
law was specified by Fuzzy-Set theory and Fuzzy 
Logic, which have the ability to handle the non- 
linearities and uncertainties in the model by using a 
fuzzy logic controller (FE<=). Fuzzy sets are sets with 
non distinct boundaries that map members of the 
universe of discourse to their grades of membership by 
membership functions. The association between the 
inputs and outputs are modeled by fuzzy relations 
called fuzzy rules. In the second algorithm, the 
specified non-linear control law was formulated using 
~ o d ~ l a ~ - ~ e ~ o r k $  (MN), which were first described 
by Jacobes and et. al. [7-81. They suggested a modular 
network that learns to perform nonlinear control tasks 
using a piecewise control strategy called “gain 
scheduling”, e.g. fitting a linear gain to different work 
spaces. In the MN algorithm, as in any other neural 
network algorithm, a self learning adaptive process of 
a network is based on a simple mathematical d e  
(Stochastic-Gradient Learning Algorithm) as will 
be shown in section 3. 

The two nonlinear algorithms, MN and FLC, are 
based on similar ‘divide and conquer’ philosophies. 
The transfer function between the input and the 
output signals of these algorithms is nonlinear 
allowing the algorithms to control nonlinear complex 
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systems. The basic idea in both systems is to split the 
nonlinear complex problem, i.e. the nonlinear motion 
equation, into simpler sub-system. By dividing the 
work-space of the motion of the structure into sectors, 
different linear controllers can be handled separately. 
This enables the mnstruction of simple linear 
relations (gain) for each Werent region. An overlap 
is accepted in both algorithms: more than one module 
can generate an output from a single input. The final 
output is composed of a weighted sum of the outputs 
from a few modules. The main differences between 
the methods are in the constructing of both the 
modules and the weights. In FLC, the output is the 
sum of each weighted rule. The ability of the FLC to 
construct its rules manually from expert knowledge is 
one of its advantages: by describing the system using 
accuracy rules, only minor changes in the final 
structure of the FLC are typically required. However, 
no optimal method to construct the final weights (of 
different rules) in fuzzy logic controller exists. Most 
of the “fine tuning” is done by trial and error with no 
logical or systematic method to obtain the best 
solution. The construdion of the MN, as opposed to 
FLC, does not use pre-knowledge of expert both for 
Werent modules and for weights. However, the 
weight factor for each module is determined by the 
gating networks using UQ data. 
This paper provides a quantitative comparison 
between two non-linear active control systems. Its 
concludes that the modular network controller is 
superior to FLC both in its performance indexes i.e., 
settling time, energy consumption and over shoot as 
well as in its shorter design time due to simpler and 
more systematic way of constructing the control 
strategy. 
This paper is organized as follows: Section 2 
describes the mathematical model of the structure and 
the control objectives. In section 3, the main 
stochastic-gradient learning algorithm is presented, 
using MN (modular network), and our learning and 
training methods (phase I and 11) are described. 
Finally in section 5 we compare the simulation results 
of the two methods . 
2. Structural modeling and control 
objectives. 
There are various ways to model the dynamics of a 
large space structure (LSS). Rao, Pen & Venkayya 
[lo], and Chidamparam & Leissa [ 111 survey some of 
the main approaches of modeling flexible structures, 
from discrete coordinates like: ‘lumped masses’, finite 
elements and Newton-Euler methods, to continuum 
approaches. However, as mentioned in the review of 
modeling techniques by Bainum in IChap.7 of 61, 
structures that are required to undergo substantial 
relative motions such as LSS, can be described by a 
collection of interconnected rigid bodies. The ability 
to describe large vibrations with no limitations on the 

relative motions of the substructures makes this 
method applicable for modeling systems with 
geometric non-linearities. 
The flexible beam-structure of a solar panel, as shown 
in Fig. 1, can be described by a two dimensional Mass- 
Damper-Spring approach( including non-linear 
effects). 

Fig.1: The 2-D model of the solar structure 
The second order differential nonlinear equations that 
describe the flexural vibrations of the strudure are 
presented by desecrate nonhear equations with n 
nodes (DQF). F ig2  shows the configuration around 
mass M,. 
The non-linear equations of motion are expressed as 
follows; the angle between two element is 

sine* =(Xi -Xi - ] ) /L i  (1) 
where L is the panel length. The moment 2, needed 
to generate a relative rotation of the rigid rods 
relatively to M, , including rotational m e s s  of the 
non-linear elements and rotational damping, is : 

zi = Ki(A0i + E  A0i3) + CiA0i (2) 
For the rod i, the equilibrium equation yields the 
shearing forces: 

4, = ( r ,  - r,+*) / 4+* (3) . 

Fig.2 : 2-D model configuration around hf, 
Finally, Newton’s equation for the mass M, is: 

The aim of the vibration controller is to suppress the 
vibration of the system and to reach the steady state 
f = 2 = 0. Using a feedback control of the form 

where X is the system state vector 

Mi%i = 4i - 4i-1 (4) 

U = - K x  ( 5 )  
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x = [x XI’ (6) 
a controller is constructed such that active damping is 
introduced into the system. Therefore, the close loop 
response should exhibit a relativeIy high damping 
ratio. This ratio is related to the amount of the 
control effort (energy) invested to stabilize the system. 
To control the nonhear dynanucs we need to use a 
nonlinear controller for a full state adjustment. An 
alternative way, that we will take, is the use of ‘Gam 
Scheduling’ strategy, fitting a Werent linear gain to 
each small work space, small enough to treat it as a 
linear work-space. Hence, after linearization the state 
space formulation becomes 

where U is the force vector and 
X = A X + B U  (7) 

A : (  0 

The motion of the beam is dwided into five sectors 
which describe different range of displacements from 
the desired stable motion. Each sector described by 
linear equations, as in Eq.(7) and a different control 
Gain is being constructed to meet the required 
performances. The quality of the control algorithm for 
vibration suppressing is measured by three 
requirements: the suppressing should be fast., it should 
require minimum effort, and the number of the 
oscillations in the saructure reaching the steady state 
should be consider as well. 
Using Eq.(8) we apply an optimum control law that 
minimizes the quadratic performance function: 

J = j m ( X T Q X  0 + u T R u ) d f  (9) 

where Q is a positive-semidefinite state weighting 
matrix and R is a positivedefinite control weighting 
matrix. The solution is obtained by: 

where P is found from the Rimti  equation: 
U = -R-‘BTPX (10) 

P A + A ~ F - P B R - ’ B ~ B + Q = O  (11) 

K = - R - ‘ B ~ P  (12) 

The linear Gain of the close loop system is : 

By choosing the weighting matrixes Q and R we 
defined the control strategy along the structure 
maneuver and achieved fine improvement of the 
controller perfomances. 

3. ~ o ~ u ~ ~ ~  Nemo 
For nonlinear system LSS, the controller 
effort is strongly based on the state space location. 
Hence, by designing and 
controllers, which addresses the 
of different operating 
achieved. This strategy, sirnilar to the conventional 
‘gain scheduling’ method, is the basic philosophy of 

the “Modular Networks”. Modular networks attack a 
complex problem by dwiding it into less complex 
ones. It consists of many simple processing units 
(modules) each of them has inputdoutput 
relationship. 
Two different learning algorithms are usually used to 
train the MN. In the first, whxh is based on 
individual learning, each module learns independently 
and the gating module will combine them together. 
Different input/output learning sets are used for each 
module. 
The second algorithm is based on a global learning 
algorithm where the input/output learning sets are 
used to train the modules and the gating between 
them in parallel. As a result., each module 
approximates a simple function (linear gain) and if a 
general function is enriched we can add an additional 
module that will take care of the learning of the new 
part, without affecting too much the modules that 
have already been tuned. In this study we use the 
latter approach ; it consists of two phases: 
Phase 1- By assuming h e a r  motion in each sector we 
build a different linear controller (LQR) for each 
sector. Our goal is that each module learns the 
system’s behavior of a specific sector. 
In this phase we generate our knowledge base 
(learning examples).The system has two inputs and 
one output. The controller phase state will be the 
displacement ( x ) and the velocity ( ) of the tip of 
the beam. The output (U) of the controller will be the 
force at the actuator. For every “linear system” with a 
linear controller (LQR) we simulate the action of the 
controller for a different sector. The result of the 
simulation will be the learning set. 
Phase 2 - Training the modules network to the 
desired behavior as generated in phase 1 and use the 
modular network as a controller of the system (beam). 
In the next sections we shall describe how the network 
is built and the two phases of the learning and testing 
algorithms. 
3.1 Modular network configuration 
The particular modular network we use, as described 
in Fig 3, consists of K I Modules, which symbolize 
the linear controllers of each space, and one 
integrating unit called Gating network. Each module 
consists of Q neurons in a single layer and the Gating 
network consists of K neurons in a single layer. 
There are P inputs (the size of inputs vector) for each 
module, X = [x i]. 
Vectors X and d ,the training examples are 
constructed by phase 1 and applied to the network 
simultaneously, see Fig. 3. 
3.1.1 The algorithm [8] 
The algorithm which is based on the ‘‘Stmhastic- 
Gradient Learning Algorithm” is presented here 
shortly, giving only the final structure from [SI. 
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1. Initialization - For both the synaptic weights of the 
modular expert and these of the gating network, 
2. Adapting the expert and gating networks - For 
each epoch, inputs vector-x and desired response 
vector-d are presented to the network. 
Simultaneously, the following computation are being 
applied: for epochs n = 0,1,2 ,.., outputs i = 1,2 ,.., K 
and neurons m = 1,2,..,q 
First, the weighted sum of the inputs applied to the 
ith output neuron of the gating network ,uu,(n)is 
defined by: 

(13) 
k t  gi (n) be the activation of the ith output neuron 

of the gating network, where it is presented by: 

For yj(m) , the output of the m neuron from the ith 

module: 

Therefore, the error of the output is calculated by 

e p  

Adapting the Expert Networks. 
The next step is to assign the new values for the 
weights by adding the error to them while adhering to 
the rule “winner takes all”, namely that the module 
with the smallest error will get most of the update. 
Using a sw learning rate parmeter 7 we m- 

the synaptic vector w j  as followed: 
A w i ”  ( n  + 1) = w , ” ( n )  + v h , e , ” ( n ) X  

(17) 
Where : 
Two different controllers have been built based on 
FLC and MN respectively. The controllers have the 
state phase inputs, [X i] and one output U, at the tip 
of the beam. Succeeding the description of the MN in 
section 3, the two phases were constructed in the 
following manner: 
Phase 1- The learning set. 
To generate samples from which the system has to 
learn, the work space of the motion of the beam was 
divided into five areas. Each area represents different 
location (displacement) of the steady state (steady 
state is defined as zero displacement in every element 
in the beam). By using the angle between the ‘zero 
line’ and the beam line we define 20 degree as 
‘Positive Big ’ , lo degree as ‘Positive’ and a m d  

~ 
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initial values between 0 and 1 are assigned using a 
standard random function. 

g ,  e x P ( - 0 . 5 p  - Yt(n) / IZ  1 
h , ( n ) =  -- c ;.:& exp(-O 5 p  - Y j ( 4 l I Z )  

(18) 
Adapting the Gating Network 
Similary, the synaptic vector U ,  

gating network, defined by: 

Equations 13-19 will be used for all the available 
training examples in the learning set. 
3. The network is considered to be at a steady state if 
the change in the sum of A w and A a is smaller 
than the converging parameter denoted by& . 
Computations in steps-2 are to repeat until the 
network is stabilized. 
4. Result and Discussion 
For the purpose of our investigation, we selected a 
mathematical flexible cantilever beam model which 
has tight and small natural frequencies. The reduced 
model described by three degrees of freedom (3 
elements), each one is characterized by a lenght L, 
mass M and noillinear spring K (without damping 
C=O). The relationship between each pair of element 
considers the geometric and material nonlinearity 
(Eq.4). This model assumes only bending moments in 
a plane (2-D). Table 2 shows the three modes of the 

is adjusted to the 

A a ,  = ?m - g , ) X  (19) 

beam structure. 
MODE I First ISecondI Third 1 

I Frequency(rad/sec) I 3.6278 I 22.223 I 50.539 I 
Table 2: N a W  frequencies of the cantilever beam. 

A collocated single sensor (accelerometer) and 
actuator (vertical force) pair was located at the tip of 
the beam. The selected parameters for the model are: 
L, = 0.28 [m] M, = 0.5 [Kg] K, = 10 [ Kg/sec2 ] 
Initial conditions for the simulations were selected as 
follows: [x i ]  = [0,1.3]. The free response of the 
system is shown in Fig.4. 
zero degree as ‘Zero’; similarly, we defined the 
‘Negative ‘and ‘negative Big ’(-10, -20). 
The linear system are constructed from the nonlinear 
structure by linearization around each work space and 
a linear controller, using LQR algorithm, have been 
built. We fitted a different gain controller K, as in 
Eq.(12), to every linear system to accomplish the 
following demands: 1) In high displacement (‘Positive 
Big’, ‘negative Big’) suppressing vibration is fast. 
Hence high energy is required in the controller. 2) In 
smal€ displacement (‘Positive’, Negative’) only d 
amount of energy is required. 3) When the system is 
almost stable (around ‘zero’) there is no need to take 
any action and the energy can be saved. These 
particular demands are spmfic to our system. 



The learning and testing sets consist of the pair X and 
U ; these are the measurements taken from the five 
linear controllers. 
Phase 2 - Learning and training the network 
The goal of the learning algorithm is to model these 
five linear systems and to combine them by the gating 
network. Simulation of the modular network has been 
conducted. We set k=5, q=l and p=2. The learning 
ends when weights ( A w and A ) do not increases 
in more then E = 0.005 . 
Figures 5-10 show the closed loop response of the 
system by using MN and FLC (with and without fine 
tuning) for displacement of the tip and the actuator 
2) Over Shoot: The maximum displacement of the 
beam from the stable state. Because of the fact that the 
structure of the MN controller consists of a 
combination of linear systems, the decay of the 
dsplacement of the beam is gradual and smooth. In 
FLC the decay of the response is more rapid and has 
jumping decline. This response is due to the nature of 
the FLC structure ,especially the way the membership 
functions dwided the work space of the output 
controller (U). This way of division makes the 
3)Contrd eflort: Another major difference between 
the two controllers is due to the total energy required 
to suspend the vibrations in the beam, supplied by the 
actuator placed at the tip of the beam. Fig 8-10 
describe the controller outputs in the MN, ELC 
Summary 
This study shows that MN based controller is ef€ective 
in stabilizing the movements of the flexible structure. 
W e  for the FLC much effort it is required to obtain 
an ‘optimum’ solution (fine tuning of the membership 
function and the rules), the MN utilize self learning 
adaptive process using a learning set and required no 
outside intervention. Both algorithms reach the stable 
state at the same settling time. However a major 
advantage is found in the MN controller that reduced 
the control effort, supplied by the actuator. 
Further research should be done to combine the 
advantages of NN to tune the membership function of 
the FLC. 
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Fig4: The free response of the structure 
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FIG 6: The close loop response of the FLC system (no fine 
tunins) 
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Fig. 7: The close loop response of the F1.C svstcm- (\\ith 
fine tuning) 
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Fig8: The close loop response of the MN system. 
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Fig 10: The close loop responseof the FLC system(\%ith fine 

tuning). 
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