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Computational Capabilities of
Recurrent NARX Neural Networks
Hava T. Siegelmann, Bill G. Horne, and C. Lee Giles,Senior Member, IEEE

Abstract—Recently, fully connected recurrent neural networks
have been proven to be computationally rich—at least as powerful
as Turing machines. This work focuses on another network which
is popular in control applications and has been found to be very
effective at learning a variety of problems. These networks are
based upon Nonlinear AutoRegressive models with eXogenous
Inputs (NARX models), and are therefore calledNARX networks.
As opposed to other recurrent networks, NARX networks have a
limited feedback which comes only from the output neuron rather
than from hidden states. They are formalized by

y(t) = 	(u(t� nu); � � � ; u(t� 1); u(t); y(t� ny); � � � ; y(t� 1))

where u(t) and y(t) represent input and output of the network
at time t, nu and ny are the input and output order, and the
function 	 is the mapping performed by a Multilayer Perceptron.
We constructively prove that the NARX networks with a finite
number of parameters are computationally as strong as fully
connected recurrent networks and thus Turing machines. We
conclude that in theory one can use the NARX models, rather
than conventional recurrent networks without any computational
loss even though their feedback is limited. Furthermore, these
results raise the issue of what amount of feedback or recurrence
is necessary for any network to be Turing equivalent and what
restrictions on feedback limit computational power.

I. INTRODUCTION

T HE computational capabilities of recurrent neural net-
works have been studied for at least fifty years. Some

of the earliest work in this area by McCulloch and Pitts
showed that networks of neuron-like elements are capable of
implementing some types of finite state machines (FSM’s) [1].
Later, Minsky showed that any FSM could be mapped into
such a network [2]. More recently, new results have been de-
veloped to improve the efficiency of this mapping [3]–[5], [30].
All of these results assume that the nonlinearity used in the
network is a hard-limiting threshold function. However, when
recurrent networks are used adaptively, continuous-valued,
differentiable nonlinearities are almost always used. Thus,
an interesting question is how the computational complexity
changes for these types of functions. It has been recently
shown that such networks are at least as powerful as Turing
machines, and in some cases can have super-Turing capabili-
ties [6]–[9]. The proof utilizes a construction that shows how
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fully connected networks can simulate pushdown automata
with two stacks, which are computationally equivalent to
Turing machines. The stacks are encoded in two of the nodes
of the network with the remaining nodes used to simulate the
finite state control. There is an initial period during which the
network reads the input, then the network performs the desired
computation, and finally the output of the network is decoded.

An important class of discrete-time nonlinear systems is
theNonlinear AutoRegressive with eXogenous Inputs(NARX)
model [10]

(1)

where and represent input and output of the network
at time and are the input and output order, and
the function is a nonlinear function. When the function
can be approximated by a Multilayer Perceptron, the resulting
system is called aNARX network[11], [12]. It has been
demonstrated that this particular model is well suited for
modeling nonlinear systems such as heat exchangers [11],
waste water treatment plants [13], [14], catalytic reforming
systems in a petroleum refinery [14], nonlinear oscillations
associated with mutli-legged locomotion in biological systems
[15], and various artificial nonlinear systems [11], [12], [16].
Furthermore, in a previously published paper we benchmarked
NARX networks against nine other recurrent neural network
architectures on problems including grammatical inference
and nonlinear system identification [17], [18]. We found that
NARX networks typically converge much faster and generalize
better than these other networks. We have also shown that
NARX networks perform better on problems involvinglong-
term dependencies[19], [20].

Based on the mapping theorems of [21], [22], NARX
networks should be capable of representing arbitrary systems
expressible in the form of (1). However, using such an
approach there is no bound to the number of nodes required to
achieve a good approximation. Furthermore, it is not clear how
such systems relate to conventional models of computation. In
this paper we explore the computational capabilities of this
network compared to those of the fully connected networks.
We prove that NARX networks are computationally at least as
strong as fully connected networks within a linear slowdown.
This implies that NARX networkswith a finite number of
nodes and tapsare at least as powerful as Turing machines,
and thus are universal computation devices. This result is
somewhat unexpected given the limited nature of feedback
in these networks.
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Fig. 1. A fully connected recurrent neural network.

We also provide some related results concerning NARX
networks with nonlinear output functions. In particular, when
hard-limiting nonlinearities are used, we show that NARX
networks are only capable of implementing a subclass of
FSM’s called Finite Memory Machines (FMM’s). However,
we show that FSM’s can be simulated by FMM’s within a
sublinear slowdown.

II. RECURRENT NEURAL NETWORK MODELS

We consider two recurrent neural network models: 1) fully
connected networks; and 2) NARX networks. We shall restrict
our attention to single-input, single-output systems, which are
sufficient for establishing the computational capabilities of the
network. These results can easily be extended to the multi-
variable case, by simply replacing scalars by vectors where
appropriate and creating multiple tapped delay lines from the
outputs of the network. Each tapped delay line would be
constructed following the method used for a single output.

We shall adopt the notation that corresponds to a state
variable, to an input variable, to an output variable, and

to a node activation value. In each of these networks we
shall let correspond to the dimension of the state space.
When necessary to distinguish between variables of the two
networks, those associated with the NARX network will be
marked with a tilde, e.g., and will refer to the
th state variable in the fully connected and NARX networks,

respectively.
The state variables of a recurrent network are defined to be

the memory elements, i.e., the set of time delay operators. In a
fully connected network there is a one-to-one correspondence
between node activations and state variables of the network,
since each node value is stored at every time step. Specifically,
the value of the state variables at the next time step are
given by

Each node weights and sums the external inputs to the network
and the states of the network. Specifically, the activation
function for each node is defined by

(2)

Fig. 2. A NARX network withnu = ny = 2 and ~H = 3:

where and are fixed real valued weights, andis a
nonlinear function which will be discussed below. The output
is assigned arbitrarily to be the value of the first node in the
network

The network is said to be fully connected because there
is a weight between every pair of nodes. However, when
weight there is effectively no connection between
nodes and Thus, a fully connected network is very
general, and can be used to represent many different kinds
of architectures, including those in which only a subset of the
possible connections between nodes are used. Alternatively,
one can think of fully connected networks as a single layer of
nodes with complete feedback, as shown in Fig. 1.

A NARX network consists of a Multilayer Perceptron
(MLP) which takes as input a window of past input and
output values and computes the current output. Specifically,
the operation of the network is defined by

(3)

where the function is the mapping performed by the MLP,
as shown in Fig. 2.

The states of the NARX network correspond to a set of
two tapped-delay lines. One consists of taps on the input
values, and the other consists of taps on the output values.
Specifically, the states are updated as

and

so that at time the taps correspond to the values
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The MLP consists of a set of nodes organized into two layers1.
There are nodes in the first layer which perform the function

The output layer consists of a single linear node

A detailed picture of a NARX network with and
is shown in Fig. 2.

Definition 1: A function is said to be abounded, one-
side saturated (BOSS) functionif it satisfies the following
conditions:

a) has a bounded range, i.e., for
all

b) is left-side saturated2, i.e., there exists a finite value
such that for all

c) is nonconstant (i.e., there exist at least two values
and such that

BOSS functions include many sigmoid-like functions; for
example,hard-limiting threshold functions

(4)

and the saturated linear function

(5)

are both BOSS functions.
Although the sigmoid function,

is not considered to be a BOSS function because it does not
saturate, it can be slightly modified to be so. Specifically, a
“one side saturated sigmoid,”

is a BOSS function, where

III. M AIN RESULT

In this section, we prove that NARX networks with BOSS
functions are capable of simulating fully connected networks
with only a linear slowdown. Because of the universality of
some types of fully connected networks with a finite number
of nodes, we conclude that the associated NARX networks
are Turing universal as well.

Theorem 1: NARX networks with one hidden layer of
nodes with BOSS activation functions and a linear output node
can simulate fully connected recurrent networks with BOSS
activation functions with a linear slowdown.

1More layers could be used, but are not necessary for our purposes.
2Equivalently, the function can be defined to be saturated to the right, i.e.,

�(x) = S for all x � s; and we would obtain the same results.

Proof: To prove the theorem we show how to construct a
NARX network that simulates a fully connected network
with nodes, each of which uses a BOSS activation function

The NARX network requires hidden layer nodes, a
linear output node, an output shift register of order
and no taps on the input. Without loss of generality we assume
that the left saturation value of is This restriction
makes the proof somewhat simpler, but can be easily relaxed.

The simulation suffers a linear slowdown; specifically, if
computes in time then the total computation time taken by

is In particular, time is simulated during time
steps Because of the
linear slowdown, the input to must be kept constant for
each simulation period, i.e.,

For each will simulate the value of exactly one
of the nodes in The additional time step will be used to
encode a sequencing signal indicating which node should be
simulated next. Specifically,

otherwise
(6)

for where is related to the sequencing
signal and will be discussed at length below.

The output taps of will be used to store the simulated
states of no taps on the input are required, i.e.,
At any given time the tapped delay line must contain the
complete set of values corresponding to allnodes of at
the previous simulated time step. To accomplish this, a tapped
delay line of length is sufficient. Specifically, at
time the tapped delay line contains the values

(7)

where (the sequencing signal) is outside the range
(see Definition 1A); this constant will be discussed shortly.
With this representation the taps will always contain all of the
values of at time immediately preceding the sequencing
signal, to indicate where these variables are in the tap. The
contents of the taps at various times are illustrated in Fig. 3.

We next show how to chose the dynamics of the hidden
neurons. The sequencing signal is chosen in such a way that
we can define a simple function that is used to either “turn
off” neurons or to yield a constant value, according to the
values in the taps. Let for some positive constant

We define the affine function

(8)

Then, and for all
According to (6) and (7), node may take
on a nonzero value only when or equivalently when
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Fig. 3. The contents of the output tapped delay line of the NARX network
at times(N+1)t+1 whenx1(t) is to be simulated next (top),(N+1)t+N

whenxN (t) is to be simulated next (middle), and(N +1)t+(N+1) when
the sequencing signal� is to be generated next (bottom). After each time
step, the contents of the taps move to the left, and the value of the output is
stored in the right most tap.

in this case, the values of are stored
in the taps Thus, using (2) and (8),
the th node in the hidden layer of is updated as follows:

(9)

where the constant is large enough to make the input to
less than when so that the whole function
is zero3.

There exists at least one fixed valuesuch that
The value will toggle between 0 and

Specifically, should equal only when
otherwise it should equal zero. Thus, using (8), its update
equation can be written

(10)

where once again, is large enough to make the entire
function zero when

So far the construction ensures that (6) will hold. Next, the
output node of is then simply the linear combination

(11)

so that the output of the network is equal to the value of the
currently active hidden layer node, which in turn ensures that
the feedback will be consistent with (7).

Finally, we consider the initial conditions of the network.
The taps should be initially configured as follows:

where stands for any value in the range At the next
time step the network will be ready to simulate

3We assume the value of the input is bounded.

Fig. 4. The Dual Parity FSM.

It has been shown that fully connected networks with a
fixed, finite number of saturated linear activation functions are
universal computation devices [7], [8]. As a result it is possible
to simulate a Turing machine with the NARX network such
that the slowdown is constant regardless of problem size. Thus,
we conclude that

Corollary 1: NARX networks with one hidden layer of
nodes with saturated linear activation functions and linear
output nodes are Turing equivalent.

IV. RELATED RESULTS

In this section, we look at variants of the NARX networks,
in which the output functions are not linear combiners but
rather some kind of nonlinear activation function.

A. Hard-Limiters

If the nonlinearity is a hard-limiting function [see (4)] and
the inputs are binary, then recurrent neural networks are only
capable of implementing FSM’s, and NARX networks are
only capable of implementing a subset of FSM’s called Finite
Memory Machines (FMM’s) [23], [24], which are defined to
be an FSM whose input/output relationship can be described
by the equation

where and assume boolean values, and is a
combinational logic function. Clearly this equation has the
same form as (3), so when a hard-limiter is used for the
nonlinearity of the output node, the function is a logic
function, and it is clear that NARX networks are equivalent
to FMM’s.

Not all FSM’s are FMM’s. FMM’s have the property that
the state of the machine can always be determined from a
finite number of observations of the inputs and outputs of
the system when the initial state is unknown. In other words,
the states of an FMM are observable. For example, the Dual
Parity FSM, shown in Fig. 4, is not finite memory since one
can observe an infinite sequence of ones at the input and an
infinite sequence of zeros at the output without being able to
determine whether the FSM is in state or In contrast,
the FSM shown in Fig. 5, is an FMM since for any input
sequence of length two, the state of the FSM’s can always be
determined from knowledge of the past two inputs and the last
output as illustrated in Table I.
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Fig. 5. A Finite Memory Machine (FFM).

Intuitively, the reason why FMM’s are constrained is that
there is a limited amount of information that can be represented
by feeding back the outputs alone. If more information could
be inserted into the feedback loop, then it should be possible to
simulate arbitrary FSM’s in structures like NARX networks.
In fact, we next show that this is the case. We will prove that
NARX networks with hard-limiting nonlinearities are capable
of simulating fully connected networks with a slowdown
proportional to the number of nodes. As a result, the NARX
network will be able to simulate arbitrary FSM’s. To do this,
the network uses the extra time steps associated with the
slowdown to insert information about the state of the FSM. We
provide an upper bound for the amount of slowdown, which
is a function of the number of states of the FSM.

Theorem 2: NARX networks with hard-limiting activation
functions and one hidden layer of nodes can simulate fully
connected networks with hard-limiting activation functions
with a linear slowdown.

Proof: By a construction similar Theorem 1, we show
that a NARX network consisting of a shift-register of
length BOSS hidden neurons, and a hard-limiter
activation at the output level, can simulate a fully connected
network with nodes, each of which uses a hard-limiting
activation function

The simulation suffers a linear slowdown. Except here, if
computes in time then the total computation time taken by

is The extra computations are used to implement
a null signal (chosen to be zero) between the simulation of
each node, and the “end of sequence” signal (chosen as two
consecutive 1s). By interleaving the simulation of the node
values with zeros, the only way two consecutive ones can
appear within the tap is if they correspond to the end of
sequence signal.

The network will require a tapped delay line of length
on the output, but still no taps on the input. Fig. 6

illustrates the tap contents at various times. The indexing
scheme is similar to the one given in (7), but because of
the interleaved zeros, it is excessively cumbersome, and so
we omit it for the sake of brevity. With this representation
the taps will always contain all of the values of at time

preceding the sequencing signals, to indicate where these
variables are in the tap.

We pursue a similar approach to define the dynamic equa-
tions of the neurons: we define a simple functionthat “turns
off” nodes or produces a constant value, depending on the
contents of the taps. Specifically, define the affine function

(12)

Then, and and are both less than
or equal to for all

TABLE I
THE STATE OF THE MACHINE AS A FUNCTION OF THE

PREVIOUS TWO INPUTS AND PREVIOUS OUTPUT

y(t� 1) u(t� 2) u(t� 1) state
0 0 0 q3

0 0 1 q3

0 1 0 q3

0 1 1 q3

1 0 0 q2

1 0 1 q0

1 1 0 q1

1 1 1 q0

The network will still have hidden nodes, corre-
sponding to the nodes of Each node will correspond to the
values

otherwise.
(13)

The th node has a nonzero value when
and values of correspond to tap

values So, using (2) and (12),
the th node in the hidden layer of is updated as follows:

where the constant is large enough to make the whole
function 0 if and are not equal
to one.

The node that implements the sequencing signal becomes
activated either when or when

as illustrated in Fig. 6. Since the
logic function is a threshold logic function,
it follows that the sequencing signal can be implemented as
a single node.

The output node of is then simply the function

The interleaved zeros are implemented by default since no
hidden layer nodes will be activated when the sequencing
signal is in a position where the next value to be produced
is an interleaved zero.

As in Theorem 1, the taps are initialized to values appro-
priate for simulating on the first time step.

In [4], it was shown that any -state FSM can be im-
plemented by a four layer recurrent neural network4 with

hard-limiting nodes. It is trivial to show that a
fully connected recurrent neural network can simulate an-
layer recurrent network with a slowdown of Based on the
fact that a NARX network with hard-limiting output nodes is
only capable of implementing FMM’s, we conclude that

4A multilayer recurrent network is like the network shown in Fig. 1, except
that the single layer feedforward section is replaced by a MLP.
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Fig. 6. The contents of the output tapped delay line of the NARX network at times(2N+3)t+1 whenx1(t) is to be simulated next (top),(2N+3)t+2N�1
when xN (t) is to be simulated next (middle top),(2N + 3)t + 2N + 1 when the first timing signal is to be generated next (middle bottom), and
(2N + 3)t + 2N + 2 when the second timing signal is to be generated next. After each time step, the contents of the taps move to the left, and the
value of the output is stored in the last tap on the right.

Corollary 2: For every FSM there exists an FMM
which can simulate with slowdown.

B. Partially Affine Output Functions

Theorem 1 holds also when the output nonlinearity is
partially affine. Denote an affine transformation by

so that if then Then a non-
linearity is said to be partially affine if
for For example, the saturated linear function given
in (5) is partially affine with and

The modification of Theorem 1 is simply acquired by
transforming the values of the hidden layer nodes, which are
in to the range These values are then
passed through the partially affine region to produce values
in the range which is fed back. This transformation can
be undone by another affine transformation which converts
values in to

Specifically, the representation of the contents of the taps
given in (7) is modified as follows:

These values can be achieved by modifying the output node
(11) to

Although only one hidden layer node is active, the affine
transformation will, in general, convert zero node values to
some nonzero value. The term compensates
for this bias.

The hidden layer nodes are then modifications of (9)

for and (10)

V. CONCLUSION

Recent results suggest that gradient descent learning is
more effective in NARX networks than in recurrent neural
network architectures that have “hidden states” [18]. We
have also shown that NARX networks perform better on
problems involving long-term dependencies[20]. We have
shown that NARX networks are capable of simulating fully
connected networks within a linear slowdown, and as a result
are universal dynamical systems. This theorem is somewhat
surprising since the nature of feedback in this type of network
is so limited, i.e., only output neuron feedback.

What does the Turing equivalence of neural networks im-
ply? It implies that these networks are capable of representing
solutions to just about any classical computational problem we
want to apply them. Thus, we conclude that in theory one may
use NARX networks in place of fully recurrent nets without
loosing any computational power.

On the other hand, Turing equivalence implies that the
space of possible solutions is extremely large. Thus, it may be
prohibitively difficult to search with gradient descent learning
algorithms. So far, experience indicates that it is difficult to
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learn even small FSM’s from example strings in either of
these types of networks (unless the FSM has little logic in its
implementation [25]). Often, a solution is found that classifies
the training set perfectly, but the network in fact learns a
chaotic system which cannot necessarily be equated with any
finite state machine [26].

We also showed some related results that NARX networks
with neurons with hard-limiting nonlinearities are only capable
of implementing a subclass of finite state machines called
finite memory machines. But, if a sublinear slowdown is
allowed, then such networks can implement arbitrary finite
state machines.

Our results open several questions for future research. What
is the simplest feedback or recurrence necessary for any
network to be Turing universal? What do these results imply
about the computational power of recurrent networks with
local recurrence [27]–[29]? And finally, can the efficiency of
the simulation described in this paper be improved upon?
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