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ABSTRACT 

.4 theory for computation by dynainical systems is prc- 
sented. .4 definition of comput.ation time that is applica- 
ble for syst,ems that. are continuous as well as for syst.ems 
that. are discret,e in  time, based on a physical t.ime scale is 
introduced. Computational complexity of dynamical sys- 
tems is explored. For this purpose the standard classes 
of computer science are adapted to dynamical systems. 
The complexity classes Pd. BPPd and NPd correspond- 
ing to  the standard classes P: BPP and NP are defined 
for t.he case of more physical dynamics. It. is then shown 
that  computation of a simple fixed point. is in Pd or BPPd 
(depending on the output decision process) while for an  
isolated strange attractor it is in NPd. The computation 
by the continuous Hopfield neural network is analyzed in 
detail and found to be in Pd or in BPPd. 

I. I N T R O D U C T I O N  

A digital computer is a particular case of a dy- 
namical system. It. st.arts at some input state! follows 
a trajectory in st,ate spa.ce and may converge to tlie 
output st.ate. Physical syst.ems a.re also dyiia.inica1 
systems; if a system is dissipative, flow to an a.ttrac- 
tor takes place. The fundamental difference is t.hat. 
for physical systems the state space is the continu- 
ous phase space, while for computers the st,at,e space 
is discrete. In addition t,lie attractors of the physical 
systems are not limited t.0 fixed points but. may be 
chaotic as well. The ultimate goal of the research (an 
extended version will be published elsewhere [l]) is t.o 
examine computation t,liat is physically plausible by 
dynamical systems. For this purpose t.lie t.erniiiiolog> 
of computation will be extended to general dynamical 
syst,ems, t1ia.t m a y  he continuous i n  space or 110th in  
space and in time. 

Dynainical systems with the appr0priat.e definit,ion 
of computation constit,utt= analog comput.ers. These 
are either natural syst,enis or artificially fabrica.ted de- 
vices, that. follow well defined laws of motion. By 
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definition their evolution is exa.ct. mid they use t.he 
exact iiat,ural  constant.^, alt.liougli their exact numer- 
ical values are not. known to us. Therefore t,lie  result,^ 
of bhis work a.re relevant. for t,he underst.andiiig of t . 1 ~  
comput.at.iona1 capabilities of special purpose analog 
computers 

There are several other iniporta.nt, reasons for the 
investigation of the model presented here. First,. the 
theory of computa.tion by continuous syst,ems inax 
be considered also a coa.rse grained theory for digi- 
t a l  comput.at.ion, t.he way Iiydrodymniics is a contin- 
uum theory for atomic syst,enis [2]. Second, analog 
computation ca.n be utilized to  test. possible theoreti- 
cal liniitat,ioiis of t.he “physical Cliurcli-Turing thesis” 
[ 31 t.11 at. states t 11 a.t~ tlie coin pu t,a t ional capabilities of 
any physical device should not exceed (in idealiza- 
t,ion) that of a Turing machine [4]. If a. device t.hat. 
computes problems t81iat caiiiiot, be computed by the 
Turing ma.cliine (and therefore digital computers) is 
found, it. mill challenge tlie physical Cliurch-Turing 
t.liesis and will t,lierefore be of great. int,erest.. Theo- 
retical neural net.works with super-Turing capabilit.ies 
were proposed in t.lie past, [5.G] as a part.icu1a.r t.ype of 
analog computers. b u t  110 natural super-Turing sys- 
t.em 11a5 been not.ed. Our Imper may provide a basic 
correspondence towa.rds ident,ifying such strong natu- 
ral systems. 

SYe nest. speculat,e rega.rding the connection be- 
tween our setup and 1iuma.n memory. Some of tlie 
niotiva.tioii for understanding the dynamical beliav- 
ior and coinputa.t.ional power of dyna.mica1 systems in 
the fra.niework of neurodynamics sterns from describ- 
ing both tlie coiitent. addressable memory and the as- 
sociat.ive memory. The first. one a.llows t,o recall a 
st.ored word without. referring to its physical location, 
wliile t,he lat.ter allows for recalling based on pa.rtia1 
or part,ially erroneous iiiforination. Both character- 
ist.ics of memories are believed t,o describe Iiuman’s 
nieniory. Classicall?: such memories a.re modeled b\i 
a simple dynamical syst.em. for which an energy (or 
Lyapunov) functional is defined a.nd t,he words reside 
in  t.he locat.ion of local minima of the energy. The 
most. p opul a.r in 0 del is prob a hl y t.lie Hop fie1 d ne t,work 
[T-9]. The mea.ningful at,t.ra.ctors of these net,works .- 
where inforinat.ion is st.ored - a.re all s.iinple: either 
stable fixed point,s or limit. cycles, that  are periodic, 

1436 



orbits. Therefore i,he Ilopfield niodel const.itut.es only 
a special case of ou r  t.lieory; i t  will be used i n  i.lie pa- 
per to  examplify c.oniputa.tion for syst.ems where the 
flow is to  fixed poiiits. 

Before going t~o the t~ec1inica.l part, 1et.s us remind 
previous related work. R.ecentlg in  the t,heory of coni- 
putation. there has been an urge t.o allow for c,ont.inu- 
ous time systsems. Some of t,he iiiot,ivatioii conies from 
tShe realiza.t.ion that t.lie funct.iol;a.lit~y of cont~rollers is 
not. fully describecl in  i.ernis of discrei.e dynamics. A 
more fundanient~al quest,ion relat,es t,o t8he comput,a.l~il- 
it.y with differeihal equat,ioiis onl!.. The goal ihere is 
not, to understaid t.he lieliavior of general coiit.inu- 
ous syst.enis but, rat,lier t ry  t,o simulat,e discrete clas- 
sical syst,enis by part,icular coni.inuous syst,ems. t.lius 
providing lower bounds 011 t,heir comput,at.ioiial po\ver 
[10,11]. Anot.lier line of work regarded t,lie so called 
“general purpose analog comput.er” was doininated 
by Shannon [12], Pour-el [13] and Rube1 [14-16]. The 
book [17] describes a part,icular int,erestming view of 
computability in analysis, differential equations, and 
Banach spaces. 

In contrast. we c11ara.ct~erize the comput,a.tion of 
realizable continuous systems rat,lier than simulating 
discret#e maps with differential equations. 

1.1 The Dynamical Model 
A dyna.inica1 syst,em is defined by a set, of equat.ions 

that, a.llow to predict, the evolution. Such syst,enis inay 
be cont.inuous i n  time, e.g. 

where x ( t )  is a d-dimensional vector and F is a d- 
diineiisional vector function of x. They can also t,al:e 
the form of a i m p :  

x n + ~  = T(xn). (1.2) 

h4aps ca.11 be related to physical syst~ems defined by 
continuous equat.ions like (1.1) by a Poincore mop  
[18], by t,he sfroboscopic m a p  and in  various ot,her 
ways. For the st,roboscopic map,  the posit.ion is 171011- 

itored in int.ervals of 1engt.h 7, namely a.t, times f = 7 7 ~ ~  

where n is an int,eger. Our results will be present.ed 
for continuous syst.eins but. t,liey hold for imps as well 

Dynamica.1 syst,eins can be classified into t,mo 
classes. Ham.ilioiizan systems \vhich preserve t.he vol- 
ume of their phase space. For dissiprrfive sysfeius .  on 
the other hand, the phase spa.ce volunie decreases i n  
time. As a consequence. diss ipt ive syst,eiiis t,\pically 
are cha.racterized by the presence and the nat,ure of 
attractors. 

An attractor inay be either regular, for esaiiiple a 
fixed point or a. h i i t  cycle; it. inay also be chaotic. 

(11. 

The region of pliase spa.ce i,ha.t, flows t.0 a cert.a.in a.t- 
tract.or is called t.lie basiii of at.traction [18-20]. ’These 
basins are  separat,ed by Imsin boundaries; the ba.sin 
boundaries are eit,lier smoot,h or fra.ct.al. 

Ai1 at.tract,or is called chaot,ic if t.he following two 
conditions exist,: ( 1)  Locally, t.he separation between 
most. nearby pairs of points t,Iiat. reside on the at.tra.c- 
t,or grows apart. exponentially; ( 2 )  The a.tt,ractor is 
l~ouuded i n  phase space. Becaiise of t,liis exponen- 
tial growt.li. prctlictioii lwconies e spone i~ t~ ia l l~~  diffi- 
cul t , .  Their irregularity is par t  of the int.rinsic cly- 
naniics a.s opposed to i .11~ casc of stoc11a.st.i~ sgst,eiiis. 

Our int,erest is i i i  pli~~sically realizable. dissipa- 
tive dynaniical syst,ems wit,li t.he estra feature t h t ,  
f l r c  coi ivergei tcc i o  tlrc uifrrtcfor is e i :ponei~i in l ly  fast. 
This last. recjuirenient. does not constrain our theory 
much because such syst,ems a.re  abundant^ in na.ture, 
alt~liough ot.lier possibilit~ies exist. (see [l]). These re- 
quire vanishing Lyapunov esponent, t1ia.t is an addi- 
t,ional const,raint. and therefore these possibilities are 
scarce. iVe also a.ssume t1ia.t the inittial conditions are 
not, in the vicinity of t.he boundaries. This is true for 
most. init,ial conditions in presence of iso1a.t.ed at,trac- 
t,ors. In this simplified model t,he richness of coni- 
put,at,ion stems from the physical coinplesity of the 
a.ttra.ctors. Afore general cases a.re of great interest, 
and should be considered in future work. 

1.2 The Coiiiputatioiial Model 
The following comput~ational question will be ex- 

amined: st,art,ing from some point, in phase spa.ce, tso 
tvhich at,tract,or will t,he t,raject.ory flow? Our purpose 
is t,o evaluat,e the computa.bility and to  ediinate the 
coriiput,atioiial difficulty (e.g. P, NP, etc.)? involved in 
answering this question for various t,ypes of dyna.inica1 
systems. 

We define a coiiiput,ation for general dissipative 
dynaiiiical sysbems i ~ s  follows. The initial condit,ion 
corresponds t,o the input,. The system evolves unt,il 
approa.ching a.n a.tt,ra.ctor. Beca,use the a.ctual conver- 
gence t,o an at,t.ract,or t,altes a n  infinite time. we do not. 
require coniplet,e convergence but. rather define t1ia.t. 
t.he ca.lculation is completed when an <-vicinity of the 
a.ttractor is approa.cliec1 and the syst,eni is verified to 
be confined t.here. Deciding t,o st.op the comput~a.tion 
after i t  is found (.hat t.he traject.org is att,racted t,o the 
 vicinity of the attract.or may sound oliscure because 
t.lie ~-vicinit,y ma!. cont.a.in severa.1 att,ra.ct,ors that  ca.n 
he resolved only for smaller values of c.  This is a.ctu- 
ally not. a prol~lein but. rataller a inanifestation of the 
ric.liness of the corresponding comput~ation. As the 
resoliit,ion is increa.setl. new and inore refined result,s 
are  found. 
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1.3 Computational Coinplexity 
In discrete time c~iiiputational models, the compu- 

tation time is quantified by t,Iie nuniber of st.eps u n t i l  
halting, and this is used to  measure tlie complexity of 
tahe process. This definition can be adapt,ed for maps; 
it. is however iiieaningless for continuous t.ime syst.enis. 
A different definit,ion is required, and is considered an 
iniporta,nt issue in comput.er science (e.g., [ 12-14,2 I ]  ). 

To see why the problem of definit.ion of a comput,a- 
t,ion time scale is cliallengiiig, assume we wish t.o tle- 
scribe coinputmation by a. system of t.he t,ype (1.1). If F 
is multiplied by a const,ant, n ~ t.lie comput.at.ion h i e  
changes but t,he complexity should stcay unc1ia.nged. 
Our suggestion is to  introduce a. concept, rela.ted t~o 
a imtural physical t,ime scale: this is the cliaracter- 
istic computatioii time scale t.1ia.t will be defined 
by the rat,e of convergence of t,lie underlying physical 
system. The comp1exit.y of the process will be t,lien 
measured as tlie time - quantified in multiples of the 
time scale - required to  complete t.he process. This 
definition is applied t,o both continuous and discrete 
time systems. For t.he discrete case t.he relation to  the 
classical definition of coinputation time is transparent 
and the difference between these definitions is c1ea.r. 

We next wish to emphasize the import,ance of hav- 
ing the input and output, in forin of bits, t11a.t. is, tlie 
input. to  the ma.cliine can be thought of as a st.riiig 
of binary digits and the output a.dheres to  the sa,nie 
restriction. The finiteness of t,he input. and output, is 
a crucial requirement in the theory of computing, as- 
suring that. tlie power of models is purely based on the 
int,eriial struct,ure rather than on higher input,/out.put, 
precision. The complexity of coinput,ation is defined 
with respect, to  t3he Iengt,h of t,he input. \i;e t,ake a 
similar a.pproac11: to comply wit,li the finiteness of in- 
put. and output,  and with the decision of ending a 
computation, th,e com.pu.taiion in a dyiia.in.zca1 sysi.em 
i s  defined relatively t o  a, grad. The spacing of t,lie grid 
is of the order of t,he precision in t,he initial conditions. 
If the flow converges to  some fixed point x- ,  the out,- 
put. will be taken as the closest point. on t,lie grid. The 
convergence t ime f, will be so that. for all f > t ,  t.he 
distance from the fixed point sa.tisfies Ix(t) - x* I < E .  

The connection between the precision in the dynam- 
ical evolution and t.he number of bits in  die input is 
given by the log rat,io: t.1ia.t. is, for grid spa.cing of size 
c tlie number of "input hits" is I l o g ~ I .  

We next. define t.lie characteristic time scale for 
our class of expoiient.ial1y c,onverging dissipat,ive sys- 
tems: assume first that. she releva.nt. stable a.ttract,or 
is a fixed point. z r 3  one ca.n linearize (1.1) around this 
point, t.0 obtain 

Ex = A4 6x (1.3) 

where Ex = x - x* a.nd M is the sinbilzty m f l l r i ~  

The eigenvalues of the stability mat.rix are tlie Lya- 
puiiov expoiient.~ ( t . 1 ~  fixed point. is assumed to be 
st.alile, Iience all tliese are nega.t.ive). The ra.te of coii- 
vergence i s  determined by the largest, of them, t,liat8 
will be denot,ed by -A .  In t,he vicinity of tlie fixed 
point. I x ( f )  - x*1 - e-". and 1 / X  is the cliaracteris- 
t,ic time scale for convergence. Since t,he t.ime spent, 
near a fixed point, dominat.es t.lie elapsed time (unless 
tlie iiiit.ia1 point is I w y  c.lose t.o t.lie I~ouiidaries). we 
can clioose 1 / X  a.s the formal cliaract,eristic time of 
t h t  comput.at.ion. It. depends only 011 the iiat.ure of 
t.he fixed point. a.nd not 011 any deta.ils of t.lie physical 
syst.em. Obviously t,he numerical value of X depends 
011 the units used to  measure time. The change of the 
time scale is equivalent, to tlie multiplica.tion of F in 
(1.1) by a sca1a.r constant. Such a clia.ract,erist,ic time 
scale will be found any time esponent.ia1 convergence 
to an a.t.t.ra.ctor t.al;es pla.ce. I t  may be a. fixed point. 
a periodic orbit. or even a. strange a.ttractor. A sim- 
ilar clefiiiit,ioii can he introduced for maps. If there 
a.re several a.t.tract,ors the computation time will be 
defined as t,he smallest. c11ara.ct~eristic time. 

Ha.ving this time scale. we ca.n calculate the time 
complexitmy of the dynamical system. The con.vergen,ce 
tznze t ,  is wha.t, it, takes for the trajectory to  flow from 
t.he initial point t,o t.he point where it. t,erinina.tes. It, 
IS 

f,c = t ,  + t /  + tB (1.4) 

where t ,  is the contribution from the 1inea.r regime 
(see (1.3)). t~ is the contribution from the vicinity of 
the boundary, if the init,ial condition is there, while t f  
is t,lie contribut.ion from the ot,her regions. The con- 
vergence time i., does not constitmute the whole com- 
putation; one also has to verify t1ia.t. t,he computation 
has indeed ended. Here tlie differences bet8ween t.he 
complexity of the a.ttractors come to  sculpt the dif- 
ferent comput.at~ion classes in  dynainical syst,ems. 

111 this paper we illustrate how the  theory can be 
used for flows t.o fixed points and t,o isolated chaotic 
at.tra.ctors. For more applica.t.ioiis see [l]. 

11. COMPUTATION FOR SYSTEMS WITH A 
LYAPUNOV (ENERGY) FUNCTIONAL 

First. we ca.lcu1at.e explicit. bounds on t.lie compu- 
mtioii timc. for simple syst,ems for which a, Lyapuiiov 
or energy funchoiial sa.tisfying 

dE( x( 1 ) ) 
df 

< O  (11.1) 

can be defined. In t.liis case t,lie flow (if it. is hounded) 
is t.o fixed points. The fixed points of the contiiiuous 
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syst.ems a.nd of t.he corresponding discietre niaps a r r  
exactly identical. since these are t,he zeros of F. 

When the p1ia.w space velocity of t ~ i e  trajectory 
is found to  he sniatler t,lian 6 (in a.ppropria,te units) 
for some time? it, is likely t.liat. it. is iii the c-viciniby of 
a st.able fised point. For some problems it. is lilio\Vn 

t,lia.t. t,he flow is only to stable fised poiiit#s [Z]. For 
other situations. one m a y  \?iant. t,o verify t.liats i t  is i l l -  

deed i n  the vicinity of such a poiiit and not near t.lie 
stable nianifold of a liyprrl,olic point.. Our si~ggest~ioii 
is t.0 conduct. a proba.l,ilistic c l ~ t ~ l i .  A s ~ u I ~ I ~ ~  \v(! W ~ U I  

t,o validate convergeiicc of t,he point 2 t,liat is r-close 
t.o a suspect,etl fixed pint,. \.\'e creatr /i new points 
21, ... Xk by a.ddiiig to X independent. noise of strengt.11 
up t,o c .  Now t h e  syst,eni is c,alletl repet.it.ively on each 
of t,Iiese points: each time it, is si.opped after time t,, 
t,o be specified Mer.  Consequently a clrist,er of t,rajec- 
tories in a sphere of radius 6 around t,he fixed point, 
is genera.ted. If t,lie fined point is stable the sphere 
shrinks, while if it, is hyperbolic i t  get,s st,ret,ched in 
tlie unst,able directmion at  t,he rate f X l t ,  irllere XI is 
the corresponding Lya.ptinov expolielitS. Aft8er a. time 
of tlie order I 1 7 1 f l  it. reaches a dista,iice 5 >> c from 
the fixed point.. For a. hyperbolic point. there is a fi- 
nite proba.bility p to  find one of tlie b trajectories a t  
a distance between 6 and $5 froni t.he fixed point. If 
one of the trajec.tories is found a.t such a dist,ance we 
conclude t1ia.t the fixed point. is unstable and cont.inue 
t.he coinputat,ion from X until it runs away t,o another 
fined point.. The prohbi l i ty  t.1ia.t 11011 of tlie t,rajec- 
t,ories reaches t,lie distance between 5 and 46 from an  
uiistable fixed point. is (1 - I ) ) ~ ,  t,liat is exponentially 
sinall in b. Not,e t.hat. t,, = O(llogcl) and t.lierefore t,he 
verification time f , ,  is polynomial. It .  was assumed 
here that both 6 a i d  6 are in the linear regime wliere 
(1.3) holds. 

VTe t!urii now to estimate tlie t,ota.l t.ime of coni- 
puta.tion for such systems. The various cont~ribut.ions 
to convergence time (1.4) are evaluat,ed. The t,iiiie it 
takes to flow t.lirough the 1inea.r region from a. distance 
6 of tlie st,a.ble fixed point, to it,s +vicinity is 

(11.2) 

where -A is the largest. Lyapunov exponent. (not,e t.liat 
all of them are negative). If the ii1it.ia.l point. is as- 
sumed to be in a narrow regioii of widt,li 77 i n  die viciii- 
ity of the basin bounda.ry. f,B - O( I l 7 1 7 7 1 ) .  If c << 17 the 
coniputa.tion time is domina.t.ed by f , .  1'v.e focused in 
this work 011 these cases only. Since a.t. the fised point 2 va.nis~ies, t.Iiere exists a. I;  so t .~iat ,  w~ieii t ~ i e  dis- 
tance from the fixed point. is larger than h .  > ?!A. 

where wug is a positive number. Consequently if A€ 
is t,he difference between the maxiinal and minimal 
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values of E. t.lie t.imc of flow t /  from the init.ia1 poini. 
1.c~ t.hc point, of dist.ance 6 froiii the fixed point. sa& 
lies 1.f < . Tlir exact. value o b  depends on tlie 
1"ticular syst.em at. ha.nd. 

for t.wo examples: t,lie gradient 
flow and  t.he I-Iopfieltl neural ~iet~worli. By the chain 
ride we find 

1. 6 

We next, est.imat,e 

(11.3) 

will be useful in what. follows. W e  start wit.11 t,he 
gradient flow (sucli as i n  i . 1 1 ~  case of a part,ic,le rolliiig 
clo\vn hi l l )  which  is defined by 

(11.4) 

In t,liis ca.se is just the value of 
IF(xC5)l? at  some point z , ~  a.t. a. distance 6 from the 
fised point. in  it.s linear regime. 

A iiiore sophist,ica.ted esa.niple is tlie Hopfield net,- 
worl; 191. The continuous version of the Hopfield net,- 
work is defined by 

= -1FI' a.nd 

wit~li syiiiiiietric weights 1P;j = N'ji and oj- ( z j )  = 
tanhzj . Our analysis alloivs a. generalized Hopfield 
model \vith t.lie fuiictions uj sat,isfying: 
(i)l U j l  5 1: 
( i i )  7 > 0; a n , ( x )  

8'0 (1.) . ( i i i )  ai2 is nega.t.ive for posit.ive z, positive for neg- 
at,ive z and t,eiids to  zero monotonically in tlie limits 
ice. 
The energ!' E is defined here by: Fi = - $2, where 
c is a positive constant., lea.ding t,o 

2 dE 
dt (1I.G) 

Beca.use of condit,ion ( i i ) ,  t.he differential of tlie energy 
is indeed negative. One finds t.1ia.t z)6 is proportional 
t,o IF( x.5 ) I 2 .  Tlie convergence tiiiie of the generalized 
Hopfield 11etworli is tlius 

(11.7) 

where x<5 is some point, in  the 1inea.r regime of the 
fixed point, and C is a constant. 

\?'e conc.lude t1ia.t. for syst,enis with a decreasing en- 
ergy funct,ional t.he computation a.pproaches a fixed 
point within a small precision in time t ,  = i)h$I. 



The verification t,iiile is of t.lie sanic order of inagiii- 
t.ude. These syst.eiils arc. thus helongiilg to t,he coill- 

putatioii class P d  of ~~oly~iomial-dyiia.iiiics. t,liat. cor- 
respond t.0 t,he class P in t.he st.aiidarcl comput.a.tion 
theory, if verificat,ioii is not. required [‘22]. I f  i t .  is re- 
quired, t,liese are I>eloiiging t,o BPPd corresponding t.0 
BPP. 

111. COMPUTATION FOR CHAOTIC 
SYSTEMS 

.Oft,en flow 1.0 c1iaot.i~ st.range a(.t.ract.ors t.a.I;es 
pla.ce. T h e  behavior of a chaotic system ca.n be very 
rich, eshibit ing st.ructures oil all sc.ales. Tliese in- 
creasingly rich structures are revealed a.s the grid of 
resolutioii is decreased. Syst<enis where t.he number 
of chaotic a.ttract,ors is a.rbit.rarily la.rge can he  found 
[23.24] and thus iiian; possible out.put. responses are 
possible in the associat.ed coiiiputa.tioii. Such a situa- 
t,ioii Cali be found when w7ea.k dissipation is applied to  
a cha.otic Hainilt,oiiian sysbeiii eshibit,iiig complicated 
st8ruct8ures that. consist of elliptic and hyperbolic fixed 
points as well a.s of cha.otic layers. T h e  Iioliiiogorov- 
Arnold-Moser and  Poinca.re-Birkhoff theorems assure 
the existence of such structures [18?25,2G]. 

As in the case of regular a.t,t.ract?ors our focus is 
still on syst,eins for which a.tmtrract,ors a.re a.pproa.clied 
exponentmially in t ime,  namely as e - x f .  T h e  verifica- 
t,ioii, though. is much harder here, ca.using longer t,o- 
h . 1  coiiiputa.tion t.iiiie: deteriiiiiiing the 1oca.t.ion of the 
at.tractor within a precision E ,  inay require espoiien- 
tially long t ime for chaotic syst,eiiis (it. is polyiioiiiial 
for fixed points). 

For iiiaiiy dyiia.mica1 systeiiis stra.iige attxa.ct,ors are 
inultifractal: their measure on various points is iiot. 
uniform. Let the  iiieaSure in a. hypersphere of ra.dius c 
on the a.tt.ra.ctor lie pi = col. T h e  measure is smallest. 
in regions where ai = amax. T h e  t ime i t  t.akes t,o 
reach the  region of t.he sma.llest. measure is inversely 
proportioiial to it,. Therefore. t.he t,inie required tso 
conipute the loca.tion of t.he a.t>t,ractor is 

t A  c-om*I - - E U m a x l  I n  € 1  (111.1) 

Hence: if t.he a.ttra.ctors are kiio~vii (for exa.111- 
ple, from previous calcula.tions) . aiid this expoiient.ia1 
amount. of inforina.tioii is kept., the  coiiiput.at.ion time 
required LO determine the  at,tra.ct,or to wliicli t.he flow 
takes place is proportiona.1 to  1 In € 1 .  Otherwise, it. is 
exponential iii I In E 1 .  

However we can do bet,t.er t,ha.n espoiient,ial t,iiiie 
when the st.raiige at.tractors are chaotic: consider t.he 
question “Does a. given point x a.pproa.ch a. t,ypica.l 
isolated a.tt,ra.ctor 4, ? ” T h e  a.t.t.ract,or i 

oiic of it.s fisetl point,s, we al~use t,he notation, using 
@ 1iot.li to denote t.he fised point. aiid its associa.t.ed 
a.t.tractor. In addition t.0 4) anot.lier real constant. 11 is 
provided so t.liat. any periodic orbit that passes in t.lie 
I/ neighborhood of Q) is on th r  a.tt.ra.ct,or a8 well. Kow 
(.lie problem is defined a.s follows: 
G i v e n  an initial point with precision c decide 
wl ie t l ie r  this point is attracted to t,lie c v ic in i ty  
of‘ the a t t r a c t o r  a). 

\,$’e nest. s h o ~  that. t.his prol~lcm is in  the class NI?,.( 
[or our niotlel. ‘This is the  class of t.he tlyna.mica1 sys- 
t’cins corresponding t.o the cla.ss N P  in the st.andarcl 
comput.at.ional theory. Given an initial point. x. t,liere 
is a guess point. y so tJ1a.t y is in the 11 neighborhood 
of (1) and also y helongs to  a periodic orbitr of 1engt)Ii 
O( I log c l ) .  These t,wo propert.ies a.re easy t,o verify 
and heiice it. is ea.sy to know t1ia.t. y is on the att.rac- 
t,or. Furt,liermore, t,he periodic orbit of the  point. y 
is going t.0 pass in t.he E vicinity of t,he trajecbor!; of 
x in t,iiiie O(10g 6 ) ;  provided t,lia.t x converges t,o the 
at.t,ract,or associa.t>ed with the point. Q). If such a.  point^ 
y is guessed, t.he a%rina.tive answer can be indeed 
verified polyiioinially. For t.liis purpose we proved the 
following leiiiina: 

Leiiima 111.1 There is a. constant. U such tha t  for any 
iiiit,ial point. x in the Imsin of a,tt.ra.ctioii of a n  isola.t,ed 
cha.ot,ic a.tt.ract,or, t,liat is denoted bl- one of its fised 
poiiitjs a, there is a. point, yr so t,lia.t: 

1. y r  is in t,he v-vicinit? of t,he fised point, Cp. 

2 .  yz is on a periodic orbit of length O(l log E ] ) .  

3.  T h e  periodic orbit. of (2) passes in the E viciiiit,y 
of t,he trajectory starting froin x (t,owa.rds the 
a.tt,ra.ct,or) in t,iiiie up t,o O(l log € 1 ) .  

T h e  correctness of tshis lemma. will valida.te the  exis- 
tence of such y and the  fact, t1ia.t the  above problem is 
indeed i i i  N P d .  T h e  justificat.ioii of the leinina relies 
on the esponentia.1 proliferation of periodic orbit,s [ 13. 

Is i t  possilile t.0 \.erif; general cha.otic a.t,tra.ct,ors 
in det,eriniiiist,ic polyiioiiiial t.ime? For specific cases 
where a well defined st.ructure is given by a simple 
rule a.n a.%rmat.ive answer is possible. It, is believed, 
however, t,liat usually it, is not, the case. 
Conjecture: Unless a l l  chaotic at,tra.ct,ors ca.n he de- 
scribed by simple rules, Pd # N P d  

So far it, was assumed in our discussion that, t,lie at,- 
t,ract.ors are iso1at)ed. Also the comput,a.tiona.l proper- 
ties of interiiiingled a.t.tract.ors and at.tractors in crisis 
were st.udied [I]. If t,he chaotic a.t.tractors are int,er- 
mingled (riddled ba.siiis) oiily proba.bilistic coinputma- 
t.ioii can be defined. C!haot.ic syst,eiiis which exhibit. 
crisis denio1ist~rat.e na.t,ural undccidahle coiiiputa.t,ion. 
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