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ABSTRACT

A theory for computation by dynamical systems is pre-
sented. A definition of computation time that is applica-
ble for systems that are continuous as well as for systems
that are discrete in time, based on a physical time scale is
introduced. Computational complexity of dynamical sys-
tems is explored. For this purpose the standard classes
of computer science are adapted to dynamical systems.
The complexity classes P4, BPP; and NPy correspond-
ing to the standard classes P, BPP and NP are defined
for the case of more physical dynamics. It is then shown
that computation of a simple fixed point is in P4 or BPP4
{(depending on the output decision process) while for an
isolated strange attractor it is in NP4. The computation
by the continuous Hopfield neural network is analyzed in
detail and found to be in P4 or in BPPg.

I. INTRODUCTION

A digital computer is a particular case of a dy-
namical system. It starts at some input state, follows
a trajectory in state space and may converge to the
output state. Physical systems are also dynamical
systems; if a system is dissipative, flow to an attrac-
tor takes place. The fundamental difference is that
for physical systems the state space is the continu-
ous phase space, while for computers the state space
is discrete. In addition the attractors of the physical
systems are not limited to fixed points but may be
chaotic as well. The ultimate goal of the research {an
extended version will be published elsewhere [1]) is to
examine computation that is physically plausible by
dynamical systems. For this purpose the terminology
of computation will be extended to general dynamical
systems, that may be continuous in space or both in
space and in time.

Dynamical systems with the appropriate definition
of computation constitute analog computers. These
are either natural systems or artificially fabricated de-
vices, that follow well defined laws of motion. By
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definition their evolution is exact and they use the
exact natural constants, although their exact numer-
ical values are not known to us. Therefore the results
of this work are relevant for the understanding of the
computational capabilities of special purpose analog
computers. .

There are several other important reasons for the
investigation of the model presented here. First. the
theory of computation by continuous svstems may
be considered also a coarse grained theory for digi-
tal computation, the way hydrodvnamics is a contin-
uwum theory for atomic systems [2]. Second, analog
computation can be utilized to test possible theoreti-
cal limitations of the “physical Church-Turing thesis”
[3] that states that the computational capabilities of
any physical device should not exceed (in idealiza-
tion) that of a Turing machine [4]. If a device that
computes problems that cannot be computed by the
Turing machine (and therefore digital computers) is
found, it will challenge the physical Church-Turing
thesis and will therefore be of great interest. Theo-
retical neural networks with super-Turing capabilities
were proposed in the past [5,6] as a particular type of
analog computers, but no natural super-Turing sys-
tem has been noted. Qur paper may provide a basic
correspondence towards identifying such strong natu-
ral systems.

We next speculate regarding the connection be-
tween our setup and human memory. Some of the
motivation for understanding the dynamical behav-
ior and computational power of dynamical systems in
the framework of neurodynamics stems from describ-
ing both the content addressable memory and the as-
sociative memory. The first one allows to recall a
stored word without referring to its physical location,
while the Iatter allows for recalling based on partial
or partially erroneous information. Both character-
1stics of memories are believed to describe human’s
memory. Classically such memories are modeled by
a simple dynamical system, for which an energy (or
Lyapunov) functional is defined and the words reside
in the location of local minima of the energy. The
most popular model is probably the Hopfield network
[7-9]. The meaningful attractors of these networks —
where information is stored — are all simple: either
stable fixed points or limit cycles, that are periodic
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orbits. Therefore the Hopfield model constitutes only
a special case of our theory; it will be used in the pa-
per to examplify computation for systems where the
flow is to fixed points.

Before going to the technical part lets us remind
previous related work. Recently in the theory of com-
putation, there has been an urge to allow for continu-
ous time systems. Some of the motivation comes {from
the realization that the functionality of controllers is
not fully described in terms of discrete dynamics. A
more fundamental question relates to the computabil-
ity with differential equations only. The goal there is
not to understand the behavior of general continu-
ous systems but rather try to simulate discrete clas-
sical systems by particular continuous systems, thus
providing lower bounds on their computational power
[10,11]. Another line of work regarded the so called
“general purpose analog computer” was dominated
by Shannon {12], Pour-el [13] and Rubel [14~16]). The
book [17] describes a particular interesting view of
computability in analysis, differential equations, and
Banach spaces.

In contrast, we characterize the computation of
realizable continuous systems rather than simulating
discrete maps with differential equations.

1.1 The Dynamical Model

A dynamical system is defined by a set of equations
that allow to predict the evolution. Such systems may
be continuous in time, e.g.

dx

dt
where x(t) is a d-dimensional vector and F is a d-
dimensional vector function of x. They can also take
the form of a map:

= F(x(1)) (1.1)

Xn41 = T(xn). (1.2)

Maps can be related to physical systems defined by
continuous equations like (1.1) by a Poincaré map
[18], by the stroboscopic map and in various other
ways. For the stroboscopic map, the position is mon-
itored in intervals of length 7, namely at times ¢ = nr,
where n is an integer. Our results will be presented
for continuous systems but they hold for maps as well
(1].

Dynamical systems can be classified into two
classes. Hamillonian systems which preserve the vol-
ume of their phase space. For dissipative systems, on
the other hand, the phase space volume decreases in
time. As a consequence, dissipative svstems typically
are characterized by the presence and the nature of
attractors.

An attractor may be either regular, for example a
fixed point or a limit cycle; it may also be chaotic.

1437

The region of phase space that flows to a certain at-
tractor is called the basin of attraction [18-20]. These
basins are separated by basin boundaries; the basin
boundaries are either smooth or fractal.

An attractor is called chaotic if the following two
conditions exist: (1) Locally, the separation between
most nearby pairs of points that reside on the attrac-
tor grows apart exponentially; (2) The attractor is
hounded in phase space. Because of this exponen-
tial growth, prediction becomes exponentially diffi-
cult. Their rregularity is part of the intrinsic dy-
namices as opposed to the case of stochastic systems.

Our interest is in physically realizable, dissipa-
tive dynamical systems with the extra feature that
the convergence 1o the altractor is exponentially fast.
This last requirement does not constrain our theory
much because such systems are abundant in nature,
although other possibilities exist (see [1]). These re-
quire vanishing Lyapunov exponent, that is an addi-
tional constraint, and therefore these possibilities are
scarce. We also assume that the initial conditions are
not in the vicinity of the boundaries. This is true for
most initial conditions in presence of isolated attrac-
tors. In this simplified model the richness of com-
putation stems from the physical complexity of the
attractors. More general cases are of great interest
and should be considered in future work.

1.2 The Computational Model

The following computational question will be ex-
amined: starting from some point in phase space, to
which attractor will the trajectory flow? Qur purpose
is to evaluate the computability and to estimate the
computational difficulty (e.g. P, NP, etc.), involved in
answering this question for various types of dynamical
systems.

We define a computation for general dissipative
dynamical systems as follows. The initial condition
corresponds to the input. The system evolves until
approaching an attractor. Because the actual conver-
gence to an attractor takes an infinite time, we do not
require complete convergence but rather define that
the calculation is completed when an e-vicinity of the
attractor is approached and the system is verified to
he confined there. Deciding to stop the computation
after it is found that the trajectory is attracted to the
¢-vicinity of the attractor may sound obscure because
the e-vicinity may contain several attractors that can
be resolved only for smaller values of ¢. This is actu-
ally not a problem but rather a manifestation of the
richness of the corresponding computation. As the
resolution is increased. new and more refined results
are found.
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1.3 Computational Complexity

In discrete time computational models, the compu-
tation time is quantified by the number of steps until
halting, and this is used to measure the complexity of
the process. This definition can be adapted for maps;
it is however meaningless for continuous time systems.
A different definition is required, and is considered an
important issue in computer science (e.g., {12-14,21}).

To see why the problem of definition of a computa-
tion time scale is challenging, assume we wish to de-
scribe computation by a system of the type (1.1). f F
1s multiplied by a constant «, the computation time
changes but the complexity should stay unchanged.
Our suggestion is to introduce a concept related to
a natural physical time scale: this is the character-
istic computation time scale that will be defined
by the rate of convergence of the underlying physical
svstem. The complexity of the process will be then
measured as the time — quantified in multiples of the
time scale — required to complete the process. This
definition is applied to both continuous and discrete
time systems. For the discrete case the relation to the
classical definition of computation time is transparent
and the difference between these definitions is clear.

We next wish to emphasize the importance of hav-
ing the input and output in form of bits, that is, the
input to the machine can be thought of as a string
of binary digits and the output adheres to the same
restriction. The finiteness of the input and output is
a crucial requirement in the theory of computing, as-
suring that the power of models is purely based on the
internal structure rather than on higher input/output
precision. The complexity of computation is defined
with respect to the length of the input. We take a
similar approach: to comply with the finiteness of in-
put and output, and with the decision of ending a
computation, the compuiation in a dynamical sysiem
15 defined relatively to a grid. The spacing of the grid
is of the order of the precision in the initial conditions.
If the flow converges to some fixed point x*, the out~
put will be taken as the closest point on the grid. The
convergence time t. will be so that for all ¢ > ¢, the
distance from the fixed point satisfies |x(¢) - x| < €.
The connection between the precision in the dynam-
ical evolution and the number of bits in the input is
given by the log ratio: that is, for grid spacing of size
¢ the number of “input hits™ is |loge|.

We next define the characteristic time scale for
our class of exponentially converging dissipative sys-
tems: assume first that the relevant stable attractor
1s a fixed point z~, one can linearize (1.1) around this
point, to obtain

bx =M 6éx (1.3)

where éx = x — x* and M is the stability matriz.

The eigenvalues of the stability matrix are the Lya-
punov exponents (the fixed point is assumed to be
stable, hence all these are negative). The rate of con-
vergence is determined by the largest of them, that
will be denoted by —A. In the vicinity of the fixed
point |x(t) — x*| ~ e~* and 1/X is the characteris-
tic time scale for convergence. Since the time spent
near a fixed point dominates the elapsed time (unless
the initial point is very close to the boundaries), we
can choose 1/X as the formal characteristic time of
the computation. It depends only on the nature of
the fixed point and not.on any details of the physical
system. Obviously the numerical value of A depends
on the units used to measure time. The change of the
time scale is equivalent to the multiplication of F in
(I.1) by a scalar constant. Such a characteristic time
scale will be found any time exponential convergence
to an attractor takes place. It may be a fixed point,
a periodic orbit or even a strange attractor. A sim-
ilar definition can be mtroduced for maps. If there
are several attractors the computation time will be
defined as the smallest characteristic time.

Having this time scale, we can calculate the time
complexity of the dynamical system. The convergence
time . is what it takes for the trajectory to flow from
the initial point to the point where it terminates. It
is

te=1.+1;+1p (1.4)

where t. is the contribution from the linear regime
(see (1.3)), tp is the contribution from the vicinity of
the boundary, if the initial condition is there, while ¢;
1s the contribution from the other regions. The con-
vergence time ¢, does not constitute the whole com-
putation; one also has to verify that the computation
has indeed ended. Here the differences between the
complexity of the attractors come to sculpt the dif-
ferent computation classes in dynamical systems.

In this paper we illustrate how the theory can be
used for flows to fixed points and to isolated chaotic
attractors. For more applications see [1].

II. COMPUTATION FOR SYSTEMS WITH A
LYAPUNOV (ENERGY) FUNCTIONAL

First we calculate explicit bounds on the compu-
tation time for simple systems for which a Lyapunov
or energy functional satisfying

dE{x(1))

- <0 (IL.1)

can be defined. In this case the flow (if it is bounded)
1s to fixed points. The fixed points of the continuous
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systems and of the corresponding discrete maps are
exactly identical, since these are the zeros of F.

When the phase space velocity of the trajectory %’,—‘
is found to be smaller than ¢ (in appropriate units)
for some time, it is likely that it is in the e-vicinity of
a stable fixed point. For some problems it is known
that the flow is only to stable fixed points [22]. For
other situations, one may want to verify that it is in-
deed in the vicinity of such a point and not near the
stable manifold of a hyperbolic point. Qur suggestion
is to conduct a probabilistic check. Assume we want
to validate convergence of the point x that is e-close
to a suspected fixed pint. We create k new points
X1,...Xg by adding to x independent noise of strength
up to €. Now the svstem is called repetitively on each
of these points; each time it is stopped after time %,
to be specified later. Consequently a cluster of trajec-
tories in a sphere of radius ¢ around the fixed point
1s generated. If the fixed point is stable the sphere
shrinks, while if it is hyperbolic it gets stretched in
the unstable direction at the rate ™!, where A; is
the corresponding Lyapunov exponent. After a time
of the order [Inf| it reaches a distance 6 > ¢ from
the fixed point. For a hyperbolic point, there is a fi-
nite probability p to find one of the k trajectories at
a distance between & and 16 from the fixed point. If
one of the trajectories is found at such a distance we
conciude that the fixed point is unstable and continue
the computation from x until it runs away to another
fixed point. The probability that non of the trajec-
tories reaches the distance between 6 and 6 from an
unstable fixed point is (1 — p)*, that is e\ponentlall\
smallin k. Note that t, = O(|Ioge|v ) and therefore the
verification time t, is polynomial. It was assumed
here that both ¢ and é are in the linear regime where
(1.3) holds.

We turn now to estimate the total time of com-
putation for such systems. The various contributions
to convergence time (I.4) are evaluated. The time it
takes to flow through the linear region from a distance
& of the stable fixed point to its e-vicinity is

1 ¢
te = Xllﬂgl (HZ)

where — ) is the largest Lyapunov exponent (note that

all of them are negative). If the initial point is as-
sumed to be in a narrow region of width 7 in the vicin-
ity of the basin boundary, tg ~ O(]Inn|). If € « 7 the
computation time is dominated by t,. We focused in
tdl}sis work on these cases only. Since at the fixed point

s vanishes, there exists a é so that when the dis-

tance from the fixed point is larger than é, l El> vy
where vg is a positive number. Consequently if AE
is the difference between the maximal and minimal

values of I, the time of flow {; from the initial point
to the point of distance § from the fixed point satis-
fies 1; < %L . The exact value vs depends on the
particular system at hand.

We next estimate vs for two examples: the gradient
flow and the Hopfield neural network. By the chain

rule we find

dE JOF dx;
i ey (I13)

that will be useful in what follows. We start with the
gradient flow (such as in the case of a particle rolling
down hill) which is defined by

dx; OF
Fis=—=——. 11.4
dt Jz; ( )
In this case 4€ = —|F|* and vy is just the value of

|F(xs)|° at some point zs at a distance § from the
fixed point in its linear regime.

A more sophisticated example is the Hopfield net-
work [9]. The continuous version of the Hopfield net-
work 1s defined by

dz;
G =F= - +Zn o5 (20) (11.5)
with symmetric weights Wi; = Wi and o;(2;) =

tanhzj. Our analysis allows a generalized Hopfield
model with the functions o; satisfying:

(i) ;] £ 1

(i) 225 0;

(#i7) d—gi—(—l is negative for positive z, positive for neg-
ative z and tends to zero monotonically in the limits
Foc.

The energy E is defined here by: F; = —%31012, where
¢ is a positive constant, leading to

% = —c}; <§:> (‘“’) (IL6)

Because of condition (7}, the differential of the energy
1s indeed negative. One finds that vs is proportional
o |F(xs)]°. The convergence time of the generalized
Hopfield network is thus

AE

. Lte+tp+C —— (11.7
HENIE 7

where x; is some point in the linear regime of the
fixed point and C is a constant.

We conclude that for systems with a decreasing en-
ergy functional the computation approaches a fixed
point within a small precision ¢ in time ¢, = ${In§|.
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The verification time is of the same order of magni-
tude. These systems are thus belonging to the com-
putation class Py of polynomial-dynamics, that cor-
respond to the class P in the standard computation
theory, if verification is not required [22}. If it is re-
quired, these are belonging to BPP, corresponding to
BPP.

III. COMPUTATION FOR CHAOTIC
SYSTEMS

.Often flow to chaotic strange aliractors takes
place. The behavior of a chaotic system can be very
rich, exhibiting structures on all scales. These in-
creasingly rich structures ave revealed as the grid of
resolution is decreased. Systems where the number
of chaotic attractors is arbitrarily large can be found
[23.24] and thus many possible output responses are
possible in the associated computation. Such a situa-
tion can be found when weak dissipation is applied to
a chaotic Hamiltonian system exhibiting complicated
structures that consist of elliptic and hyperbolic fixed
points as well as of chaotic layers. The Kolmogorov-
Arnold-Moser and Poincare-Birkhoff theorems assure
the existence of such structures [18,25,26].

As in the case of regular attractors our focus is
still on systems for which attractors are approached
exponentially in time, namely as e~*'. The verifica-
tion, though, is much harder here, causing longer to-
tal computation time: determining the location of the
attractor within a precision ¢, may require exponen-
tially long time for chaotic systems (it is polynomial
for fixed points).

For many dynamical systems strange attractors are
multifractal: their measure on various points is not
uniform. Let the measure in a hypersphere of radius ¢
on the attractor be p; = ¢**. The measure is smallest,
in regions where a; = ampay. The time it takes to
reach the region of the smallest measure is inversely
proportional to it. Therefore, the time required to
compute the location of the attractor is

f4 ~ e=@max = gamax|Indl (IIL.1)

Hence: if the attractors are known (for exam-
ple, from previous calculations). and this exponential
amount of information is kept, the computation time
required to determine the attractor to which the flow
takes place is proportional to |ine|. Otherwise, it is
exponential in |In el

However we can do bhetter than exponential time
when the strange attractors are chaotic: consider the
question “Does a given point x approach a typical
isolated attractor @ 7 The attractor is specified by

one of its fixed points, we abuse the notation, using
® hoth to denote the fixed point and its associated
attractor. In addition to ¢ another real constant v is
provided so that any periodic orbit that passes in the
v neighborhood of @ is on the atiractor as well, Now
the problem is defined as follows:

Given an initial point with precision ¢ decide
whether this point is attracted to the ¢ vicinity
of the attractor &.

We next show that this problem is in the class NPy
for our model. This is the class of the dynamical sys-
tems corresponding to the class NP in the standard
computational theory. Given an initial point x, there
is a guess point y so that y is in the v neighborhood
of & and also y belongs to a periodic orbit of length
O(llogel). These two properties are easy to verify
and hence it is easy to know that y is on the attrac-
tor. Furthermore, the periodic orbit of the point y
Is going to pass in the ¢ vicinity of the trajectory of
x in time O(loge), provided that x converges to the
attractor associated with the point ®. If such a point
y is guessed, the affirmative answer can be indeed
verified polynomially. For this purpose we proved the
following lemma:

Lemma IT1.1 There is a constant v such that for any
initial point x in the basin of attraction of an isolated
chaotic attractor, that is denoted by one of its fixed
points @, there is a point y, so that:

1. y, is in the v-vicinity of the fixed point &.
2. y- is on a periodic orbit of length O(}logel).

3. The periodic orbit of (2) passes in the ¢ vicinity
of the trajectory starting from x (towards the
attractor) in time up to O{]logel).

The correctness of this lemma will validate the exis-
tence of such y and the fact that the above problem is
indeed in NP4. The justification of the lemma relies
on the exponential proliferation of periodic orbits [1].

Is it possible to verify general chaotic attractors
in deterministic polynomial time? For specific cases
where a well defined structure is given by a simple
rule an affirmative answer is possible. It is believed,
however, that usually it is not the case.
Conjecture: Unless all chaotic attractors can be de-
scribed by simple rules, Py # NPy

So far it was assumed in our discussion that the at-
tractors are isolated. Also the computational proper-
ties of intermingled attractors and attractors in crisis
were studied [1]. If the chaotic attractors are inter-
mingled (riddled basins) only probabilistic computa-
tion can be defined. Chaotic systems which exhibit
erisis demonstrate natural undecidable computation.
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