
Engineering with Computers (1997) i3: [19
~) 1997 Springer-Verlag London Limited E n. gineering

C6'~puters

Upgrading Automation for Nuclear Fuel In-Core Management:
from the Symbolic Generation of Configurations, to the
Neural Adaptation of Heuristics

Ephraim Nissan 1, Hava Siegelmann 2, Alex Galperin a and Shuky Kimhi 4
5,2 Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan, Israel; 3.4 Department of Nuclear Engineering,
Ben-Gurion University, Beer-Sheva, Israel

Abstract. F U E L C O N is an expert system in nuclear
engineering. Its task is optimized refueling-design, which is
crucial to keep down operation costs at a plant. F U E L C O N
proposes sets of alternative configurations of fuel-allocation;
the .fuel is positioned in a grid representing the core of a
reactor. The practitioner of in-core fuel management uses
F U E L C O N to generate a reasonably good configuration for
the situation at hand. The domain expert, on the other hand,
resorts to the system to test heuristics and discover new ones,
for the task described above. Expert use involves a manual
phase of revising the ruleset, based on petformance during
previous iterations in the same session. This paper is
concerned with a new phase." the design of a neural component
to carry out the revision automatically. Such an automated
revision considers previous performance of the system and uses
it for adaptation and learning better rules. The neural
component is based on a particular schema for a symbolic to
recurrent-analogue bridge, called N I P P L, and on the reinforce-
ment learning of neural networks for the adaptation.

Keywords. Allocation; Design; Downtime; Expert
systems; Machine learning; Neural networks; Nuclear
engineering: in-core fuel management; Refueling;
Reload

Correspondence and offprint requests to: Ephraim Nissan, 1 School
of Computing and Mathematical Sciences, The University of
Greenwich, Wellington Street, Woolwich, London SE18 6PF, UK.
(Bitnet: E.Nissan @greenwich.ac.uk).
2Currently at the Department of Industrial Engineering and
Management, The Technion, Haifa, Israel. (Bitnet: iehava@ie.
technion.ac.iI).
3 Currently at the Department of Nuclear Engineering, Ben-Gurion
University of the Negev, Beer-Sheva, Israel. (Bitnet: alexg@bgumail.
bgu.ac.il).
4Currently at the Kernforschungszentrum Karlsruhe, Institut f/ir
Neutronenphysik und Reaktortechnik, Postfach 3640, D-76021
Karlsruhe, Germany.

1. Introduction

F U E L C O N is an expert system in an industrially
significant domain: nuclear engineering. The system's
task is to provide a good fuel-reload configuration (i.e.
refueling design), and thus to indirectly achieve
minimization for the duration of the very costly
shut-down periods at nuclear plants. F U E L C O N is
already a working system that as is, can be applied
industrially [1-5]. We report on current achievements
of the project, and on new developments that upgrade
the reasoning capabilities of the tool.

In FUELCON, peculiar heuristic domain-
knowledge is applied to the generation of a very great
number of configurations of how to allocate units of
fuel of different kinds, inside the cases of the (geo-
metrically and symmetrically schematized) core of the
nuclear reactor. The type of reactor, the features of
the individual plant, and its current state, along with
the cumulated knowledge corpus of the specialty, as
reflecting (at a deeper level) models of reactor physics,
determine the selection of the relevant criteria of fuel
allocation. These cannot be fully predefined, before
the moment comes for shutting down a plant.
Therefore, the design of the new allocation is possible
only at this moment.

In FUELCON, a ruleset is applied to generate
families of good configurations of fuel in nuclear
reactor cores. Whereas the practit ioner may be
satisfied with the output, the domain expert is
challenged to optimize not just the configurations, but
his or her own heuristic as well: the results of one given
iteration of the expert system are simulated by another
component, which prompts the human expert to
(manually) improve on the ruleset previously (manu-
ally) formulated.

In this work, we design a device for automated
ruleset-revision. Because of the peculiar architecture

2 E. Nissaa eg ai.

of FUELCON, which involves a certain operation-
loop, success with the device proposed is tantamount
to achieving a full automation of the discovery
process, at the task considered (apart from the initial
formulation of the ruleset, as provided by the
expert).

The automation of revision is accomplished by
using neural networks learning algorithms, which tune
the rules to yield better configurations, based on
previous performance. For this aim, we translate the
rules into a neural network using a particular
technique: NIPPL is a language and translation
schema defined by Siegelmann [6] for transforming
rulesets into neural networks. Here, we use this
schema to obtain translation from symbolic rules to
analogue network. The application is not trivial at all,
as many questions related to the neural structure and
the learning still remain difficult.

2. Preliminaries

As our work encompasses four subjects: fuel manage-
ment, the system FUELCON, neural networks, and
learning algorithms, we shortly describe some related
background for each.

2.1. Preliminaries of Fuel Management in Nuclear
Power Plants

1. Nuclear fuel is loaded into the core of a nuclear
reactor. Fuel comes in fuel assemblies, i.e. packages of
200 250 fuel rods. These are 350 cm long (see Fig. 1).
Fuel assemblies are inserted vertically in the core, in
a grid of positions. In fact, whereas the core actually
is in three dimensions, the core geometry is usually
represented as a grid in the plane: Fig. 2 shows a
planar schema of a reactor core.

For the purposes of designing the allocation of fuel,
it is enough to reason on just one slice out of this
table of perpendicular square cases: a symmetry of one
eighth is typical (see Fig. 3). In this core geometry,
important regions for reasoning about are, for example,
diagonals, or then the central region of the core. (In
the figure, it is the upper tip of the slice.)

2. Among the fuel rods, there is liquid coolant: a
major (and, in traditional fuel management, simpler)
kind of plant employs, as coolant, pressurized water.
Pressure is needed to prevent the water from boiling.
However, there are steam generators on the borders:
their role is to act as heat exchangers. Of course, not
all of the thermal energy thus produced can be

Fig. 1. An assembly of fuel rods. ~t 1its in a position within the
grid that constitutes the core of a nuclear reactor.

exploited as electrical power, e.g. about 3000 thermal
MW would yield about 1000 electric MW.

As the nuclear plant produces energy, the fuel
assemblies become depleted. Typically, annually (but
the length of such cycles is somewhat variable), plants
are shut down, and fuel is reallocated into the core. 1
According to the degree of their partial depletion, one
distinguishes between different types of assemblies.
(There exist also other parameters setting a difference.)
There is fresh fuel, and then one-, twice-, and
thrice-burned fuel. The latter kind is discharged from
the core, and no longer reused in the next interval of
operation. It is replaced with fresh fuel) Heuristics of
allocation of units of the various kinds of fuel into the
core geometry, take into account the difference
between the various kinds, in terms of the degree of
depletion. For example, one heuristic includes the
avoidance of allocating fresh fuel at the centre of
the core, to avoid too high a local power density

~An exception is such reactors that do not practice reload in
batches of fuel, as there are no downtime periods for refueling;
replacement is continuous. As said by Cochran and Tsoulfanidis
[7]: 'Canadian deuterium uranium (CANDU) reactors [. . .] can
operate with natural uranium as fuel. [. . .] Another unique
characteristic of C A N D U is that it can be replaced on line, i.e.,
without shutting down' (p. 5).
2 In a pressurized water reactor (PWR}, fie. the kind of reactors we
are concerned with, fuel replaced per year is b(3. The fraction is
different in other kinds of reactors: in boilin.q water reactors (BWR),
it is 1/4, whereas in high-temperature yas reactors (HTGR), it is just
1/6. Cochran and Tsoulfanidis [7] define major types of reactors
(Ch. t) and give values for that parameter (p. 4). In C A N D U
reactors, replacement is continuous, not a fi'action of a batch of
fuel: cf. previous footnote.

Upgrading Automation for Nuclear Fuel In-Core Management 3

! ~
O

7

Fig. 2. A planar schema of the core of a typical nuclear reactor.
l, The position of a single fuel-assembly; 2, a control rod assembly
location: 3, an in-core instrument location; 4, the reactor vessel;
5, the thermal shield; 6, the core barrel; 7, a surveillance specimen
holder tube. Understanding these detailed notions is unnecessary
to make sense of the text.

,os51

os61

os71

os81

pos52 pos53

pos62 pos63

pos72 pos73

pos82 pos83

pos54 ipos55

pos64 pos65

pos74 pos75

Fig. 3. A slice, in one-eighth core symmetry, of the schema of a
core. The positions in the core (i.e. the cases in the grid) are named
after the coordinates inside this slice. The position-identifiers, as
naming each case in this figure, are those in use in FUELCON.

distribution, which would be p rob lemat ic for cooling
purposes.

Fuel deplet ion reduces the potency of the fuel. The
relevant p a r a m e t e r is the neu t ron mul t ip l ica t ion
factor, symbol ized as K. It is defined as the n u m b e r

of neut rons created per one neu t ron destroyed. To
achieve cont inuous power product ion, an adequate
chain react ion is necessary. This is expressed by saying
that the reactor core has to be kept critical. For this,
K = 1 is the minimal value that it is strictly necessary
to maintain, but practically, a higher value of K is
maintained, i.e. we need a certain excess of criticality.
This is mean t to sustain r easonab ly long inter-
refueling intervals.

3. Fuel m a n a g e m e n t includes two domains : the
m a n a g e m e n t of fuel to be acquired and in store is a
fairly complex domain; instead, the area of our own
project is in-core fuel management. The (in-core) fuel
m a n a g e m e n t p rob lem is the problem, for the (in-core)
fuel manager , of designing the reload, i.e. of deter-
mining the conf igurat ion of fuel in the core, in order
to start a new opera t ion period at the nuclear plant.

Downt ime periods at plants are costly: they typically
take a few weeks per year; just consider the case of a
plant that produces approx imate ly one million dollars
of electricity per day.

It is legit imate to wonder: couldn ' t the fuel manage r
do his reload design job dur ing the previous opera t ion
cycle? This would allow arrival at the downt ime
period with a ready design, thus cutt ing down the
inactivity per iod of the plant.

The experienced engineer can forecast power profiles
for the core, according to the design implemented at
the beginning of the current opera t ion cycle. Real-
istically, a forecast for the end of that cycle (EOC) will
not match the actual state of the reactor, because of
unforeseen reasons, n o t w i t h s t a n d i n g a flexibili ty
window. Differences would be such that were a design
prepared for the next cycle based on forecasts for the
end of the current cycle, that solut ion would not be
robust enough to fit the actual s i tuat ion at E O C (see
Fig. 4).

A solution has to be devised by customizing it for
the given plant: plants have their own individuality,
because of their configuration. Moreover , the way
plants opera te may vary f rom place to place because
regulat ions are different in different countries (e.g. it
happens that a count ry forbids the use of p lu ton ium
in fuel, as its prol iferat ion could subserve mili tary
purposes).

Even if we are to refer to the same plant, predict ions
for the next cycle cannot be valid, as, for example,
unpredictable weather condit ions can cause a shift in
energy consumpt ion (for the purposes of domest ic and
insti tutional c l imatizat ion of interiors). Therefore ,
there is a shift in energy supply requirements at a given
plant subserving the given communi ty .

As to t ime-dependent variability, it depends, at a

4 E. Nissan et aL

Fig. 4. Why the next-cycle refueling design is unavailable before
downtime periods: a list of reasons and their mutual dependency.
Key:
B~o%: actual fuel-burnup
cumulated values at EOC N.

DN: design of the in-core
fuel-allocation for the Nth
operation-cycle.

EOC,~: the end-of-cycle of the
Nth operation cycle at the given
plant.

B d " designed fuel-burnup EOC N'

cumulated values at EOCN.

EN: actual end-of-cycle state of
the reactor core, once the Nth
operation-cycle is completed.

FN: forecasts for the state of the
reactor core at the end of the
N th operation-cycle at the given
plant.

RN: robustness of solutions for the fuel-management problem
(i.e. of such configurations that may be designed for fuel-reload
into the core) as devised for Fy.

plant, also on the availability of fuel in store. Another
kind of time-variability, this one applying to longer
spans, is due to political realities: in a given country,
regulations are sometimes modified through political
intervention, as prompted by public pressure (e.g. in
the aftermath of widely reported accidents).

4. Let us consider the standard practice of the
engineer who is responsible for designing the con-
figuration according to which the reactor core is going
to be refueled at the next EOC. This procedure is
shown in Fig. 5.

This procedure (unlike what we do in our FUEL-
CON expert system) embodies such a best-first search

that starts from an initial candidate, and follows with
a series of trial-and-error correction steps of a local
nature. The suitability of best-first search stems from
the very nature of the procedure. The fuel manager
makes an effort to avoid potentially dangerous
patterns, with regard to the local power peaking in
the process of looking for the 'best' position, within
the core grid, for each fuel assembly. Heuristics do
exist, and the more experienced the fuel manager is,
the more s/he is able to carry out 'mentally computed'
evaluations, corresponding to a heuristic model of
reactor core physics.

Of course, the solution thus obtained must be
simulated. Not only that, standard simulations are
mandated by current legislation and plant manu-
facturers' guidelines. An expert fuel manager can
predict roughly, without detailed calculations, a
power profile across a core, and even local power
spikes. However, power density distributions in the core
depend on physical properties of different materials,
which make up the reactor core itself, and these
properties are described by complicated functions of
energy and space. An accurate evaluation of the
spatial power distribution involves a series of intensive
calculations (to be performed by a simulator) solving
a space-energy dependent Boltzmann equation.

5. Figure 6 illustrates three different classes of
computer tools for assisting the fuel manager in
devising configurations for refueling. A survey of
extant tools is beyond our present scope [8]. Because
of relevance to the present work, we mention an expert
system prototype, that looks for just one solution by
modifying a given configuration.

At IntelliCorp, the prototype was developed (using
the KEE shell) of an interactive fuel-shuffling knowl-
edge-based system. Petschhat et at. [9] described it
focusing on the application, whereas Faught [10]
stressed the discussion of knowledge-engineering
aspects (see also Rothleder e~ aL [t II, that addresses
nuclear engineers).

As far as we know, that particular project did not
proceed beyond the early prototyping phase. There
exist, at the present state of the art, other projects that
reached a more advanced phase, e.g. in simulated
annealing as applied to the in-core fuel-management
problem. (Kropaczek and Turinsky [121 described
FORMOSA, a program that combines GPT and
optimization by simulated annealing.) We are men-
tioning the IntelliCorp expert system in particular,
because like our own project, it adopted rule-based
expert systems as a technology.

The IntelliCorp system handles differently two
major classes of plants (pressurized water reactors,

Upgrading Automat ion for Nuclear Fuel In-Core Management 5

n
i

.......... >I

I_
I
i
V

Sort fuel for reload
according to some
physical feature

Construct a
{ candidate
[configuration:
I

Insert an assembly I<
into a selected I
position I

I _ _

1 F / \ T
/ Is core \
\ filled? / I
\ _ _ / I

i ^ 1
_ _ I I

i

current
candidate
configuration

+

Fig. 5. A standard solution method resorted
lo by human fuel-managers to solve the
fuel management problem, i.e. to design
how to refuel the reactor core. Unlike
what we do with F U E L C O N , here it is
best first search we have; it starts from an
initial candidate configuration, which is
gradually modified.

I

f
............ >]

I
I

I

Evaluate the current candidate configuration
by means of a computer code simulation of the
power production period to establish solution
acceptability.

/
T /

+ __/

i \
I \
v \
i
f

i
i I
+ >I

I
....... < I

i

\
Does the current configuration \ F
involve an unacceptably high \ +
local power density? / [

/ i
./ V

EXIT

"Reshuffle': generate a new configuration
by means of a binary (or more complicated)
assemblies exchange.

and such that use so-called burnable poisons), whereas
in FUELCON, handling is substantially similar.

In shuffling, backtracking is expressed through
binary exchanges made in the reload design: the
positions of two fuel assemblies are switched. Such
backtrack steps are aimed to correct local problems,
e.g. excessively high power density of a specific fuel
assembly. When it is the engineer that generates a
candidate solution, the manual procedure consists of
consecutive single placements (on the paper in front
of the human fuel manager) of the fuel assemblies into
one of the available core positions, until the core is
filled. It is a heuristically guided depth-first strategy.
Next, the manually obtained configuration is analysed
(typically, by means of software), and, if found
unsatisfactory, either the engineer or a shuffling
system that s/he uses, modifies the solution by a
binary exchange of assemblies. The basic configuration
pattern is preserved, unless a large number of such

binary exchanges is carried out. With such ~
on the observability space (the latter being the idiom
from systems and control), local optimality is a prized
target. With FUELCON, instead, we have been more
ambitious.

2.2. Preliminaries of FUELCON

Unlike the IntelliCorp expert system, our own tool,
the FUELCON expert system, does not simply assist
the user in shuffling a configuration that s/he has
provided as input (according to personal experience,
or real case studies published in the domain litera-
ture). Indeed, FUELCON is not fed an input con-
figuration, but instead it incorporates a replace-
able ruleset, as formulated by a domain expert: the
search is carried out, not for a single optimal solution,
but for a set of alternative allocations (i.e. fuel con-
figurations) grouped into families; these are typified

6 E. Nissan eg ai,

M~2~IJAL DESIGN PACKAGES:
......................................

help the engineer to produce
reload configurations according
to his or her own expertise:

F I
I in calculations I
i for analyzing by producing i
g the reactor- graphics }
I core physics t
[_ i

I
calculate { visualize

L
V V

EXPERT SYSTE!'fS :
======================================

incorporate the design Guidelines
of reload designers, and propose

Good configurations:

either or

by reshuffling:
for just one

solution.

(Inte!liCcrp)

1 i
1 by a broad
1 search for I
J solution- i
i families, i
P (FUELCON) I

CPTIMIZATION PACKAGES :
======================================

embody a traditional algorithmic
approach; their evolution concerns:

* the class of general optimization
methods (integer programming,
simulated annealing, etc.);

* the way the nuclear-physics
problem is formulated.

< +

search for
(near-)
optimality
(local or
global)

Fig. 6, Classes of computer tools lbr reload design.
Arrows between boxes stand for shared roles. This
classification is based on Galperin et al. [1] (Sec. 4)
and Parks and Lewins [8],

by the given ruleset that generates them, and which,
in turn, embodies heuristics reflecting a given generic
conception. The given input situation is typified
by the given reactor (whose core has a given geom-
etry), and the time-dependent given pool of available
fuel.

Let us describe the way configuration-families are
generated. The expert system accesses, in the database,
the geometry of the reactor core concerned, and the
pool of fuel-assemblies, as being subdivided by type.
The generation of the set of configurations is guided
by the ruleset being consulted, and is e x nihiIo, i.e.
starting with an empty core.

The search, in FUELCON, is forward-oriented and
breadth-first. There is no backtracking. According to
a beam-search algorithm, a tree of configurations is

developed, !eve1 by level, through partial configur-
ations as intermediate stages. Each leaf in the tree
corresponds to one full configura[ion, i.e. to a fully
loaded core that fully exploits the available fuel. Each
level in the tree is associated with a particular fuel
assembly (out of the available pool kept in store),
according to a predefined order as given in a loading
sequence.

For efficiency reasons, the loading sequence is
given: actually, it is part of the contribution of the
domain expert, just as is the ruleset. However,
basically, it would be easy to automate the generation
of the loading sequence, too: those fuel-assemb]ies
about whose class there are elimination rules, are put
ahead in the loading sequence; the more numerous
are the rules that affect the class of the assembly, the

Upgrading Automation for Nuclear Fuel In-Core Management 7

earlier the place has to be of that assembly within the
!oading sequence.

As to the rules in FUELCON, they represent two
distinct types of knowledge: generic principles from
physics, and local, specific knowledge suited to
accommodate given situations. When an experienced
user uses FUELCON, s/he is typically ambitious, as
to the goals of optimization. Moreover, the researcher
in the domain typically wishes to test new versions of
a given ruleset s/he had formulated, in order to obtain
improved configurations out of the family generated,
or improved families of configurations. Then, an
operation-loop in using F U E L C O N takes place, for
the same given input problem. Each single iteration
includes a generation phase, and an evaluation phase.
Figure ? illustrates the generation phase as during a
single iteration. (The configuration-base is that part
of the database that stores the collection of con-
figurations being generated.)

Downstream of the rule-based generator of con-
figurations (which is coded in Lisp), the output is fed
to NOXER, a locally developed simulator. The results
of NOXER are both visual and numeric. A 'cloud' of
solutions is displayed in the cartesian plane of two
parameters, within a 'window' of admissibility: this is
a region laying under a horizontal line in the display.
Its 'southwestern' corner is at the origin of the
coordinates. In this admissible region, configurations
on the right are more efficient than configurations on
the left. The domain expert may wish to move the
'cloud' of solutions into a 'southeast ' direction, in
order to get several configurations that are both safe
and very efficient. To do so, s/he manually revises the
ruleset. This is the step that we have set to automate
by means of a neural component, based on the N I P P L

Fig. 7. A projection of a single iteration on the ruleset and
database, from the viewpoint of the FUELCON generator of
configurations as candidates for the fuel-reload to be implemented
in the reactor core. The database contains the pool of output
configurations.

language and symbolic-to-neural conversion schema.
Figure 8 shows the loop of how the F U E L C O N /
NOXER integrated tool is used.

Now, let us consider Fig. 9. It illustrates the sub-
components of the ruleset and the database in
FUELCON. The ruleset includes elimination rules

(that are never revised, and that prevent the gener-
ation of forbidden configurations), and preference

rules (which are subject to revision, and that typify
the search-subspace). The database of F U E L C O N
includes a subdatabase of fuel types and units, and a

It =

-IS

I ~ ~ ~ ~ ! or: quicker,

I I

\ [. I (I }, I (a . r ~ h a a . k e

Fig. 8. The integrated operation-loop.
Configuration-set generation and
simulation are followed by ruleset
revision. S stands for the statement: 3c,
c ~ Configurations i A Evaluation(Simula-
tion(c)) >_ Goal i. The index in Goali
reflects the fact that the user will often
set higher goals from iteration to iteration.

8 E. Nissan et aL

Fig. 9. The subcomponents of, and relationship between, the
ruleset and the database in FUELCON.

component that describes the geometry and the
features of the reactor core (as per the symmetric
slice considered). The two combine into the third
subcomponent of the database: the collection of
configurations being developed.

Figure 10 illustrates the way a single iteration in
the operation loop (shown in Fig. 8) affects the
configuration-base and the ruleset. In other terms,
Fig. 10 shows how the loop modifies parts inside
the components for which the two circles in Fig. 9
stand.

[con(f~ur~tion-Base._ fuei-Mse

~ _ n i l - - - - - C 0 n (i ura~ion-[~as%~e~ ,jj/)/j../
\

rev[sion~ c-~r~~ .

Fig. I0. A projection (more detailed than in Fig. 7) of a single
iteration of the operation loop of the global system, on the
macro-components of the database, and on the ruleset.

Evaluation, downstream of generation, is by
NOXER, and then manually, by the user, or auto-
matically, by our neural component, as he/she/it
checks the output of NOXER: such evaluation has to
be conducted on the output sets of full-Mad con-
figurations, as we have seen. Improvement is checked
by comparing the visual simulations of successive
iterations, that each includes full generation, instead
of backtracking before the core is filled: Such an
ergonomic choice, in the way the operation of
FUELCON was conceived, is better than the following
alternative, that could be conceivably put forth, as
based on our previous description of our project:
evaluating partial solutions, i.e. comparing pairs of
such configurations that were only partially loaded.
Such a course of action would be difficult and
generally rather inconclusive, if we were to perform
such comparisons on the basis of given hypotheses.
We have tried to avoid the basic deficiency of shuffling
systems, a disadvantage because the starting point of
the search is somewhere in the solution space. Such
an early decision deprives the user of the advantage
of a broad search: s/he has to make the first guess,
and that guess is decMve for the outcome of the
session.

2.3. Preliminaries of NeuraJ Networks

Artificial neural networks provide an appealing model
of computation. Such networks consist of an inter-
connection of a number of parallel agents, or neurons.
Each of these receives signals as inputs, computes
some simple function, and produces a signal as output,
which is in turn broadcast to the successive neurons
involved in a given computation. Some of the signals
originate from outside the network and act as inputs
to the whole system, while some of the output signals
are communicated back to the environment and are
used to encode the end result of the computation.

The study of recurrent networks has many different
motivations. They constitute a very powerful model
of computation, they are capable of approximating
rather arbitrary dynamical systems, and this is of use
in adaptive control and signal processing applications
[13-15] and, most importantly for us, they constitute
a powerful tool of automatic learning.

The classical approaches of computer science and
artificial intelligence are based on understanding and
explaining key phenomena in a discrete, symbolic
manner. These approaches have the limitations of
human understanding, and more seriously, they can
not change or adapt by observing their own perform-
ance or additional data.

Upgrading Automation for Nuclear Fuel In-Core Management 9

Neural networks, on the other hand, estimate
input- output functions. They are trainable dynamical
systems which learn by observing a training set of
input- output pairs. In speech processing applications
and language induction, recurrent net models are used
as identification models, and they are fitted to
experimental data by means of a gradient descent
optimization (the so-called backpropagation technique)
of some cost criterion [16 20]. Unlike statistical
estimators, they estimate functions without assuming
a mathematical model for the dependence of the
output on the input.

We focus on recurrent neural networks, that is,
networks of simple processors where the architecture
allows for feedback loops. Each processor's state is
updated by an equation of the type

j 1 j = l

i = 1 N (1)

where N is the number of processors and M is the
number of external input signals. Oftentimes, the
function a is the classical sigmoid function:

1
~ (x) - (2)

l + e -x

Sometimes, however, we prefer it to be the linear-
saturated function:

(0 i f x < O
/

o ' (x) := tx i f 0 < x _ < 1 (3)

[l i f x > 1

A subset of the N processors, say x q , . . . , xi~, are the
output processors; they are used to communicate the
outputs of the network to the environment.

The input-output map of the network depends
upon the constants (also called weights) a, b, c.
Learning, or adapting, is thus the process of fitting the
constant so that the network computes what is
required. Such fitting can be done numerically, as the
network is a dynamical system.

2.4. Preliminaries of Learning Algorithms

There are various techniques for adapting the con-
stants, depending on the architecture of the network,
on the type of task required, and on the type of
information that is available to learn from. Some of
the learning algorithms are based on learning in
biological neural networks, such as the Hebb rule;
others are totally numerical, such as gradient descent
techniques.

The learning algorithms can roughly be described
as belonging to one of three main methodologies. The
classical neural network learning paradigms are the
learning with teacher approaches. The assumption is
that a set of pairs of (input, desired-output) of the
neural network are provided and the network adapts
itself to comply with them. The main technique for
adapting the network is the gradient descent, also
called backpropagation.

The second methodology is unsupervised learning.
Here, no teacher provides the output of the network,
only input strings are taken (sampled) from some
large input set, and the network is to classify them by
similarities. The most common network of this type
is the Kohonen self-organizing map.

The third methodology is the one we adopted. It is
called reinforcement learning [21-23]. This one is
commonly used in control applications. In reinforce-
ment learning problems, it is common to think
explicitly of the network as a controller in an
environment (see Fig. 11). The environment supplies
the inputs to the network, receives its output, and then
provides the reinforcement signal. This signal gives no
hint of what the right output should be, but evaluates
how good the current output is. It is therefore
important to have some source of randomness in the
network so that the space of possible outputs can be
explored. The output units are thus governed by the
standard stochastic rule:

l
Prob (S~ = b) = a~(h~) = (4)

1 + exp (2fihi)

where h~ = Zj c% Vj is the input net to the neuron, that
is, the linear combination of the values of the neurons
and possibly the external input. We first have to define
the error 6~, which is the error in the output unit i
when the input to the network is the pattern #.

Assume that the score r u of the input pattern it is
binary. The desired binary output D~ of the ith output
neuron is then well defined: Si for r ~ = 1 and - S i for
r u = - 1. The error in the output neuron can then be
easily computed by

~ ~t o~t ~t

I /
/

\ /

Fig. l l . A schema of reinforcement learning for adapting neural
networks.

10 E. Nissan et aL

where (Sf} is the average of the ith output unit for
input/x. If the score value r" is in the range [0, 1] then,
by Barto and Jordan [24],

~'/= r'~[s~- <Sy>] + (I - r") [-S, - <s~>]

The update rule of the weights is

A(gi; = v(H')6f Vj"

where v is a coefficient deciding the amount of
adjustment. This rule only explains how to adapt the
weights of the output units. We can, however,
propagate the error 6 and adjust the other weights by
the backpropagation technique.

For more background on networks and reinforce-
ment learning, see, for example, the textbook by Hertz
et al. [25].

3. An Example of a Ruleset and
Manual Revision

3.1. The Initial Ruleset

Let us exemplify a configuration-generating ruleset, in
one real-case study, the following initial ruleset was
used [1, 2]:

1. Don't load any fresh fuel-assembly in any such
position that its distance from the centre of the core
is shorter than the distance of POS44 therefrom.
(Distance is an integer number: a number of
positions separating the given position from the
centre, not the distance on the paper, by which, say,
measuring a case diagonally yields a longer distance
than measuring the case along one of its four sides.)
This rule is meant to prevent the loading of fresh
assemblies into the innermost region of the core;
and this, in order to make it less likely that
configurations are generated that would yield too
high local power densities in the innermost region
of the core.

2. Don't load a fresh assembly in such a position that
is adjacent to another position where there is another
assembly of the same kind, except when one of those
two positions is in a corner position, that is, except
when one of those two positions is adjacent along
two of its sides to the reflector (i.e. the water that
surrounds the fuel-assemblies in the core).
This rule, which prevents placing two fresh
assemblies side by side, has the same purpose as
Rule 1. Indeed, placing two fresh assemblies
adjacently when none of them contains rods of
burnable poison, would lead, in most cases, to an
increase in local power density at beginning-of-cycle

(BOC), if the region considered is not on the
periphery of the core.

3. Don't place any twice-burned assembly in any of the
positions of the eighth row and of positions POS74,
POS75, and POS66.
This rule, which prevents placing high-burnup
assemblies in the outermost region of the core, fits
into the general strategy adopted, which is 'from
the outside, inside' in principle, that is, that
more power is expected to go on the periphery,
and that eventually allows one to replace some
fresh assemblies with low-burnup already used
assemblies.

4. Don't load a twice-burned assembly in such a position
that is adjacent to another position where there is
another twice-burned assembly, if the positions
considered are comprised in rows 5-8 in the core.
This rule, which prevents placing high-burnup
assemblies adjacent to each other, is intended to
direct the process towards the generation of such
reload configurations that fit into the category
typified by a checkboard pattern (in respect of
burnup levels).

5. Don't toad any such twice-burned assembly that
has a very high value of cumulated burnup (over
20500 M Wd/t), adjacently to a position containing a
twice-burned assembly:
This rule is in line with Rule 4. Rule 5 is meant to
prevent the concentration of such assemblies that
have a high burnup (corresponding to a low value
of K, the neutron multiplication factor), this time
(as opposed to Rule 4) in any region of the core,
and this in order to prevent the formation of
'hollows' in respect of power density.

6. Don't load any twice-burned assembly in any position
belonging to any of rows 2, 3 or 4, if more than one
position adjacent thereto does contain a twice-
burned assembly.
This rule is meant to prevent a concentration of
high-K fuel in the innermost region of the core: this
is an important region, in terms of neutron flow.
Rule 6 is intended to prevent the formation of
configurations where local power densities would
exceed the threshold allowed. Moreover, Rule 6 is
intended to convey the generation process into
producing burnup checkboard configurations.

7. I f it is a twice-burned assembly that is currently
being considered, then choose Jbr it (from amongst
those positions that were not forbidden by Rules I -6)
that position whose distance from the centre of the
core is minimal.
(Cf. Rule 3.)

8. I f it is a once-burned assembly that is currently being
considered, then choose for it (from amongst those

Upgrading Automation for Nuclear Fuel In-Core Management 1!

positions that were not jorbidden by Rules 1-6) that
position whose distance fi'om the centre of the core
is minimal.
Rule 8, along with Rule 7, and along with the given
order of the loading list, is intended to direct the
generation process into producing such configur-
ations that the lower the burnup value of the
assembly, the more important for neutron flow the
region is where that assembly's position has been
selected.

3.2. Elimination Rules versus Preference Rules

Rules 1-6 are elimination rules, whereas Rules 7 and 8
are not mandatory from the physical viewpoint, but
are preference rules meant for pruning, and are
enacted last. A constraint was imposed, that the size
of the space of solutions must not exceed about one
thousand solutions at any moment in the generation
process. What this constraint affects most is the
possibility to optimize the way partly-burned assem-
blies are reloaded. However, two main considerations
were retained:

| Experience teaches that, for a problem and general
policy of the kind considered, the influence, on the
fuel cycle length, of how partly-burned assemblies
are ordered inside the core, is smaller than the in-
fluence thereon of how the fresh assemblies are placed.

| Preference rules, along with the constraint on the
size of the solution space, allow for a shorter
processing time. (However, when we switched
supporting systems, generation time became much
faster, measured in seconds, and thus less of a
problem. On the other hand, we have already seen
that the real bottleneck is in the time required
for performing the simulations on the solutions
obtained: it is this that advises in favour of wavering
the requirement that the absolute optimum be
found, in favour of good local optima.)

3.3. Ruleset Revision Steps

Once resutts were obtained and simulated, the
domain experts spotted which positions in the core
configurations caused the maximal power density,
which led to modifications in the ruleset, as follows.

| Rule 2, about adjacent fresh-fuel assemblies, was
modified to allow adjacency even when one of the
positions is adjacent to the reflector on just one side
(instead of, as before, when adjacency to the
reflector is on two sides, that is, in corner positions).
Such a modification leads to an increase in the
number of fresh-fuel configurations generated.

| One more rule was formulated that is concerned
with once-burned assemblies, and it is an exclusion
rule. It is as follows:

Rule 9." Don't place any once-burned assembly in any
position adjacent to a fresh assembly, if the position
considered for loading the once-burned assembly
belongs to any of rows 2, 3 or4 in the core.

Indeed, the analysis of the configurations generated
by the first step indicated that the situation
excluded by the new Rule 9 caused an increase in
local power density, in the region involved, to a
range of values between 1.4 and 1.5. As the
threshold assumed is 1.4, it was suitable to have a
specific rule preventing this kind of situation.

Now, the generator was run again; simulation led to
further revision; of both the ruleset, and the given
loading sequence.

The gradual improvement of solutions can be seen
in the three parts of Fig. 12. In the upper display, no
configuration in the family generated is admissible, as
none falls within the admissibility window, i.e. the
region under peaking = 40.

The middle display, instead, features some ad-
missible solutions, of which, moreover, several are
good, because, inside the admissibility window, they
are up (with high peaking, though below the threshold),
and on the right (with high boron concentration at
end-of-cycle). Then, in the third display, we can see
that the family itself is improved, as it tends to
concentrate closer to the admissibility region, and in
a higher percentage than before within its window;
moreover densly on the right-hand side (the better
part) of the admissibility window.

In Fig. 13, a sample output configuration is shown.
Fuel assemblies are allocated to the positions of the
reactor core, that here is shown as in a one-eight
symmetry, which, in turn, is the symmetry for which
the reasoning was carried out.

3.4. Contribution of the Neural Component

It is especially because of its positioning within the
architecture, that the neural component we are adding
does contribute to the automation of discovery.
Indeed, the neural component, which we are going to
discuss in the following two sections, is inserted in the
architecture with the role of ruleset-reviser (rather
than, for example, the simulator).

The point is that FUELCON generates configur-
ations by means of a ruleset, originally provided by
the expert, and later revised by the expert. Revision is
a 'noble' task, intellectually speaking~ but we are
trying to show that the heuristics of ruleset-revision

12 E. Nissan e~ aL

0

r
E

E~

Q.
,L

0

7o

SO

5o

40

3 0

20-

m m m m SET A (164 cases)
~'~ 0] 3 " . . . m,~m El 13~ 0 t3 t3 E3 ~

a
ml~ ,,~ m3 m t ~ +3 m

++
Re[erenee case

2O 40 60 80

EOC Boron concentration (ppm)

g

m
E
0..

._.E

0..

0
Q..

80

70

GO

50

40

30

2O

~ m Q ~ m

20

a SET B (760 cases)

40 60 8 0

EOC Boron concentration (ppm)

~176176 "" 70

+ t
X m 60-
E

50-

r -

o. 20 -
0

m m ~

~e|e(ence CaSe

~ El

SET C (274 cases}

El rim ~1
m

0

, I , +

20 40 60 80

EOL BorQn concent ra l ien (ppm)

Fig. 12. An example of graphic display of the simulation of an output family of configurations ('dots'), evoJving from iteration to iteration.
In the quadrant shown, a horizontal line and a vertical line are drawn, that divide it into four regions. Those configurations falling in the
two upper regions are forbidden, because of safety reasons. Configurations in the lower leftmost rectangle are less efficient than those in the
also admissible region on its right. The more an admissible configuration is on the right, the more it is efficient. Therefore, the human expert
wishes to have the 'c loud' of dots moved into a ' southeas t ' direction, during the next iteration. Another effect that the human expert may
wish is 'zooming' , i.e. a higher density in the cloud, a smaller spread in the family generated by the heuristics currently tested, as embodied
in the ruleset and gradually improved from formulation to formulation.

Upgrading Aulomation for Nuclear Fuel In-Core Management 13

~t3

r

B19
9~83

C:I
i~6e:

BIB
95~3

[0"

BIt e l l r
~'79~ 16"~86 1~28Z

~17 BI2 r Cl?
~.1994 : ~8~ I~'282 126988

BI4

g2~ ~ eA :A

Cl2

Fig. t3. A sample output configuration. To each position in the
core, a fuel assembly is assigned, whose kind is indicated by the
identifier that appears in the first row inside each case in the grid.
Just a slice, in one-eighth core symmetry, of the core schema is
shown.

can be, in turn, automated. Hence the substantiality
of the specific contribution of the neural component,
as outlined in this paper.

4. The Neural Component

The development of the neural network component,
called NEURALIZER, is meant to achieve complete
automation of the operation loop of our expert
system. For this purpose, we translate the ruleset into
a neural network, and cause it to change in such a
way that would yield better configurations.

In the following, we are going to concentrate on
two issues:

| the learning algorithm selected for carrying out the
adaptation phase, and

| the translation scheme.

The network is constituted of a representation of
the rules. The input of our network is the current state
of the core of the nuclear reactor. As to the output of
the network, it is the advice, which relies upon the
rules, on how to build a new fuel configuration. The
advice is forwarded into the environment that uses it
to construct a configuration of the fuel assemblies in
the core. After a few steps of consulting the network,
the configuration is ready. This is the output of our
composite system, within whose architecture the
network is just one component. The configuration is
evaluated by NOXER, and the evaluation is fed back
to the network in order to have the rules tuned in
such a way that would yield a better fuel configuration.
Notice that we do not know the (input, desired-outpuO
pairs of the network as in the supervised learning
approach, but, rather, just the (input, evaluation of the

output of the environment) pairs of the composition.
The particular learning approach that complies with
such knowledge is reinforcement learning [26].

It is important to note that the network includes
two types of rules. The mandatory (also called
elimination) rules, are mainly those intended to ensure
safety, and must not be changed, while the optional
(i.e. preference) rules may be reconsidered. We leave
the mandatory part of the network unchanged,
similarly to the way described by Jordan [27] for the
approach of supervised learning with a distal teacher.

Our translation technique is general, and allows
rules of not only propositional calculus, but of
first-order logic as well. This is due to the recursion
of the resulting network. We are going to use the
neural information processing programming language
(NIPPL) and the corresponding translation scheme,
introduced by Siegelmann 1-6, 28]. NIPPL, also called
NEL, is defined as a high level language which is rich
enough to express any computer algorithm or rule-
based system. The language combines features of both
PASCAL and LISP in terms of the data structures
and the flow control (including loops). Previously,
N IP P L was a theoretical language only. Here we
suggest bringing it into use. Let us briefly overview the
language and its compiler.

N IP P L is a procedural, parallel language. It allows
for the subprograms procedure and function. A
sequence of commands may either be executed
sequentially (Begin, End) or in parallel (Parbegin ,
Parend). There is a wide range of possible data types
for constants and variables in NIPPL, including the
simple types: Boolean, character, scalar type, integer,
real, and counter (i.e. an unbounded natural number
or 0); and the compound types: list (with the operations
defined in LISP), stacks, sets, records and arrays. For
each data type, there are a few associated predefined
functions, e.g. Isempty(stack), In(element, set) and
tszero(counter).

Expressions will be defined on the different data
types. Examples of expressions are:

1. Z]=I cixi for constants c and either real or integer
values of the variables xi.

2. (B1 And B2) Or (x > i) for Boolean values B 1, B2
and an integer value x.

3. Pred and Suee of an element e of a finite ordered
type T returns another element of the same type.

4. Chr operates on an integer argument and returns
a character.

Statements of N I P P L must include atomic statements
(e.g. assignments, procedure calls, I /O statements),
sequential compound statements (Begin, End), parallel
compound statements (Parbegin, Parend), flow control

14 E. Nissan er ai.

statements which include both condi t iona l (e.g.
If-then, If-then-else, case, and cond) and repetition
statements (such as while and repeat).

Instead of describing the compiler, we show one
example of translation [6]. Let M and N be values in
[0 ,1] and let B be a Boolean expression. The
conditional statement

If (B) then x = M
else x = N

can be executed by the network shown in Fig. 14, as
follows:

x~(t) = •(M + B - t)

x2(t) = a(N -- B)

x3(t -~- l) - - O ' (X l (t) -~ x 2 (t))

The neuron xl attains the value a (M) when B = 1.
As ~ is the l inear-saturated function of equat ion (3),
and M is assumed to lie in the range [0, 1],

x l(t) = a(M) = M

When B = 0, x l (t) = a (M - 1) = 0. The neuron x 2
computes a (N - 1) = O for B = !, and a (N) = N
for B = 0. Summing the above two values into x3
results in

a (M + O) = M for B = 1,

0(0 + N) = N for B = 0

as desired.
To synchronize the update, an I f statement requires

two sub-statement counters: one for the first update
level, % and one for the second update, c a . The full

~
.x N N . \ N , ~

B N %

Fig. t4, ' I f statement' as a neural network.

update for the I f statement is thus:

x~ = a (M + B + c 1 - 2)

x2 ~ = ~ r (N - B + q - t)

x3 ~ = ~(xl + x2 + c2 - I)

The update equat ions of the counters are omitted.

5. Rule Trans lat ion: An E x a m p l e

We next illustrate how to construct a network oa t of
the rules of F U E L C O N . Consider the second rule of
Section 3.1:

Don't toad a fi'esh assembly in ,such a position that
is adjacent to another position where there is another
assembly of the same kind, except when one of those
~wo positions is in a corner position.

The input to the network includes the new assembly,
A, which is represented as a record~

A = record o f [burnt,

kind,

position,

. . . .

The rule can be written as a N I P P L function that
receives as input the record A and a position s, and
decides whether the posit ion contradicts Rule 2. In
the following function, we write the reserved words of
N I P P L in boldface and the predicates in italics. Lines
are numbered successively.

2. Function rule-2 (A, s): Boolean;
2. var p: integer, flag: BooLean
3. Begin
4. p = O
5. flag = Good-posi t ion;
6. I f

((A. burnt = fresh) A (-7 corner(s)) 7.
8. then
9. repeat

10. p = p + I;
11. If
12. (neighbor(s~ p) A -qcorner(p) A

kind (A) = kind(assembly (p)))
t3. then
14. flag = Bad-position;
15. Until
16. (flag = Bad-position) v (p = 20);
17. rule-2 = flag
18. End;

Upgrading Automat ion for Nuclear Fuel In-Core Management 55

fl~g F P PC~

~) ' , ,

t / t / { / " t I 2 " ' "

1

~opi~s tem/oo,~ U ~ou~t~rs

PC~2

/

Fig. 15. The neural network corresponding to the sample rule whose translation and processing are discussed in the text. Circles in the
upper row are variables. Cirlces on the left in the Sower row are copies, Circles on the right in the lower row are temporary variables.
The six-pointed star upon each copy indicates there is full connection to the upper row (i.e. the circle has arrows towards all of the circles in the
upper row). The five-pointed star upon each temporary variable indicates there is full connection both to and from the upper row (i.e. the
circle has bidirectional arrows connecting it to all of the circles in the upper row).

This program carries out its task by scanning all of
the positions in the one-eight slice of the reactor core.
This is redundant. An alternative version just checks
adjacent positions.

We next demonstrate how to translate this little
program into a network. This rule can be translated
into either a simple feedforward network that tests the
20 positions simultaneously or into a recurrent
network that tests them serially.

The first implementation requires more hardware
but is fast and straightforward. The second one is
cheaper in terms of hardware, and it scales to any
number of positions. This tradeoff of hardware and
time will be decided upon in the exact application. We
choose to construct a recurrent network in this case,
as to demonstrate the compilation of loops.

There will be a neuron for each variable and a
temporary variable, as well as for the distributed
representation of the program counter. The function
includes the variables p and flag, as well as Rule 2
itself. In addition, each expression implies an expression
variable (and possibly some temporary variables as
well). The program counters are p c 1 , . . . , PCls.

| The variables:
1. The variable p is changed in lines 4 and 10.

We can write its substitutions in the general
formula of

p = O ' p c 4 + (p + 1)'pClo + p(1 -- p c , , - - pClo)

2. The function variable rule-2 - f l a g . p c l 6 .
| The expression variables:

1. The expression of line 7 required three tem-
porary variables:

v7 = ~(v7,1 - ~%2)

where v7,1 is a Boolean neuron for fresh
assembly and vv, 2 tests whether the position is
in the corner. These neurons will be set with
program counter 6, and the neuron for v7 sets
with pc 7.

2. Similar is the Boolean expression for line 12.
Here v12.1 to vz2,3 are set during the set of
program counter 11, and the update v~2 =
c~(v12,1 - va2,2 + Vlz,a - 1) with 12.

3. The Boolean expression of line 16 is translated
similarly.

�9 The program counters: Each p rogram counter
(between 1 and 18) is associated with a neuron. The
update of the counters decides the flow control. As
the program is parallel, a few counters may take
true values simultaneously. The update equations
of the program counter neurons are given by:

p c i = p c i _ l f o r i = { 2 , 3 , 4 , 5 , 6 , 7 , 9 , 1 1 , 12, 14,
15, 16, 18},

pc8 = a (pc7 + v7 - 1)

16

pClo = ~ (p c 9 -t- Uloop 1),

pC13 =- i f (pc12 -[- U 1 2 - - l)

pC17 = f f (pCl6 -1- U 1 6 - - l)

Oloop = 0"(pC16 - - ~16)

The resulting network is cyclic; see Fig. 15.

6. Symbolic and Neural Integration:
A Comparison

The integration of expert systems and neural networks
is an emerging area [29, 30]. The two areas are
complementary. Sometimes they are overlapping
alternatives. Hybrid systems with expert system and
neural network components are just one option for
integration; another active subsector is neural re-
implementations, i.e. redoing extant symbolic reason-
ing systems as neural, through some interface or just
by recoding.

A recently announced volume, Medsker [31], is
devoted to hybrid neural and symbolic expert systems;
the present authors have not had the opportunity to
see it. The table of contents, as announced, features
in Ch. 5 an application in nuclear engineering, to a
different task: nuclear plant monitoring by means of
a hybrid systems approach.

The strength of the approach embodied in the
F U E L C O N / N I P P L integration is apparent, if we
consider the more limited ambitions and capabilities
of CAPS, a connectionist architecture for implementing
extant rulesets coded in OPS5: 'CAPS supports
a subset of the OPS5 language which includes
variables, negation, conjunction, and disjunction of
conditions. It uses a translation program to transform
an OPS5 program into a limited interconnected, fully
trained neural network' [32].

The advantage of N I P P L is that not only is it more
expressive, but it also enhances clarity, by allowing
one to code in a high-level language that is similar to
conventional, parallel, or symbolic programming.
Instead, CAPS is considered by its proponents just an
interim solution, given the fact there are extant
symbolic rulesets around: they do 'not advocate that
future expert systems should be implemented in this
manner. It is better to build future connectionist
expert systems by using the adaptive nature of neural
networks to bypass rules (as formed by a human
expert) and let the network form its own internal rules
(by learning from examples). The architecture is an
interim measure for enhancing the performance of
existing rule-based OPS5 programs by implementing
them on connectionist networks' (ibid.).

E. Nissan et ai.

For certain tasks, it would be desirable that once a
symbolic ruleset is enhanced through a neural imple-
mentation, it could reformulate symbolic rules for the
human expert to see. Neither N I P P L nor CAPS do
that. The generality of N IP P L makes it suitable for
having further components in a project such as
F U ELCO N go neural; we are envisaging such a new
project for the simulator: the extant simulator is a
conventional code, not a ruleset.

CAPS supports dynamic variable bindings, and
some of the OPS5 constructs. N I P P L is clearly
superior, in respect of syntactic richness; actually, the
application to F U E L C O N exploits just a small subset
of NIPPL. However, because of the maximal generality
goal of N I P P L as a high-level language, an interim
tradeoff was necessary, and mterconnection mini-
mization was not pursued, at least not as a specific
goal. CAPS. instead. 'addresses the hardware imple-
mentation issues by utilizing timitedly interconnected
networks of a few basic unit types' (ibid.).

There is one more remark to make. about the
appropriateness of the neural learning adopted in the
F U E L C O N / N I P P L project. The rulesets that the
human experts developed for FUELCON. are not
large. Of about a dozen rules, one half or more are
mandatory rules, that N IP P L should not modify. Just
half a dozen or less rules are those concerned by the
optimization effort. This makes the situation very
satisfactory, for learning. Indeed. had we large rulesets
to optimize, then learning could be expected to be very
slow: tile larger the ruleset~ the slower the learning.
Instead. ruleset size is no problem, for the application
to FUELCON.

7. Conclusions

7.1. The novelty of the results reported in this paper
shows up under different respects. F U E L C O N repre-
sents a definite improvement in the domain area:
nuclear engineering. Indeed, both the practitioner and
the researcher in the domain of in-core fuel manage-
ment (as distinct from fuel storage management), are
offered a tool that greatly increases their options at
allocating fuel assemblies in the positions of the core
of a nuclear reactor.

Visibility at handling the allocation problem, and,
thus, the possibility to manoeuvre, are enhanced. It
was usual, in the domain, to look for just one
configuration per plant/cycle situation, as a solution
of the fuel management problem. To put it bluntly,
the relative lack of ambition featured by this goal
reflected the opacity of the process of problem-solving,
let alone optimization: looking for one solution was

Upgrading Automation for Nuclear Fuel In-Core Management 17

like the game by which a child is blindfolded, and has
to attach the tail on the image of a donkey. Solutions
used to be found, but without a clear view of
alternatives. Several techniques are known that
generate a single solution, i.e. by modifying a fuel-
allocation devised for a different situation, and found
in the literature in the framework of a real-case study.
Operations research methods were applied, by some.

With FUELCON, not only the expert system
generates families of alternative solutions ex nihilo
(rather than a single one), based on a transparent
formulation of rules of thumb by an expert, but we
can actually see, on the graphic display, a simulation
of the entire family: the single configurations are dots
in a plane, so we can compare the merits and defects of
the alternative allocations, and the domain expert is
enabled to evaluate the heuristics, and revise them
iteratively.

7.2. Furthermore, our project is also novel in the
following respects, that are specific to the new stage we
have been discussing in this paper. The cognitive
process of revising the heuristics is, prima facie, a
'noble' task: it is, in the sense of its belonging to the
competence of the expert, as compared to the novice,
and of the researcher, as compared to the practitioner.

Yet, we can be ambitious in this regard, too. We
can, because of our adoption of the neural-network
paradigm, on top of symbolic reasoning and algor-
ithmic simulation methods, as typifying the previous
stages of the FUELCON project. We set to automate
even the process of revising the heuristic rules. In
FUELCON, the operation loop has admissible, good
options for fuel allocation generated at single iterations,
whereas the domain heuristics themselves improve
from iteration to iteration. Because of this loop, the
automation of revision is tantamount to automating
the global discovery process.

An earlier stage of FUELCON, as in an AI
perspective, is described in Gatperin et al. [1]. The
approach, in that paper, was to stress the integrated
human/machine operation cycle, and the ergonomics
of the manual phases in the discovery process. This
includes considerations in the perspective of the expert
critiquing systems paradigm [33]. It also includes an
appreciation of the new body of knowledge acquired
specifically about how to use FUELCON through
manual interaction. However, those ergonomic con-
siderations are no longer relevant, once we take the
bold step of setting to completely automate the
discovery process, by delegating ruleset-revision to a
neural component, instead of to the human expert.

7.3. The state of research in neural computing
features only a few papers about ruleset revision, that
is, about converting rule-based systems into neural

networks with the intention of correcting them or
improving them. Towell et al. [34] had to deal with
an expert system based on propositional calculus, and
suggested transforming the original propositional
domain theory into a neural network. The connection
weights were elegantly adjusted in accordance with
the observed examples using standard backpropa-
gation techniques. Maclin and Shavlik [35] suggests
the use of reinforcement learning for adaptation.

We list below three innovations of our work in
terms of neural revision. First, our application is the
first effort to affect real application by means of neural
revision. It addresses a technically and economically
challenging task in engineering, and its success can be
expected to allow savings in the order of even millions
of dollars, per nuclear reactor, per operation cycle.
Secondly, although, in practice, most of the rules
are propositional, rather than recurrent, our novel
methodology of translating rules in both propositional
and first order logic encompasses both the immediate
practical translation as well as future applications to
any complicated type of rule-based system.

The third, subtle, but very important point is
the type of neural learning algorithm applied. Many
learning algorithms exist and they are to be used in
different settings. The classical neural network learning
paradigms are the learnin9 with teacher approaches.
The assumption is that a set of pairs of input/output
of the neural network are provided and the network
adapts itself to comply with them. Our setting is more
complicated. We do not know the input/output pairs
of the network, but rather only the input and the
evaluation of the output of the system which is
composed of the neural network (i.e., the rules) and
the environment that creates the configuration based
on the output of the network. Two learning approaches
have been developed to subserve such cases: the
reinforcement learnin9 approach [26] and the learning-
with-distal-teacher approach [27]. These two methods
differ by some subtle characteristics of the evaluation
available: reinforcement learning is more general It is
the approach necessary for our own purposes in the
project we have been discussing.

Previous phases of our project (the building blocks
available at its inception, and a sample translation
of one rule) were presented in two shorter papers
[36, 37].

Acknowledgement
Hava Siegelmann wishes to thank Professor Eduardo Sontag,
her advisor at Rutgers University: the original ideal of defining the
NIPPL language is his. Ephraim Nissan is grateful to Professor
Brian Knight, who has provided FUELCON with a haven for
further development at the University of Greenwich. Further
subprojects are ongoing [38]: with genetic algorithms (the doctoral

18 E. Nissan et at.

project of Mr Jun Zhao); and neural prediction equivalent to
NOXER. The very first idea of FUELCON was Galperin's. Kimhi
was his doctoral student. Galperin and Nissan developed the very first
prototype. Nissan and Siegelmann devised the hybrid architecture.

References

1. Ga~perin, A.; Kimhi, Y.; Nissan, E. (1993). FUELCON: an
expert system for assisting the practice and research of in-core
fuel management and optimal design in nuclear engineering,
Computers and Artificial Intelligence, 12, 369 415

2. Kimhi, Y. (1992) A non-algorithmic approach to the in-core
fuel management problem of a PWR core, PhD dissertation,
Department of Nuclear Engineering, Ben-Gurion University
of the Negev (Beer-Sheva, Israel) (in Hebrew: English abstract)

3. Galperin, A.; Kimbi, Y. (1991) Application of knowledge-based
methods to in-core fuel management, Nuclear Science and
Engineering, 109, 103-110

4. Galperin, A.; Yimhi, Y.; Segev, M. (1989) A knowledge-based
system for optimization of fuel reload configurations, Nuclear
Science and Engineering, t02, 43

5. Galperin, A.; Nissan, E. (1988) Application of a heuristic search
method for generation of fuel reload configurations, Nuclear
Science and Engineering, 99 (4), 343-352

6. Siegelmann, H.T. (1994) Neural programming language,
Proceedings of the 12tfi National Conference on Artificial
Intelligence, Seattle, Washington.

7. Cochran, R.G.; Tsoulfanidis, N. (1990) The Nuclear Reactor
Cycle: Analysis and Management, American Nuclear Society,
La Grange Park, IL

8. Parks, G.T.; Lewins, J.D. (1992) In-core fuel management and
optimization: the state of the art, Nuclear Europe Worldscan,
I2 (3/4)~ 41

9. Petschhat, G.R.; Rothleder, B.M.; Faught, W.S.; Etch, W.J.
(1986) Interactive fuel shuffle assistant graphics interface and
automation for nuclear fuel shuffle with PDQ7, Proceedings of
the American Nuclear Society Topical Meeting on Advances
in Fuel Management, Pinehurst, NC

10. Faught, W.S. (1987) Prototype fuel shuffling system using
a knowledge-based toolkit, Technical Report, IntelliCorp,
Mountain View, CA

!1. Rothleder, B.M.; Petschhat, G.R.; Faught, W.S.; Etch, W.J.
(1988) The potential for expert system support in solving the
Pressurized Water Reactor fuel shuffling problem, Nuclear
Science and Engineering, 100, 400

12, Kropaczek, D.J.; Turinski, P.J. (1991) In-core nuclear fuel
optimization for Pressurized Water Reactors using simulated
annealing, Nuclear Technology, 95, 9

13. Sontag, E.D. (1992) Neural nets as systems models and
controllers, Proceedings of the Seventh Yale Workshop on
Adaptive and Learning Systems, Yale University, New Haven,
CN, pp. 73-79

14. Matthews, M. (1992) On the uniform approximation of
nonlinear discrete-time fading-memory systems using neural
network models, PhD dissertation, ETH No. 9635, E.T.H.,
Zurich

15. Polycarpou, M.M.; Ioannou, P.A. (1991) Identification and
control of nonlinear systems using neural network models:
design and stability analysis, Report 91-09-01, Department of
EE/Systems, University of South California, Los Angeles

16. Cleeremans, A.; Servan-Schreiber, D.; McClelland, J. (1989)
Finite state automata and simple recurrent networks, Neural
Computation, 1,372

17. Elman, J. L. (1990) Finding structure in time, Cognitive Science,
14, 179 21t

18. Giles, C.L.; Miller, C.B.; Chen, D.; Chen, H.H.; Sun, G.Z.; Lee,
Y.C. (1992) Learning and extracting finite state automata with
second-order recurrent neural networks, Neural Computation,
4 (3), 393-405

19. Pollack, J.B. (1990) The induction of dynamica! recognizers,
Report 90-JP-Automata, Department of Computer and Infor-
mation Science, Ohio State University

20. Williams, R.J.; Zipser, D. (1989) A learning algorithm for
continually running fully recurrent neural networks, Neural
Computation, l, 270-280

21. Barto, A. G.; Singh, S. P. (1990) On the computational
economics of reinforcement learning, Proceedings of the 1990
Connectionist Models Summer School, D. S. Touretzky, J. L.
Elman, T. J. Sejnowski, and G. E Hinton (Editors), Morgan
Kaufmann, San Marco, CA

22. Narendra, K.; Thathacar, M. A. L. (1989) Learning Automata:
An Introduction, Prentice-Hallm Engelwood Cliffs, NJ

23. Barto, A. G.; Anandan, P. (1985) Pattern recognizing stochastic
learning Aatomata, IEEE Transactions on System, Man, and
Cybernetics, 15, 360-375

24. Barto, A.G.; Jordan, M.I. (1987) Gradient following without
back-propagation in layered networks, Proceedings of the First
IEEE International Conference on Neural Networks, San
Diego, Vol. 2, pp. 629-636

25. Hertz, J.; Krogh, A.; Palmer, R.G. (t991) Introduction to the
Theory of Neural Computation, Addison-Wesley, Reading,
MA

26. Barto, A.G.; Sutton, R.S.; Watkins, C.J.C.H. (1991) Learning
and sequential decision making, in Learning and Computa-
tional Neuroscience, M. Gabriel and J.W. Moore (Editors),
MIT Press, Cambridge, MA

27. Jordan, M.I. (1992) Forward models: supervised learning with
a distal teacher, Cognitive Science, 16, 307-354

28. Siegelmann, H~T. (1993) Foundations of recurrent neural net-
works, PhD Dissertation, Rutgers University, New Brunswick,
New Jersey

29. Gallant. S.I 11988) Connectionist expert systems. Communi-
cations of the ACM. 3t (2). 152-169

30. Medsker. L.R. Editor (1991) The Synergism of Expert System
and Neural Network Technologies, special issue of Expert
Systems with Applications. 2 (t)

31. Medsker. L.R. 11994) Hybrid Neural Network and Expert
Systems. Ktuwer. Dordrecht. The Netherlands

32. Bhogal, A.S.: Seviora, R.E.: Elmasry, M.I. gt991) Towards
connectionist expert systems. Expert Systems with Applications.
2 (1), 3-14

33. Silverman. B.G. (1992) Survey of expert critiquing systems:
practical and theoretical frontiers. Communications of the
ACM. 35 (4). 106 127

34. Towell. G.G.: Shavlik, J.: Noordewier, M.O. (1990) Refinement
of approximately correct domain theories by knowledge-based
neural networks. Proceedings of the Eighth National Conference
on Artificial Intelligence, p. 861

35. Mactin, R.: Shavlik. J.W. Incorporating advice Into agents that
learn from reinforcemenl (journal submission!

36. Nissan_ E.: Siegehnann. H.: Galperin. A.: Kimhi. S. ~t994)
Towards full automation of the discovery of heuristics in a
nuclear engineering project, by combining symbolic and
subsymbofie Computation. Proceedings of the Eighth Inter-
national Symposium on Methodologies for Intelligent Systems
(ISMIS'94) Charlotte. N.C.. Springer-Verlag, New York
(Lecture Noter in Artificial Intelligence. Vol. 869L pp. 427-436

Upgrading Automation for Nuclear Fuel In-Core Management 19

37. Nissan, E.; SiegeImann, H.; Galperin, A. (1994) An integrated
symbolic and neural network architecture for machine learning
in the domain of nuclear engineering, Proceedings of the
Conference on Pattern Recognition and Neural Networks,
within the 12th ICPR: International Conferences on Pattern
Recognition, Jerusalem, IEEE, Computer Society Press, New
York

38. Galperin, A.; Kimhi, S.; Nissan, E.; Siegelmann, H.; Zhao, J.
(1995) Symbolic and subsymbolic integration in prediction and
rule-revision tasks for fuel allocation in nuclear reactors.
Proceedings of the Third European Congress on Intelligent
Techniques and Soft Computing (EUFIT'95), Aachen, Germany,
(in press)

