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Computational Power of Neural Networks:
A Characterization in Terms of
Kolmogorov Complexity

Jo# L. Balczar, Ricard Gavald and Hava T. Siegelmann

Abstract—The computational power of recurrent neural net- than Turing machines [27]. For example, in exponential time
works is shown to depend ultimately on the complexity of the they are able to compute every binary function. Even if
real constants (weights) of the network. The complexity, or thejr computation time is further constrained to polynomial
information contents, of the weights is measured by a variant of . . . -
resource-bounded Kolmogorov complexity, taking into account t'm?’ they rgmaln. computatlonglly strictly stronger than the
the time required for constructing the numbers. In particular, ~ TUring machine with the same time bounds: they compute the
we reveal a full and proper hierarchy of nonuniform complexity functions in the complexity class denoted by P/poly, which is
classes associated with networks having weights of increasingknown to contain some, but not all, recursive binary functions.
Kolmogorov complexity. In this paper we focus on the reason of this phenomenon.

Index Terms—Kolmogorov complexity, neural networks, Tur- It is clearly due to the fact that both Turing machines and
ing machines. nets with rational weights are finite objects, in the sense that

they can be described with a finite amount of information.
|. INTRODUCTION This is_not true for real nqmbgrs_, .hence g.neural network
_ containing real numbers with infinite precision has access
WE FOCUS on the classical analog recurrent neurgf 5 notentially infinite source of information, which may

\ networks [6], [8], consisting of dinite number of g0 it to compute nonrecursive functions. Intuitively, as
simple processors, each of which computes a sca@— he real numbers used are richer and richer in information,
valued—function, or “activation,” of an integrated input. Théyqre and more nonrecursive functions become computable.

adjective "analog” refers to the continuity of the activatioRy formalize this statement, we need a quantitative measure
function. “Recurrent” refers to the existence of feedback Ioorb? the information contained in real numbers.

in the interconnection graph, allowing the processing of arbi- previous work in the field of information theory [18],
trarily long data with a fixed-size network. The formalizatiorlulg] [22] has defined the complexity of a sequence as a

of the activation gives rise to a dynamical system. “measure on the extent to which a given sequence resembles
These _networks_ have attracte_d much attention lately 2S;ndom one” [14]. One particular line [4], [5], [13] leads
computational de\{lces. One particular model of network h:ﬁ§ the notion now usually called Kolmogorov complexity of
been suggested in [24], [27] to capture computation With qying. The complexity of a finite sequence is the length of
“analog phase space.” This contrasts with the well-knowRe (shortest) binary string that can be given as input to a
Turing machine model that essentially describes all digitgfyersal algorithm to construct (output) the sequence. This
computers. Work so far has_ distinguished essent|al_ly two typesy pe generalized in several ways to infinite strings, and
of such networks, depending on whether the weights of thgnce 1o real numbers. Here we take one of the variants of
networks are rational numbers or real numbers. the notion called resource-bounded Kolmogorov complexity.
If the weights are rational numbers, then networks a#,is is obtained by constraining also the time used by the
equivalent to Turing machines [25], [26]; that is, they are nQniyersal algorithm to construct the numbers (or equivalently,
more powerful than standard digital computers. In the genefak,onq to their input strings), making the notion effective.
case, weights are real numbers with mﬁmte precision. Thenyy,e prove that, in a sense we make precise, the predictability
the networks have been shown to be strictly more powerfyf orocesses like these described by neural networks depends
essentially on the resource-bounded Kolmogorov complexity
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A. Organization of the Paper complexity classes according to the resources needed by

The paper is technical, and takes the reader step-by-sfachines of some kind to recognize them.

towards the hierarchy theorem that is stated and provedcOMPplexity class P is the class of languages for which
only in Section VII. Section I consists of preliminaries of€MPership can be decided in time polynomial in the length

complexity theory. In Section Ill, we describe our neurd?! the input. Overloqding*the name, we also use P to denote
network model. In Section IV, we define our variant of"€ class of all function&* — X* that are polynomial-time-
Kolmogorov complexity. In Section V, we focus on Turingcomputable in the same sense. The underlying computation

machines that consult oracles as defined in Section I1I. \W&del in both definitions is the standard Turing machine.
prove there the main theorem of this paper: the equivalence elativized complexity classes are defined using oracle

between neural networks of various Kolmogorov weightsUfing machines. An oracle Turing machine has a specially
and Turing machines that consult corresponding oracle sé{gSignated oracle tape and three special states called QUERY,

Section VI considers the connection between neural networks>: @nd NO. When the machine enters the QUERY state, it

and Turing machines with advice words. As corollaries, waVitches in the next step to state YES or state NO depending
obtain the previous results of Siegelmann and Sontag as spefalVhether the string currently written on the oracle tape is or
cases. The hierarchy theorem is stated and proved in Secfipfot in an oracle sed, fixed for the computation. We say
VI using the result and terminology of Section V. We clos1@t the machine queries the string to oradleand that the

Section VII with a short summary. computation is relative tol.
For alanguagel, P(A) is the class of languages that can be

decided in polynomial time by oracle Turing machines query-
Il. PRELIMINARIES: COMPLEXITY THEORY ing oracleA. If B is in P(A), we also say thaB3 (Turing-)
Other than the prefix-advice nonuniform complexity classégduces in polynomial time tol. For a class of languages
defined below, all the concepts from Complexity TheonA, P(A) is the union of allP(A4) for A € A.

mentioned throughout are standard; see [1, vol. I], for relevantOur notation for nonuniform complexity classes was intro-
properties and undefined notions. duced in [10]. Given a class of sefsand a class of bounding

For any alphabetS, ¥*, and > denote the sets of functionsH, the nonuniform clas€’/H is formed by the sets
all finite words and infinite sequences ovEr respectively. A such that
We denote the union of finite and infinite strings 8% =
S* U ¥, Strings inX* and ¥# are ordered by length, and V7 3" ([&"| < h(n))Va(lz| <n)lx € A = (z,w") € B
lexicographically within each length. We denote by, the ,
word consisting of the first symbols ofw, and byw;, the WhereB € C andh € H. Some frequent!’s are
kth symbol ofw; this notation is used whea is a finite or ¢ poly, the class of all functions bounded above by a poly-
an infinite sequence. Symbeldenotes the empty string. The ~ nomial;
length of a finite wordw is denoted bylw|, and we use the * 109, the class of all functions bounded abovecyogn,

same notatior|A| for the cardinality of a finite set4; this for a constantc > 0.
should cause no confusion. For an infinite sequenceve Observe that log and poly are closed und¥r).
define || = . String w™ in the definition is called “advice for length.”

DefineX<" as the set of all words of length at mastand, Observe thats™ must be useful for all strings of length up
for A C X*, A" = AN X=7; similarly, we haveX=" and to n, not only those of lengtm. This is not relevant for
A=". Here we will use in particular the alphabéfs= {0,1} polynomial advice bounds, but must be taken into account
andX = {0}. A tally set is a set of words over the single-lettefor sublinear bounds; thus here we are departing somewhat
alphabet{0}. from the notation of [10], and use the classes termed “strong”

If Ais a set of wordsy 4 € {0,1}°° is the characteristic in [11] and “full” in [3].
sequence of4, defined in the standard way: théh bit of A restriction gives the classes Pr@ftH, defined in [3]:
the sequence i$ if and only if theith word of £* is in A. the definition is the same as that ©f H, with the additional
Similarly, x 4<~ is the characteristic sequenceA%" relative condition that, for alls < m, w" is a prefix ofw™. Note also
to ©=". In both casesY is taken as the smallest alphabethat Pref-P/poly= P/poly, but that a similar equality might not
containing all the symbols occurring in words df so that hold for smaller function classes. It has been proved, however,
for a tally set7, xr denotes the characteristic sequence difiat for most cases of interest (name#j,closed unde(.)),

T relative to {0}*. Throughout this papeilogn means the Pref-PH coincides with PH according to our definition [7].
function max (1, [log, n]). Note that if we allow for exponentially long advice, and

To encode several strings into one, we use a pairing functiatbowing exponential time in the length of the input, the
(-,-): ¥* x ¥* — ¥* that is easily computable and invertiblenonuniform class contains all binary languages, as the advice
This function is extended to more than two arguments lmpuld be used to provide the binary response for all expo-

composition. nentially many inputs of length. Polynomially long advice
We also say that a clags of functions isclosed undeO(-) is not enough to recognize all binary functions. However, in
if for every f,g, if g € O(f) and f € F, theng € F. polynomial time it can still recognize, for example, all unary

A (formal) languageover alphabet: is a subset of£*. languages and in particular nonrecursive ones, such as a unary
In Complexity Theory, formal languages are classified intencoding of the halting problem.
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Our main interest in the advice classes will be the clas®t change in time, but rather remains constant. What changes
P/poly that allows polynomial computation time and a polyndn time are the activation values, or outputs of each processor.
mially long advice. We will use the following characterizatiorin this sense, our model is “uniform” in contrast with certain
of P/poly (see, e.g., [1]): A set is in P/poly if and only if it ismodels used in the past (e.g., [9]), that allow the number of
in P(T) for some tally set7. units to increase over time and often even allow the structure

The nonuniform complexity class P/poly is a ubiquitouto change, depending on the length of inputs being presented.
class that has been characterized in many other different waysRecently, foundational research on the computational power
for instance, as polynomial-size threshold feedforward neuiaflthe analog recurrent neural network model has been devel-
nets [21], and as Hopfield networks of polynomial size amabed [2], [25]-[27]. The main results of this line of research
polynomially high weights [20]. We will see in the next sectiorare characterizations of classes of formal languages that net-
how it can be defined by the analog recurrent neural netwowkorks can accept. By standard encoding methods, any other

Still another interpretation of advice complexity classefinite, fixed alphabet could be assumed, provided that it has at
is as follows. Consider some sort of process by which, Ieast two different symbols. The results can also be extended
successive time instants= 0,1,---, a binary measurementfrom languages to arbitrary functions from strings to strings.
provides observationsy, v, - - -, wherev, € {0,1}. Assume  The focus has been on networks for which input and output
that the process is such that a few (finitely many) real-valuetiannels carry only discrete data. As opposed to the 1/O, the
parameters§ allow one to compute feasibly the value of computation inside the network in general involves continuous
from ¢ and the parameters. Now, if we identify the process witleal values.
the set{bin (¢)|v; = 1}, and model “feasibility” by the more  The computational power of a recurrent network (with a
formal “in polynomial time,” the processes that are predictabfaite number of neurons) depends on the following classes of
in this sense form exactly the complexity class P/poly. Nowumbers utilized as weights:

consider the case when only the firgtn) bits of the real-  « Ifthe weights are integers, the neurons may assume binary
valued parameters are known, or guaranteed to be correct. activation values only. Thus the network accepts a regular
This corresponds to reducing the length of the advice from |anguage.

polynomial to roughlyf(n). « If the weights are rational numbers, the network is equiv-
alent in power to the Turing machine model [25]. Two
[ll. PRELIMINARIES: THE NEURAL NETWORK MODEL different 1/0O conventions are suggested in [26]: One that

uses input lines and output neurons, and another one

We focus on the model of recurrent network proposed ) :
where the discrete input and the output are encoded as the

by Siegelmann and Sontag [26], [27]. It consists offia X :
nite number of simple processors. Thtivation valueor state of two fixed neurons. The results for each convention
state of each processor is updated at times= 1,2,3,---, are formally St"f‘ted as foIIonvs. . .
according to a function of the activatior(:;) and inputs Theorem 3.1:Let ¢: {0,1}" — {0,1}" be any partial
(u;) at ime ¢ — 1, and a set of real coefficients—also called ~ 'ecursive function. Then, there exists a netwarkwith
weights—(a;;, b;;, ¢;). More precisely, each processor's state  INPUt linés that computes. Furthermore, if there is a
is updated by an equation of the type Turing machine (with one input tape and several work
tapes) that computes(w) in time T(w), then some

N M network A computesp(w) in time O(T(w) + |w|). ™
zi(t+1) =0 Z aijx(t) + Z biju;(t) +ci |, Theorem 3.2:Let M be a Turing machine computing
J=1 j=1 ¢: {0,1}* — {0,1}* in time 7. Then there exists
i=1,---.N (1) a network A" without inputs such that the following

properties hold: For eachy € {0,1}*, assume/\ is

where N is the number of processorg/ is the number of started in the initial state

external input signals, and is a “sigmoid-like” function.
This scalar function, or “activation” function, is meant to &(w) = (8[w],0,---,0) € @V
reflect the graded response of biological neurons to the net

sum of excitatory and inhibitory inputs affecting them. We  whereé: {0,1}* — [0,1] is defined by
concentrate on a particular, very simptefunction, namely,

n

the saturated-linear function . S(wiws -+ wn) = 2(2% +1)/40,
0, ifz<O0 =
olz):==<z, f0<x<1 (2)
1, ifz>1. Then, if ¢(w) is undefined, the second coordingte )}

of the state after steps is identically equal to zero, for

As part of the description, we assume that we have singled out all ¢. If, instead, ¢(w) is defined, then

a subset of theV processors, say;, ,---,z;,; these are the
output processors that communicate the output of the network Ew)y =0, fort=0,---,T(w) -1
to the environment. Thus a network is specified by its weights T(w)
§(w)z =1
and the set of output processors.
The structure of the network, including the number dnd
neurons and the values of the interconnection weights, does S(w)lT(w) = 6[p(w)].
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Furthermore, all weights io\ are simple, nonperiodic, | 3
and bounded rationals. ] !

In both theorems, the size of is fixed, independent
of the running time7". The proof of the first theorem
relies on the second one and the observation that given Work tapes
an input string, the network can encode it in linear time |:
as the initial state in the second theorem, and output the Finite — .
result as given in the second theorem through the output .
neurons. Control \‘ﬁ

* When weights are general real numbers, the network can

compute nonrecursive functions, but is still sensitive to
resource constraints. In [27] there is an exact character-
ization of the computational class associated with such
nets: In exponential time, networks with real weights can |a1 - L Gn
decide any language, but in polynomial time they accepitg_ 1. Our universal Turing machine.
exactly the language class P/poly.

The main observation that allowed for the result is as
follows: Let A" be a network. Them-truncationV) is interested in descriptions that are algorithmically useful, we
a network similar ta\/, but in which the weights have define a description for an object to be a program that builds
binary precision of; bits only and so are the activationsthe object, when fed into some universal Turing machine.
values of the neurons. It is proven in [27] that up to Here we only give the definitions that directly apply to our
computation of timeg, only the firstO(q) bits in both Wwork. The historical development of Kolmogorov complexity
weights and activation values influence the result. Hendggeory, the different variants of the concept, and the many
there is a constantso that up to computation timg cg- applications it has found in several fields of Computer Science
truncation(\V) is equivalent taV. This is formalized as are explained in detail in the survey by Li and afitji [15]
follows: and their recent book [16]. Suitable references or proofs for

Lemma 3.3:Let A" be a network computing in time the claims in the following paragraphs can be found there.
T(n). Then there exists a constansuch that, for every ~ To define the Kolmogorov complexity of real numbers,
n, ¢I(n)-truncationA') computes the same function agve first introduce the definition for infinite binary sequences.
N, on inputs of lengthn. Our definition of this concept is a time-bounded analog of

In this paper we refine these results as follows. (For thisobayashi's “compressibility” version [12].
informal presentation think df'(n) as a polynomial.) Lemma  Definition 4.1: Fix a universal Turing machiné’. Let f
3.3 says that the only information accessible to a network #d g be any two functions between natural numbers and
time 7'(n) is the one contained in the fir&(7(n)) bits of « € {0,1}>. We say that € K[f(n), g(n)] if there exists
its weights. Suppose now that the information is in fact much € {0, 1}° such that, for all but finitely many, the universal
smaller thanT'(n), i.e., the weights have low Kolmogorovmachinel outputscy., in time g(n), when giveng,.,, and
complexity. Then the networks will not be able to compute aft @s inputs, for anyn > f(n). If no condition is imposed on
of P/poly any longer. We show that they are able to compuifee running time, we say € K[f(n)].
the restriction of P/poly when the amount of advice is reducedFig. 1 shows a graphical intuition of the idea behind this
correspondingly. In this sense, “time-bounded Kolmogordigfinition.
complexity of weights” and “amount of advice for Turing Observe that here the length of the output is provided for
machines” are equivalent computational resources. free to the universal machine; so our definition corresponds to
a complexity measure “relative to the length.” The reason is
that we want simple numbers (e.g., rationals) to have extremely
IV. KOLMOGOROV COMPLEXITY AND REAL NUMBERS low complexity (e.g., constant), and even the information
Kolmogorov complexity attempts to measure the quantity éontained in the length of a string could be higher. However,
information contained in an individual object. This approach ie definitions are equivalent (modulo small constant factors)
quite different from that of classical information theory, wheréor complexities at least logarithmic.
information usually involved some probability distribution on Generally K [F, G] is the set of all infinite binary sequences
a set of objects. taken fromK[f, g] where f € F andg € G. For example,
Intuitively, objects that contain very little informationa sequence is id{[log, poly] if its prefixes are computable
should admit very short descriptions in an appropriafeom logarithmically long prefixes of some other sequence in
description language. On the other hand, if an object fwlynomial time.
very complex it should contain almost no redundancy thatltis easy to see that every sequence i&im+O(1), poly]:
helps in describing it concisely. As an extreme case, the mesty sequence can be produced from itself, plus a constant-size
economical way to describe an object with no redundanpyogram for the universal Turing machine that copies its input
at all is providing the object itself. A crucial point in theto its output. A straightforward counting argument shows that
theory is the choice of the description language. Since we dhere are sequences whose complexitykip. — O(1)], i.e.,

By | By
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cannot be compressed beyond a constant number of bits. Stiehcases wheré, is not injective, either of the two inverse

sequences are calle@olmogorov) random and the name images can be selected, since they have essentially (up to a

is further justified by the fact that they pass all computabkmall additive term) the same Kolmogorov complexity. The

statistical tests for randomness. Informally, this means thatlues obtained or\, by using each function differ only in a

they have all properties that can be verified algorithmicallgmall constant factor, and all our results will be independent

and hold with probabilityl for an infinite sequence of bitson the way selected to define it.

generated by tossing a fair coin. In fact, if an infinite sequenceThe definition of Kolmogorov complexity is extended from

is chosen at random by such a coin-tossing process, the interval[0,1] to all R as follows. We say that € R is in

probability of obtaining a Kolmogorov random sequencé.is K[f(n), g(n)] if the fractional part of- is; that is, we disregard
On the other end of the scale, sequenceskifD(1)] the (constant) complexity of the integer part;ofClasses of

are those that can be computed from a constant amountredl numbersK[F, G| are defined accordingly.

information. Not surprisingly, they coincide with “recursive” Finally, we use the notatioml + B to denote the set

sequences, i.e., characteristic sequences of recursive sets. Jhis bja € AAb € B}, for two sets4,B C R.

is easy to see from our definition, since it follows Kobayashi's

variant, but is also true (although harder to show) for the V. EQUIVALENCE OF TURING MACHINES

standard definition [17]. It is also known [12], [17] that all WITH TALLY ORACLES AND NN’S

characteristic sequences of recursively enumerable sets are g fol1owing technical definition will allow us to combine

K[log]. So, the characteristic sequence of the halting problefiyeq number of real weights into a single infinite string.

is not in K[O(1)], but is probably far from being random.  pefinition 5.1: Let S C {0,1}#. The setS is closed under

Now we define different classes of real numbers by relat"?ﬂixing if for any finite numberk € N and for anyk strings
them in two ways to infinite binary sequences. We considggy, ¢

two functions mapping{0, 1}# into the real closed interval

[0,1]: define the functions ot = ajagag -, = afadag ook = afafal
82, b4 {07 1}# N [0’ 1] the shuffled String
by the formulas @ = ajetoq- O/{a%a%a% ' aéa‘})’ag o
is again an element af.
b2(€) =ba(e) =0 Via the characteristic function, we can easily associate a
lod real number to each tally set. That is, tfih bit of the real
So(ar) = Z 2—; number determines if the wor@ is in the set. Actually we
i=1 have available two forms of itiz;(x1) andés(xr), the second
|| 2a; + 1 having the property that the real number obtained belongs to
balar) = Z ZU . A4, as described in the previous section.
i=1 The main theorem of this section formalizes that the power

Thusé, corresponds to the standard notion of binary expansi@h nets with real weights coincides with that of oracle Turing
of a real number, with the usual technical problem that 4Rachines with certain tally oracles related to those weights. It
infinite tail of ones preceded by a zero denotes the sarfeStated as follows:

number as an infinite tail of zeros preceded by a one. Onlheorem5.2:Let S C {0,1}> be closed under mixing,
the other hands, is injective on{0,1}#, and its image is the and assume that™ € S. Let 7 be the class of tally sets

“Cantor-like” set T ={T|xTr € S}
18] B S 1 31 Time in the following models is polynomially related:
ZEV €{L3}7 . 1) Neural networks that have all weights in the set
=t 52(5) + Q.

It is easily seen that this set consists of those reals whos&) Oracle Turing machines that consult oracle</in
binary expansion has & in each even-numbered digit. The 3) Neural networks that have all weights in the set

inverse map; ' is well defined there. Lef\, be the range of 64(5) + Q. u
this function when restricted to the domain of infinite strings.  Proof: We prove that the model in 1) can be simulated
That is, by the model in 2), which in turn is simulated by the model
oo in 3), and that the nets in 3) are a subset of those of 1).
A, = {Z &W c {173}00}_ 1-) by .2). Assume that we are given_a netwaofk with
— 4 weights iné2(S) + Q. The network has a fixed numbgre N

of weights, each of which can be written as the sum of a

The function 6, can be used to define the Kolmogoroyaiinnal and a real ir2(S). Let these reals have base-two
complexity of numbers ir[0, 1], and eitheré, or ¢, can be expansions

used to define the Kolmogorov complexity of numbergigx L1 ) s 5 o
a numberw € A, is said to be inK[f(n),g(n)] if and only @~ = O0wiwaws, -+, w* = 0wiwyws - -,
if $71(w) € K[f(n),g(n)], where§ is either &, or &;. In Wk = 0wkwhWk
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Note that some of thes’s may have two different base-symbol, then the answer must be NO. The reference head
two expansions (namely, ending in infinitely mafis and is reset, and the simulation continues. For the converse, the
infinitely many1's). We pick the one (or one of the two) thatsimulation of each move of ther-TM involves a query. The

is in S, which we know to exist because thé€'s are iné,(S). oracle Turing machine keeps the count, on a separate tape,

As S is closed under mixing, the string to know the position of the reference tape head. This is used
L2 3 k12 3 k12 3 to construct a tally query, whose answer is the bit read by
= W Wiy r W WhlhWy m Wy Wiy o the reference head. Both time overheads are easily seen to be
polynomial. [ |

is again an element af.

We show the existence of an oracle Turing machifi¢hat
consults a tally set with characteristic stringg = «, and
simulates the networly” while increasing the time only by
a polynomial.

Now, the appropriate combination of simulations in [26]
and [27] allows us to argue the inclusion. Fix an oracle
Turing machine with oracle sef' € 7, and letM be the
correspondingyr-TM given by Lemma 5.3. Letv be an

L arbitrary input toM. The required net acts as follows: first,
Let B(n) be the running time of\/, andc be the constant a small net reads the input and stores it$y, code as the

provided by Lemma 3.3 such that precision 5(n) in the activation value of a neuron, as in [26, Sec. 4.4]; when the end

weights guarantees correct results in the computation. MaCh'oq‘ethe input is reached, it load(yz) as the state of another
M computes as follows:

neuron, through a connection with exactly that weight; finally,

1. M receives the input string. it triggers another subnet that, started witlfw) and 84 (xr)
2. Fort:=1,2,3,---do in two specific neurons, simulatédg on inputw and oracler”.
3.Fori=1tok-c-tdo This net exists by Theorem 3.2 and its proof, and it takes only
query0’ to T (= the ith bit of «). linear time for the simulation. Note that the only nonrational
4. Using the weights given by .z, weight is é4(x1) € 64(9).
simulate\ () step by step until time. 3) by 1). No simulation is needed here. We only show
5. If A has produced an output by this time,  that §,(S) C 6(5), and then the stated relationship holds
output the same result and halt; a fortiori. Consider the realy(s) for s € S arbitrary. Its base-
otherwise, continue with the nexkt four expansion only uses the digitsand 3, and therefore its

. binary expansion consists of a concatenation of gairsr 11.
To see that the output is correct, note that after Stef31as  Moreover, a pai0l appears where has a0, and a pairl1
the weights ofA/ with enough precision to correctly simulate appears where has al. Hence this binary expansion, seen as
steps of the computation. The rational parts of the weights g{g infinite sequence/, is exactly the mix ofs € S and 1.
encpded in.side the machine, being a finite, fixed amount gjpce. by hypothesid™ is in S ands is closed under mixing,
of information. _ _ ~ s is also inS. Thus é4(s) = &(s'), and 6,(S) C 62(S)

To conclude, note that the time overhead is polynomial igjjows. n
B(|]). Indeed, the simulation in Step 4 takes time polynomial \we close this section with the following interesting conse-
in ¢, and the time required to simulate with=1,2, - -, B(|z])  quence. In many situations, we can only hope to implement
is only quadratic in the time to simulate with= B(|z[). In  nets with weights that can be effectively computed (or, com-
fact, this quadratic overhead can be reduced to linear by YiRlinicated) using a constant amount of initial information.
only #'s that are powers of. These are the real numbers M[O(1)] and, as explained in

2) by 3). This proof is based on a change on the modgkction IV, they coincide with the recursive reals, those whose
of oracle Turing machine. For an infinite sequemcean a-  pinary expansion is the characteristic sequence of a recursive
TM is a multitape Turing machine equipped with a read-onlyet serving also as an introduction to next section, we can
input tape, a finite number of read-write tapes, and a seBjpve now:
infinite read-only “reference tape” that permanently contains corgliary 5.4: In polynomial time, neural networks with re-

the infinite worda. The initial configuration has an input in . rsive weights compute exactly P/polyREC, the recursive
the input tapeq on the reference tape, and the other tapes 38rt of P/poly.

blank. We sketch the (easy) proof of the following: Proof: Take the setS of recursive infinite sequences.
Lemma 5.3:For any time boundt at least linear, the |; js easy to see that it is closed under mixing, and of
following are equivalent: course it containd>. Then 6,(S) + Q is exactly the set of
+ Alis accepted by an oracle Turing machine in time polyecursive reals. By the theorem, the power of polynomial-time
nomial int(n) with the tally oracle set’; neural nets with recursive weights becomes characterized by

+ Ais accepted by g7-TM in time polynomial in#(n).  polynomial-time Turing machines with recursive tally sets as
Proof: Recall that y; is relative to the single-letter oracles.

alphabet. Essentially, the oracle Turing machine is simulatedRecall that we denote by?(B) the class of languages
by the x-TM as follows: nonoracle steps are mimickedthat can be decided in polynomial time by an oracle Turing
when a query is to be made, the machine scans the oratlachine querying the oraclB. Now assume that a set is
tape, checking that onlg’s appear there, and simultaneouslyn P(T), for T a recursive tally set. Thed is in P(T) for a
advances the reference tape head. After the scan, the refereacarsiveT’, so it is recursive, and is i?(T") for T tally, so it
tape provides the oracle answer. If the query had some nonzisrin P/poly by the characterization in Section Il (see, e.qg., [1]).
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Conversely, it is known that ifA € P(T) for some tally Now we are ready to prove the relation between advice
setT’, and A is recursive, there is also some recursive tallglasses and languages accepted by neural nets.
setT” for which A € P(T"). Here we sketch one possible Theorem 6.2:Let F be a class of reasonable advice bounds.
construction for7”. Then the class Pref-/P/ is exactly the class of languages

Assume thatd € P(T) is witnessed by a Turing machineaccepted by polynomial-time neural networks with weights
M running in timep(n). Let us say that a string of length in K[F, poly].
p(n) is a good advice for length if, for every = of length Proof: Note that, since all constants are (WF) = F
n, M(z) correctly decides whether € A when using any and every rational has constant complexiyC K[F, poly].
tally set whose characteristic sequence hass firstp(n) For the same reasoi® is in K[F, poly]. Furthermore, by
bits. Note thatp(n) bits are enough for the simulation, and.emma 6.1, the clas&[F, poly] is closed under mixing. By
that to decide this property om it is enough to apph2™ Theorem 5.2, it suffices to show that PrefFP¢oincides with
times the decision procedure fot. Now definew™ to be the class of sets decidable in polynomial time with tally oracle
the lexicographically first good advice for length One such setsT such thatyr € K[F, poly].
string exists, namely, the prefix qfr, but any one will do for ~ Thus assume that € P(T") with such a7, and consider
deciding A. The tally setT” is defined as an infinite stringa such that the firstn bits of x; can be

' e i p A n recovered from the firsf(m) bits of « in time polynomial
T"=4{0",09In20,1<i< p(n), and theith bit of w™ is 1} in m, with f € F. Let p( b()a the polynomial bounding the
where the pairing functiorf-, -) is taken to ma* x 0* to time necessary to recogniz¢, and letg € F be a bound
0*. A straightforward modification off/ acceptsA relative to on f o p such thatg(n) is computable in time polynomial in
T’. Itis also easy to prove th&t’ is recursive, and in fact hasn. This g exists by the assumption thé# forms reasonable
complexity at most exponentially higher than (It is possible advice bounds. Thed is in Pref-P/F by choosing as advice
to obtain better bounds on the complexity©f, see [23].)m for lengthn the firstg(n) bits of o, from which up top(n)

bits of y7 can be reconstructed in polynomial time and then
VI. KOLMOGOROV WEIGHTS AND ADVICE CLASSES used to decided instead of querying the oracle sét

The main contribution here is to show that the Kolmogoroy COnversely, letA & Pref-F/F via the polynomial-time
complexity of the weights of nets relates to a structural notioff@chineM and the infinite worde whose prefix of length
the amount of advice for nonuniform classes. J(m) can be used as advice string for length with f € F.

We prove it in a general setting, so as to infer at oncdNC€ 7 is reasonable, we can take ¢ F that is always
several particular cases of interest. For this, we introduce soRfgater thary, is easily computable from:, and bounded by
technical conditions that we expect all our advice boundsPolynomialp.
to have, namely: we say that a class of functichigorms L€t a(t) = (¢ + 1)p(#), so thatp(t + 1) < ¢(t + 1) — ¢(%).
reasonable advice bound§ 1) F C poly, 2) it is closed NOte that, then

underO(-), and 3) for every polynomigb and everyf € F _ _
there is anothely € F such thatf o p < g and g(n) is (9t +1) = g(®)) S g(t+1) < plt+1) < (gt +1) - a(t).

computable in time polynomial in. A number of reasonable ¢,nsider the oracle tally s&t whose characteristic function
advice bounds are described below, and all advice bounds U?Hefined as follows: bitd to g(1) of yr are bits1 to g(1)

in the literature are immediately seen to be reasonable. of «; bits from g(1) + 1 to ¢(1) of xz are0; when
In order to apply Theorem 5.2 to classes of the fd&fiF,

poly], we first show that they are closed under mixing. Here we 1<0< (gt +1) —g(t)

use that our definition of Kolmogorov complexity is relative

to the length. bit ¢(¢) + £ of xr is bit g(¢) 4+ £ of «; and when
Lemma 6.1:Let F be a function class that is closed under

O(-). Then, K[F, poly] is closed under mixing. (9(t+1) —g(t) <€ < (q(t+1) — q(t))

Proof: Letk € Nanda!,---, o € K[F, poly]. Thatis, _ _ _
forall i = 1,---k,ai,, is computed in timey;(n) € P using Pit q(t)+£ of x7 is 0. Itis easy to see that, given andg(m)
the inputg;, , .. Thus the shuffled string of the’’s () up bits of v, we can print ou(m) > m bits of x7 in polynomial
to lengthn can' be computed in time time. _SO,XT € K[F, poly], and_ in polynomial time a Turing
machine with oracld” can obtain the necessary advice words

to simulateM and, thus, decidel. This completes the proof.
g(n) =0(n) + Y gil[n/k]) P P
, : =t , Some interesting special cases arise when considering vari-
from an input that is equal to the prefix of length ous natural bounds for the Kolmogorov complexity.
k * S = K]Jpoly, poly, that is, arbitrary strings. The class of
f(n) = Z filIn/k]) languages accepted in this case is P/poly; this is the main
=1

result of [27].
of the shuffled string of theg#®’s. It is easy to verify that as « S = K]log, poly]. In this case, the class of languages
both 7 and P are closed undé¥(-),g € P and f € F. Thus accepted is Pref-P/log, which equals P/log (with our
& € K[F, poly]. [ | definition) as shown in [3], [7].
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* S = KJ[O(1), poly], that is, characteristic strings of setpolynomials, and- € G. In time p; (n), the machine can query
computable in polynomial time. Here it is important thaat most the firsp; (n) elements off". Using this machine, we
we use Kobayashi's definition, since with other variantsan easily print outh; - 32 - .. .- 8,,, and hencey,.,(,,) /2, given
the classK[O(1), poly] may contain characteristic func-inputs s(n)/2 and the firstr(p;(n)) + O(1) < s(n)/4 bits of
tions of sets requiring arbitrarily high time to decidethe seed foryz. This contradicts the choice of. [ |
The class of languages accepted in this case is P, sincelThe requirement that is nondecreasing can be removed
by the results of [26], polynomial-time computations arat the expense of some technical complication. For instance,
exactly those of polynomial-time neural nets with rationahe upper bound on the complexifys only holds infinitely
weights. often. To reach a contradiction, it is enough to takaighly
complex almost everywhere.
VII. THE HIERARCHY THEOREM Let us note that there is nothing special about P classes in
In this section we show our main result, namely ththe previous theorem. Simile_r separatiop results can be proved
. . " ! ﬁ?r other well-behaved families of run-time functions.
existence of a proper hierarchy of complexity classes o A have seen. Theorem 5.2 establishes a connection
networks. In order to prove this, we first define an orderi s We = o
tween the set of weights of a family of networks and the

between classes of tally sets. Then we show that oragcle Turing machines that consult related tally sets. Theorem

Turing machines consulting these classes of oracles resy displays a hierarchy of oracle Turing machines query-

'; aln |2f|2|itne trﬁleerigzr;gc?;?fgglﬁt?:?r?égrl:ffess'zF;r;?j”)gb\tlg. oracles that belong to different Kolmogorov complexity
PPy ag ' classes. From both theorems we conclude immediately:

the deswe.d hierarchy of neural nets.. The advantage_ of thi heorem 7.2 (Hierarchy Theorem):et 7, G be two func-
approach is that Kolmogorov complexity allows for a simpley.

, tion classes closed undex(:-), with 7 < G. Let Nk, poly] b€
argument o prove that_the classes defined by oracle T““Ph% class of languages accepted by networks that compute in
machines are indeed different.

The partial order on function classes is as follows. Fety pg:y]rmarl?qlgllSt;mﬁ:ér?n?oegcq_ﬁ;\ivhlch uses weights fréffy,
be function classes. We say th&t < G if there is some POl y )

nondecreasing(n) € G, computable in time polynomial in Ao ;N» -

n, so thats(n) = o(n) and, for every polynomiap and K7 poly] 7 HK[Gpoly]-

everyr € F, r(p(n)) = o(s(n)). (Then F is sublinear by  This paper introduces a Kolmogorov-like measure of com-
transitivity.) plexity for numbers and applies it to reveal the computational

Note that this partial order defines an infinite hierarchy,ower of recurrent neural networks. We leave the possible
For instance, one may consider the function claskes= applicability of our measure in bridging between information
{q1,---, 4}, where g; = log®” is defined inductively by theory and computational complexity for future research.
q1 = log and ¢; = log(g;—1) for > 1.

For the next theorem, we denote By the family of all

tally sets7" with the property thatyr € K[F, poly], and by _ i

P(T7) the class of all sets decidable in polynomial time by The authore wish to thank E Sontag for his encouragement
an oracle Turing machine with an oracle 7. and support via many discussions and D. Harel for asking the
Huestion that led them to Corollary 5.4.
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