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Computational Power of Neural Networks:
A Characterization in Terms of

Kolmogorov Complexity
Jośe L. Balćazar, Ricard Gavald̀a, and Hava T. Siegelmann

Abstract—The computational power of recurrent neural net-
works is shown to depend ultimately on the complexity of the
real constants (weights) of the network. The complexity, or
information contents, of the weights is measured by a variant of
resource-bounded Kolmogorov complexity, taking into account
the time required for constructing the numbers. In particular,
we reveal a full and proper hierarchy of nonuniform complexity
classes associated with networks having weights of increasing
Kolmogorov complexity.

Index Terms—Kolmogorov complexity, neural networks, Tur-
ing machines.

I. INTRODUCTION

W E FOCUS on the classical analog recurrent neural
networks [6], [8], consisting of afinite number of

simple processors, each of which computes a scalar—real-
valued—function, or “activation,” of an integrated input. The
adjective “analog” refers to the continuity of the activation
function. “Recurrent” refers to the existence of feedback loops
in the interconnection graph, allowing the processing of arbi-
trarily long data with a fixed-size network. The formalization
of the activation gives rise to a dynamical system.

These networks have attracted much attention lately as
computational devices. One particular model of network has
been suggested in [24], [27] to capture computation with
“analog phase space.” This contrasts with the well-known
Turing machine model that essentially describes all digital
computers. Work so far has distinguished essentially two types
of such networks, depending on whether the weights of the
networks are rational numbers or real numbers.

If the weights are rational numbers, then networks are
equivalent to Turing machines [25], [26]; that is, they are no
more powerful than standard digital computers. In the general
case, weights are real numbers with infinite precision. Then
the networks have been shown to be strictly more powerful
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than Turing machines [27]. For example, in exponential time
they are able to compute every binary function. Even if
their computation time is further constrained to polynomial
time, they remain computationally strictly stronger than the
Turing machine with the same time bounds: they compute the
functions in the complexity class denoted by P/poly, which is
known to contain some, but not all, recursive binary functions.

In this paper we focus on the reason of this phenomenon.
It is clearly due to the fact that both Turing machines and
nets with rational weights are finite objects, in the sense that
they can be described with a finite amount of information.
This is not true for real numbers, hence a neural network
containing real numbers with infinite precision has access
to a potentially infinite source of information, which may
allow it to compute nonrecursive functions. Intuitively, as
the real numbers used are richer and richer in information,
more and more nonrecursive functions become computable.
To formalize this statement, we need a quantitative measure
of the information contained in real numbers.

Previous work in the field of information theory [18],
[19], [22] has defined the complexity of a sequence as a
“measure on the extent to which a given sequence resembles
a random one” [14]. One particular line [4], [5], [13] leads
to the notion now usually called Kolmogorov complexity of
a string. The complexity of a finite sequence is the length of
the (shortest) binary string that can be given as input to a
universal algorithm to construct (output) the sequence. This
can be generalized in several ways to infinite strings, and
hence to real numbers. Here we take one of the variants of
the notion called resource-bounded Kolmogorov complexity.
This is obtained by constraining also the time used by the
universal algorithm to construct the numbers (or equivalently,
respond to their input strings), making the notion effective.

We prove that, in a sense we make precise, the predictability
of processes like these described by neural networks depends
essentially on the resource-bounded Kolmogorov complexity
of the real numbers defining the process. We find that the
equivalence between neural networks and either Turing ma-
chines (for rational weights) or classes such as P/poly (for
real weights) are but two special cases. By slowly increasing
the Kolmogorov complexity of the weights, an infinite proper
hierarchy of computational classes is obtained. For polynomial
time bounds, these classes are shown to coincide with so-called
“advice classes,” well studied in complexity theory, of which
the classes P and P/poly are the two extreme cases.
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A. Organization of the Paper

The paper is technical, and takes the reader step-by-step
towards the hierarchy theorem that is stated and proved
only in Section VII. Section II consists of preliminaries of
complexity theory. In Section III, we describe our neural
network model. In Section IV, we define our variant of
Kolmogorov complexity. In Section V, we focus on Turing
machines that consult oracles as defined in Section III. We
prove there the main theorem of this paper: the equivalence
between neural networks of various Kolmogorov weights
and Turing machines that consult corresponding oracle sets.
Section VI considers the connection between neural networks
and Turing machines with advice words. As corollaries, we
obtain the previous results of Siegelmann and Sontag as special
cases. The hierarchy theorem is stated and proved in Section
VII using the result and terminology of Section V. We close
Section VII with a short summary.

II. PRELIMINARIES: COMPLEXITY THEORY

Other than the prefix-advice nonuniform complexity classes
defined below, all the concepts from Complexity Theory
mentioned throughout are standard; see [1, vol. I], for relevant
properties and undefined notions.

For any alphabet and denote the sets of
all finite words and infinite sequences over, respectively.
We denote the union of finite and infinite strings as

Strings in and are ordered by length, and
lexicographically within each length. We denote by the
word consisting of the first symbols of , and by the

th symbol of ; this notation is used when is a finite or
an infinite sequence. Symboldenotes the empty string. The
length of a finite word is denoted by , and we use the
same notation for the cardinality of a finite set ; this
should cause no confusion. For an infinite sequence, we
define

Define as the set of all words of length at mostand,
for ; similarly, we have and

Here we will use in particular the alphabets
and A tally set is a set of words over the single-letter
alphabet

If is a set of words, is the characteristic
sequence of , defined in the standard way: theth bit of
the sequence is if and only if the th word of is in
Similarly, is the characteristic sequence of relative
to In both cases, is taken as the smallest alphabet
containing all the symbols occurring in words of, so that
for a tally set , denotes the characteristic sequence of

relative to Throughout this paper, means the
function

To encode several strings into one, we use a pairing function
that is easily computable and invertible.

This function is extended to more than two arguments by
composition.

We also say that a class of functions isclosed under
if for every if and , then

A (formal) languageover alphabet is a subset of
In Complexity Theory, formal languages are classified into

complexity classes according to the resources needed by
machines of some kind to recognize them.

Complexity class P is the class of languages for which
membership can be decided in time polynomial in the length
of the input. Overloading the name, we also use P to denote
the class of all functions that are polynomial-time-
computable in the same sense. The underlying computation
model in both definitions is the standard Turing machine.

Relativized complexity classes are defined using oracle
Turing machines. An oracle Turing machine has a specially
designated oracle tape and three special states called QUERY,
YES, and NO. When the machine enters the QUERY state, it
switches in the next step to state YES or state NO depending
on whether the string currently written on the oracle tape is or
is not in an oracle set , fixed for the computation. We say
that the machine queries the string to oracle, and that the
computation is relative to

For a language is the class of languages that can be
decided in polynomial time by oracle Turing machines query-
ing oracle If is in , we also say that (Turing-)
reduces in polynomial time to For a class of languages

is the union of all for
Our notation for nonuniform complexity classes was intro-

duced in [10]. Given a class of setsand a class of bounding
functions , the nonuniform class is formed by the sets

such that

where and Some frequent ’s are

• poly, the class of all functions bounded above by a poly-
nomial;

• log, the class of all functions bounded above by ,
for a constant

Observe that log and poly are closed under
String in the definition is called “advice for length.”

Observe that must be useful for all strings of length up
to , not only those of length This is not relevant for
polynomial advice bounds, but must be taken into account
for sublinear bounds; thus here we are departing somewhat
from the notation of [10], and use the classes termed “strong”
in [11] and “full” in [3].

A restriction gives the classes Pref- , defined in [3]:
the definition is the same as that of , with the additional
condition that, for all is a prefix of Note also
that Pref-P/poly P/poly, but that a similar equality might not
hold for smaller function classes. It has been proved, however,
that for most cases of interest (namely,closed under ),
Pref-P/ coincides with P/ according to our definition [7].

Note that if we allow for exponentially long advice, and
allowing exponential time in the length of the input, the
nonuniform class contains all binary languages, as the advice
could be used to provide the binary response for all expo-
nentially many inputs of length Polynomially long advice
is not enough to recognize all binary functions. However, in
polynomial time it can still recognize, for example, all unary
languages and in particular nonrecursive ones, such as a unary
encoding of the halting problem.
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Our main interest in the advice classes will be the class
P/poly that allows polynomial computation time and a polyno-
mially long advice. We will use the following characterization
of P/poly (see, e.g., [1]): A set is in P/poly if and only if it is
in for some tally set

The nonuniform complexity class P/poly is a ubiquitous
class that has been characterized in many other different ways:
for instance, as polynomial-size threshold feedforward neural
nets [21], and as Hopfield networks of polynomial size and
polynomially high weights [20]. We will see in the next section
how it can be defined by the analog recurrent neural network.

Still another interpretation of advice complexity classes
is as follows. Consider some sort of process by which, in
successive time instants a binary measurement
provides observations where Assume
that the process is such that a few (finitely many) real-valued
parameters allow one to compute feasibly the value of
from and the parameters. Now, if we identify the process with
the set , and model “feasibility” by the more
formal “in polynomial time,” the processes that are predictable
in this sense form exactly the complexity class P/poly. Now
consider the case when only the first bits of the real-
valued parameters are known, or guaranteed to be correct.
This corresponds to reducing the length of the advice from
polynomial to roughly

III. PRELIMINARIES: THE NEURAL NETWORK MODEL

We focus on the model of recurrent network proposed
by Siegelmann and Sontag [26], [27]. It consists of afi-
nite number of simple processors. Theactivation valueor
state of each processor is updated at times
according to a function of the activations and inputs

at time , and a set of real coefficients—also called
weights— More precisely, each processor’s state
is updated by an equation of the type

(1)

where is the number of processors, is the number of
external input signals, and is a “sigmoid-like” function.
This scalar function, or “activation” function, is meant to
reflect the graded response of biological neurons to the net
sum of excitatory and inhibitory inputs affecting them. We
concentrate on a particular, very simplefunction, namely,
the saturated-linear function

if
if
if

(2)

As part of the description, we assume that we have singled out
a subset of the processors, say ; these are the
output processors that communicate the output of the network
to the environment. Thus a network is specified by its weights
and the set of output processors.

The structure of the network, including the number of
neurons and the values of the interconnection weights, does

not change in time, but rather remains constant. What changes
in time are the activation values, or outputs of each processor.
In this sense, our model is “uniform” in contrast with certain
models used in the past (e.g., [9]), that allow the number of
units to increase over time and often even allow the structure
to change, depending on the length of inputs being presented.

Recently, foundational research on the computational power
of the analog recurrent neural network model has been devel-
oped [2], [25]–[27]. The main results of this line of research
are characterizations of classes of formal languages that net-
works can accept. By standard encoding methods, any other
finite, fixed alphabet could be assumed, provided that it has at
least two different symbols. The results can also be extended
from languages to arbitrary functions from strings to strings.

The focus has been on networks for which input and output
channels carry only discrete data. As opposed to the I/O, the
computation inside the network in general involves continuous
real values.

The computational power of a recurrent network (with a
finite number of neurons) depends on the following classes of
numbers utilized as weights:

• If the weights are integers, the neurons may assume binary
activation values only. Thus the network accepts a regular
language.

• If the weights are rational numbers, the network is equiv-
alent in power to the Turing machine model [25]. Two
different I/O conventions are suggested in [26]: One that
uses input lines and output neurons, and another one
where the discrete input and the output are encoded as the
state of two fixed neurons. The results for each convention
are formally stated as follows.

Theorem 3.1:Let be any partial
recursive function. Then, there exists a networkwith
input lines that computes Furthermore, if there is a
Turing machine (with one input tape and several work
tapes) that computes in time , then some
network computes in time

Theorem 3.2:Let be a Turing machine computing
in time Then there exists

a network without inputs such that the following
properties hold: For each , assume is
started in the initial state

where is defined by

Then, if is undefined, the second coordinate
of the state after steps is identically equal to zero, for
all If, instead, is defined, then

for

and



1178 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 4, JULY 1997

Furthermore, all weights in are simple, nonperiodic,
and bounded rationals.

In both theorems, the size of is fixed, independent
of the running time The proof of the first theorem
relies on the second one and the observation that given
an input string, the network can encode it in linear time
as the initial state in the second theorem, and output the
result as given in the second theorem through the output
neurons.

• When weights are general real numbers, the network can
compute nonrecursive functions, but is still sensitive to
resource constraints. In [27] there is an exact character-
ization of the computational class associated with such
nets: In exponential time, networks with real weights can
decide any language, but in polynomial time they accept
exactly the language class P/poly.

The main observation that allowed for the result is as
follows: Let be a network. Then -truncation is
a network similar to , but in which the weights have
binary precision of bits only and so are the activations
values of the neurons. It is proven in [27] that up to
computation of time , only the first bits in both
weights and activation values influence the result. Hence,
there is a constantso that up to computation time -
truncation is equivalent to This is formalized as
follows:

Lemma 3.3:Let be a network computing in time
Then there exists a constantsuch that, for every

-truncation computes the same function as
, on inputs of length

In this paper we refine these results as follows. (For this
informal presentation think of as a polynomial.) Lemma
3.3 says that the only information accessible to a network in
time is the one contained in the first bits of
its weights. Suppose now that the information is in fact much
smaller than , i.e., the weights have low Kolmogorov
complexity. Then the networks will not be able to compute all
of P/poly any longer. We show that they are able to compute
the restriction of P/poly when the amount of advice is reduced
correspondingly. In this sense, “time-bounded Kolmogorov
complexity of weights” and “amount of advice for Turing
machines” are equivalent computational resources.

IV. K OLMOGOROV COMPLEXITY AND REAL NUMBERS

Kolmogorov complexity attempts to measure the quantity of
information contained in an individual object. This approach is
quite different from that of classical information theory, where
information usually involved some probability distribution on
a set of objects.

Intuitively, objects that contain very little information
should admit very short descriptions in an appropriate
description language. On the other hand, if an object is
very complex it should contain almost no redundancy that
helps in describing it concisely. As an extreme case, the most
economical way to describe an object with no redundancy
at all is providing the object itself. A crucial point in the
theory is the choice of the description language. Since we are

Fig. 1. Our universal Turing machine.

interested in descriptions that are algorithmically useful, we
define a description for an object to be a program that builds
the object, when fed into some universal Turing machine.

Here we only give the definitions that directly apply to our
work. The historical development of Kolmogorov complexity
theory, the different variants of the concept, and the many
applications it has found in several fields of Computer Science
are explained in detail in the survey by Li and Vit´anyi [15]
and their recent book [16]. Suitable references or proofs for
the claims in the following paragraphs can be found there.

To define the Kolmogorov complexity of real numbers,
we first introduce the definition for infinite binary sequences.
Our definition of this concept is a time-bounded analog of
Kobayashi’s “compressibility” version [12].

Definition 4.1: Fix a universal Turing machine Let
and be any two functions between natural numbers and

We say that if there exists
such that, for all but finitely many, the universal

machine outputs in time , when given and
as inputs, for any If no condition is imposed on

the running time, we say
Fig. 1 shows a graphical intuition of the idea behind this

definition.
Observe that here the length of the output is provided for

free to the universal machine; so our definition corresponds to
a complexity measure “relative to the length.” The reason is
that we want simple numbers (e.g., rationals) to have extremely
low complexity (e.g., constant), and even the information
contained in the length of a string could be higher. However,
the definitions are equivalent (modulo small constant factors)
for complexities at least logarithmic.

Generally, is the set of all infinite binary sequences
taken from where and For example,
a sequence is in poly if its prefixes are computable
from logarithmically long prefixes of some other sequence in
polynomial time.

It is easy to see that every sequence is in , poly]:
any sequence can be produced from itself, plus a constant-size
program for the universal Turing machine that copies its input
to its output. A straightforward counting argument shows that
there are sequences whose complexity is , i.e.,
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cannot be compressed beyond a constant number of bits. Such
sequences are called(Kolmogorov) random, and the name
is further justified by the fact that they pass all computable
statistical tests for randomness. Informally, this means that
they have all properties that can be verified algorithmically
and hold with probability for an infinite sequence of bits
generated by tossing a fair coin. In fact, if an infinite sequence
is chosen at random by such a coin-tossing process, the
probability of obtaining a Kolmogorov random sequence is.

On the other end of the scale, sequences in
are those that can be computed from a constant amount of
information. Not surprisingly, they coincide with “recursive”
sequences, i.e., characteristic sequences of recursive sets. This
is easy to see from our definition, since it follows Kobayashi’s
variant, but is also true (although harder to show) for the
standard definition [17]. It is also known [12], [17] that all
characteristic sequences of recursively enumerable sets are in

log So, the characteristic sequence of the halting problem
is not in , but is probably far from being random.

Now we define different classes of real numbers by relating
them in two ways to infinite binary sequences. We consider
two functions mapping into the real closed interval

: define the functions

by the formulas

Thus corresponds to the standard notion of binary expansion
of a real number, with the usual technical problem that an
infinite tail of ones preceded by a zero denotes the same
number as an infinite tail of zeros preceded by a one. On
the other hand, is injective on , and its image is the
“Cantor-like” set

It is easily seen that this set consists of those reals whose
binary expansion has a in each even-numbered digit. The
inverse map is well defined there. Let be the range of
this function when restricted to the domain of infinite strings.
That is,

The function can be used to define the Kolmogorov
complexity of numbers in , and either or can be
used to define the Kolmogorov complexity of numbers in:
a number is said to be in if and only
if where is either or In

the cases where is not injective, either of the two inverse
images can be selected, since they have essentially (up to a
small additive term) the same Kolmogorov complexity. The
values obtained on by using each function differ only in a
small constant factor, and all our results will be independent
on the way selected to define it.

The definition of Kolmogorov complexity is extended from
the interval to all as follows. We say that is in

if the fractional part of is; that is, we disregard
the (constant) complexity of the integer part ofClasses of
real numbers are defined accordingly.

Finally, we use the notation to denote the set
, for two sets

V. EQUIVALENCE OF TURING MACHINES

WITH TALLY ORACLES AND NN’S

The following technical definition will allow us to combine
a fixed number of real weights into a single infinite string.

Definition 5.1: Let The set is closed under
mixing if for any finite number and for any strings
from

the shuffled string

is again an element of
Via the characteristic function, we can easily associate a

real number to each tally set. That is, theth bit of the real
number determines if the word is in the set. Actually we
have available two forms of it: and , the second
having the property that the real number obtained belongs to

, as described in the previous section.
The main theorem of this section formalizes that the power

of nets with real weights coincides with that of oracle Turing
machines with certain tally oracles related to those weights. It
is stated as follows:

Theorem 5.2:Let be closed under mixing,
and assume that Let be the class of tally sets

Time in the following models is polynomially related:

1) Neural networks that have all weights in the set

2) Oracle Turing machines that consult oracles in
3) Neural networks that have all weights in the set

Proof: We prove that the model in 1) can be simulated
by the model in 2), which in turn is simulated by the model
in 3), and that the nets in 3) are a subset of those of 1).

1) by 2). Assume that we are given a network with
weights in The network has a fixed number
of weights, each of which can be written as the sum of a
rational and a real in Let these reals have base-two
expansions
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Note that some of the ’s may have two different base-
two expansions (namely, ending in infinitely many’s and
infinitely many ’s). We pick the one (or one of the two) that
is in , which we know to exist because the’s are in
As is closed under mixing, the string

is again an element of
We show the existence of an oracle Turing machinethat

consults a tally set with characteristic string , and
simulates the network while increasing the time only by
a polynomial.

Let be the running time of , and be the constant
provided by Lemma 3.3 such that precision in the
weights guarantees correct results in the computation. Machine

computes as follows:

1. receives the input string.
2. For do

3. For 1 to do
query to the th bit of

4. Using the weights given by ,
simulate step by step until time.

5. If has produced an output by this time,
output the same result and halt;

otherwise, continue with the next.

To see that the output is correct, note that after Step 3,has
the weights of with enough precision to correctly simulate
steps of the computation. The rational parts of the weights are
encoded inside the machine , being a finite, fixed amount
of information.

To conclude, note that the time overhead is polynomial in
Indeed, the simulation in Step 4 takes time polynomial

in , and the time required to simulate with
is only quadratic in the time to simulate with In
fact, this quadratic overhead can be reduced to linear by trying
only ’s that are powers of .

2) by 3). This proof is based on a change on the model
of oracle Turing machine. For an infinite sequencean -
TM is a multitape Turing machine equipped with a read-only
input tape, a finite number of read–write tapes, and a semi-
infinite read-only “reference tape” that permanently contains
the infinite word The initial configuration has an input in
the input tape, on the reference tape, and the other tapes are
blank. We sketch the (easy) proof of the following:

Lemma 5.3: For any time bound at least linear, the
following are equivalent:

• is accepted by an oracle Turing machine in time poly-
nomial in with the tally oracle set ;

• is accepted by a -TM in time polynomial in

Proof: Recall that is relative to the single-letter
alphabet. Essentially, the oracle Turing machine is simulated
by the -TM as follows: nonoracle steps are mimicked;
when a query is to be made, the machine scans the oracle
tape, checking that only’s appear there, and simultaneously
advances the reference tape head. After the scan, the reference
tape provides the oracle answer. If the query had some nonzero

symbol, then the answer must be NO. The reference head
is reset, and the simulation continues. For the converse, the
simulation of each move of the -TM involves a query. The
oracle Turing machine keeps the count, on a separate tape,
to know the position of the reference tape head. This is used
to construct a tally query, whose answer is the bit read by
the reference head. Both time overheads are easily seen to be
polynomial.

Now, the appropriate combination of simulations in [26]
and [27] allows us to argue the inclusion. Fix an oracle
Turing machine with oracle set , and let be the
corresponding -TM given by Lemma 5.3. Let be an
arbitrary input to The required net acts as follows: first,
a small net reads the input and stores its code as the
activation value of a neuron, as in [26, Sec. 4.4]; when the end
of the input is reached, it loads as the state of another
neuron, through a connection with exactly that weight; finally,
it triggers another subnet that, started with and
in two specific neurons, simulates on input and oracle
This net exists by Theorem 3.2 and its proof, and it takes only
linear time for the simulation. Note that the only nonrational
weight is

3) by 1). No simulation is needed here. We only show
that , and then the stated relationship holds
a fortiori. Consider the real for arbitrary. Its base-
four expansion only uses the digitsand , and therefore its
binary expansion consists of a concatenation of pairsor .
Moreover, a pair appears where has a , and a pair
appears where has a . Hence this binary expansion, seen as
an infinite sequence , is exactly the mix of and
Since, by hypothesis, is in and is closed under mixing,

is also in Thus , and
follows.

We close this section with the following interesting conse-
quence. In many situations, we can only hope to implement
nets with weights that can be effectively computed (or, com-
municated) using a constant amount of initial information.
These are the real numbers in and, as explained in
Section IV, they coincide with the recursive reals, those whose
binary expansion is the characteristic sequence of a recursive
set. Serving also as an introduction to next section, we can
prove now:

Corollary 5.4: In polynomial time, neural networks with re-
cursive weights compute exactly P/polyREC, the recursive
part of P/poly.

Proof: Take the set of recursive infinite sequences.
It is easy to see that it is closed under mixing, and of
course it contains Then is exactly the set of
recursive reals. By the theorem, the power of polynomial-time
neural nets with recursive weights becomes characterized by
polynomial-time Turing machines with recursive tally sets as
oracles.

Recall that we denote by the class of languages
that can be decided in polynomial time by an oracle Turing
machine querying the oracle Now assume that a set is
in , for a recursive tally set. Then is in for a
recursive , so it is recursive, and is in for tally, so it
is in P/poly by the characterization in Section II (see, e.g., [1]).



BALCÁZAR et al.: COMPUTATIONAL POWER OF NEURAL NETWORKS 1181

Conversely, it is known that if for some tally
set , and is recursive, there is also some recursive tally
set for which Here we sketch one possible
construction for

Assume that is witnessed by a Turing machine
running in time Let us say that a string of length

is a good advice for length if, for every of length
correctly decides whether when using any

tally set whose characteristic sequence hasas first
bits. Note that bits are enough for the simulation, and
that to decide this property on it is enough to apply
times the decision procedure for Now define to be
the lexicographically first good advice for length One such
string exists, namely, the prefix of , but any one will do for
deciding The tally set is defined as

and the th bit of is

where the pairing function is taken to map to
A straightforward modification of accepts relative to
It is also easy to prove that is recursive, and in fact has

complexity at most exponentially higher than (It is possible
to obtain better bounds on the complexity of, see [23].)

VI. K OLMOGOROV WEIGHTS AND ADVICE CLASSES

The main contribution here is to show that the Kolmogorov
complexity of the weights of nets relates to a structural notion:
the amount of advice for nonuniform classes.

We prove it in a general setting, so as to infer at once
several particular cases of interest. For this, we introduce some
technical conditions that we expect all our advice bounds
to have, namely: we say that a class of functionsforms
reasonable advice boundsif: 1) poly, 2) it is closed
under , and 3) for every polynomial and every
there is another such that and is
computable in time polynomial in A number of reasonable
advice bounds are described below, and all advice bounds used
in the literature are immediately seen to be reasonable.

In order to apply Theorem 5.2 to classes of the form ,
poly], we first show that they are closed under mixing. Here we
use that our definition of Kolmogorov complexity is relative
to the length.

Lemma 6.1: Let be a function class that is closed under
Then, , poly is closed under mixing.

Proof: Let and , poly . That is,
for all is computed in time using
the input Thus the shuffled string of the ’s up
to length can be computed in time

from an input that is equal to the prefix of length

of the shuffled string of the ’s. It is easy to verify that as
both and P are closed under and Thus

poly .

Now we are ready to prove the relation between advice
classes and languages accepted by neural nets.

Theorem 6.2:Let be a class of reasonable advice bounds.
Then the class Pref-P/ is exactly the class of languages
accepted by polynomial-time neural networks with weights
in poly .

Proof: Note that, since all constants are in
and every rational has constant complexity, poly .
For the same reason, is in poly . Furthermore, by
Lemma 6.1, the class poly is closed under mixing. By
Theorem 5.2, it suffices to show that Pref-P/coincides with
the class of sets decidable in polynomial time with tally oracle
sets such that poly .

Thus assume that with such a , and consider
an infinite string such that the first bits of can be
recovered from the first bits of in time polynomial
in , with Let be the polynomial bounding the
time necessary to recognize, and let be a bound
on such that is computable in time polynomial in

This exists by the assumption that forms reasonable
advice bounds. Then is in Pref-P/ by choosing as advice
for length the first bits of , from which up to
bits of can be reconstructed in polynomial time and then
used to decide instead of querying the oracle set

Conversely, let Pref-P via the polynomial-time
machine and the infinite word whose prefix of length

can be used as advice string for length, with
Since is reasonable, we can take that is always
greater than , is easily computable from , and bounded by
a polynomial

Let , so that
Note that, then

Consider the oracle tally set whose characteristic function
is defined as follows: bits to of are bits to
of ; bits from to of are ; when

bit of is bit of ; and when

bit of is . It is easy to see that, given and
bits of , we can print out bits of in polynomial
time. So, poly , and in polynomial time a Turing
machine with oracle can obtain the necessary advice words
to simulate and, thus, decide This completes the proof.

Some interesting special cases arise when considering vari-
ous natural bounds for the Kolmogorov complexity.

• poly, poly , that is, arbitrary strings. The class of
languages accepted in this case is P/poly; this is the main
result of [27].

• log, poly In this case, the class of languages
accepted is Pref-P/log, which equals P/log (with our
definition) as shown in [3], [7].
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• poly , that is, characteristic strings of sets
computable in polynomial time. Here it is important that
we use Kobayashi’s definition, since with other variants
the class poly may contain characteristic func-
tions of sets requiring arbitrarily high time to decide.
The class of languages accepted in this case is P, since,
by the results of [26], polynomial-time computations are
exactly those of polynomial-time neural nets with rational
weights.

VII. T HE HIERARCHY THEOREM

In this section we show our main result, namely, the
existence of a proper hierarchy of complexity classes of
networks. In order to prove this, we first define an ordering
between classes of tally sets. Then we show that oracle
Turing machines consulting these classes of oracles result
in an infinite hierarchy of computational classes. Finally, we
apply again the characterization in Theorem 5.2 and obtain
the desired hierarchy of neural nets. The advantage of this
approach is that Kolmogorov complexity allows for a simpler
argument to prove that the classes defined by oracle Turing
machines are indeed different.

The partial order on function classes is as follows. Let
be function classes. We say that if there is some
nondecreasing , computable in time polynomial in

, so that and, for every polynomial and
every (Then is sublinear by
transitivity.)

Note that this partial order defines an infinite hierarchy.
For instance, one may consider the function classes

where is defined inductively by
and for

For the next theorem, we denote by the family of all
tally sets with the property that poly , and by

the class of all sets decidable in polynomial time by
an oracle Turing machine with an oracle in

Theorem 7.1:Let be nonempty function classes, such
that Then, is properly included in

Proof: Let be a bound on as in the definition
of the partial order. Note that, since is nonempty, must be
unbounded. Trivially, We define
a set that is in but not in Choose an infinite
sequence (Such sequences exist as discussed in
Section IV.) For each define the string as

if , and otherwise. The dot stands for
concatenation.

Let be the tally set with characteristic string .
Given and recalling that P, it is easy to build

, so that

poly poly

for some constant Hence,
However, Assume, otherwise, that there is

some machine that accepts in time with a tally
set as oracle, where and are

polynomials, and In time , the machine can query
at most the first elements of Using this machine, we
can easily print out , and hence , given
inputs and the first bits of
the seed for This contradicts the choice of

The requirement that is nondecreasing can be removed
at the expense of some technical complication. For instance,
the upper bound on the complexity only holds infinitely
often. To reach a contradiction, it is enough to takehighly
complex almost everywhere.

Let us note that there is nothing special about P classes in
the previous theorem. Similar separation results can be proved
for other well-behaved families of run-time functions.

As we have seen, Theorem 5.2 establishes a connection
between the set of weights of a family of networks and the
oracle Turing machines that consult related tally sets. Theorem
7.1 displays a hierarchy of oracle Turing machines query-
ing oracles that belong to different Kolmogorov complexity
classes. From both theorems we conclude immediately:

Theorem 7.2 (Hierarchy Theorem):Let be two func-
tion classes closed under , with Let be
the class of languages accepted by networks that compute in
polynomial time, and each of which uses weights from
poly , and similarly for Then

This paper introduces a Kolmogorov-like measure of com-
plexity for numbers and applies it to reveal the computational
power of recurrent neural networks. We leave the possible
applicability of our measure in bridging between information
theory and computational complexity for future research.
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