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This article studies finite size networks that consist of interconnections of synchronously evolving processors. 
Each processor updates its state by applying an activation function lo a linear combination of the previous states of 
all units. We prove that any function for which the left and right limits exist and are different can be applied to the 
neurons to yield a network which is at least as strong cornputationally as a finite automaton. We conclude that if 
this is the power required, one may choose any of the aforementioned neurons, according to the hardware available 
or the learning software preferred for the particular application. 
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1. INTRODUCTION 

Recurrent neural networks are capable of approximating rather arbitrary dynamical sys- 
tems, and this is of use in adaptive control and signal processing applications (Sontag 1992, 
Matthews 1992, Polycarpou and Ioannou 1991). They also constitute a powerful model of 
computation (Siegelmann 1993). In speech processing applications and language induction, 
recurrent net models are used as identification models, and they are fit to experimental data 
by means of a gradient descent optimization (the so-called “backpropagation” technique) of 
some cost criterion (Cleeremans et al. 1989, Elman 1990, Giles et al. 1992, Pollack 1990, 
Williams and Zipser 1989). 

In these networks, the activation of each processor is updated according to a certain type of 
function of the activations (x,) and inputs (u,) at the previous instant, with real coefficients- 
also called weights-(ai,, bi,, ci). Each processor’s state is updated by an equation of the 
type 

where N is the number of processors and M is the number of external input signals. The func- 
tion Q is called the activation function. The computational and general dynamical properties 
of recurrent neural networks depend intimately upon the choice of the activation function. 
For example, if Q is a linear function, then the system is essentially computing repeated 
matrix multiplications on an initial vector. If Q is the Heaviside function then each neuron 
takes on a value in {0, l}, and the system becomes finite state. These qualitatively different 
behaviors motivate the study of the power of neural network models under different activation 
functions. In particular, we wish to know whether various (popular) neurons constitute a 
strong enough machine. For this aim, we consider a mathematical tool: an automaton. 

1.1. Automata 
An automaton, or sequential machine, is a device which evolves in time, reacting to exter- 

nal stimuli and in turn affecting its environment through its own actions. In computer science 
and logic, automata theory deals with various formalizations of this concept. In this formal 
sense, neural networks constitute a (very) particular type of automata. It is therefore natural 
to analyze the information processing and computational power of neural networks through 
their comparison with the more abstract general models of automata classically studied in 
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computer science. This pennits a characterization of neural capabilities in unambiguous 
mathematical terms. 

The components of actual automata may take many physical forms, such as gears in 
mechanical devices, relays in electromechanical ones, integrated circuits in modern digital 
computers, or neurons. The behavior of such an object will depend on the applicable physical 
principles. From the point of view of automata theory, however, all that is relevant is the 
identification of a set of internal states which characterize the status of the device at a given 
moment in time, together with the specification of rules of operation which predict the next 
state on the basis of the current state and the inputs from the environment. Rules for producing 
output signals may be incorporated into the model as well. 

Although the mathematical formalization of automata took place prior to the advent of 
digital computers, it is useful to think of computers as a paradigm for automata, in order to 
explain the basic principles. In this paradigm, the state of an automaton, at a given time r ,  
corresponds to the specification of the complete contents of all RAM memory locations as 
well as of all other variables that can affect the operation of the computer, such as registers 
and instruction decoders. The symbol n ( t )  will be used to indicate the state at the time t.  At 
each instant (clock cycle), the state is updated, leading to x ( t  + 1). This update depends on the 
previous state, as instructed by the program being executed, as well as on external inputs like 
keyboard strokes and pointing-device clicks. The notation u ( t )  will be used to summarize the 
contents of these inputs. It is mathematically convenient to consider “no input” as a particular 
type. Thus one postulates an update equation of the type 

x ( t  + 1) = f ( x ( t > .  u( t ) )  (2) 

for some mapping f. Also at each instant, certain outputs are produced: update of video 
display, characters sent to printer, and so forth; y ( t )  symbolizes the total output at time t .  
(Again, it is convenient to think of no output as a particular type of output.) A mapping 

Y O )  = h ( x ( t ) )  (3) 

(which depends only on the present state) provides the output at time t associated to the 
internal state at that instant. 

A finite state automaton is any automaton for which the sets of internal states ~ ( t ) ,  input 
letters u ( t ) ,  and output letters y ( t )  are finite. 

1.2. Neural Networks and Finite Automata 
It has been known at least since the work of McCulloch and Pitts (1943) that finite size 

recurrent networks consisting of threshold neurons can simulate finite automata. Motivated 
by successful applications in learning and adapting continuous-type networks and the biolog- 
ical adequacy of analog computation, the computational power of continuous-type networks 
has become of growing interest. Siegelmann and Sontag proved that networks consisting of 
a particular type of analog neuron which computes a piecewise linear function may simulate 
finite automata (Siegelmann 1993) (and even a various infinite automata, i.e., Turing ma- 
chines and super-Turing models). Kilian and Siegelmann (1993) proved that networks with 
sigmoidal neurons may simulate finite automata (and Turing machines). 

Much speculation was raised about the general characteristics of the activation functions 
that are associated with regular functions. Here, we provide such a characteristic. 

Let e be any function that satisfies the following property: 

Both limx+m e ( x )  = t+ and limx+-w p ( x )  = t- exist and t+ # 2-. . (*I 
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We show that any network of q-neurons of the type 

can simulate a finite automaton. Thus, any such network can be chosen for implementation, 
depending only on the cost, availability, and the learnability properties of the particular 
application. 

2. PREVIOUS EFFORT 

Some of the previous work on recurrent neural networks has focused on networks of 
infinite size. As each neuron is itself a processor, such models of infinite power are less 
interesting for the investigation of computational power, compared to our model, which 
consists of a finite number of neurons. 

There has been previous work concerned with computability by finite networks, however. 
The classical result of McCulloch and Pitts (1943) (and Kleene (1956)) showed how to 
implement logic gates by threshold networks, and therefore how to simulate finite automata 
by such nets. 

Another related result was due to Pollack (1987), who argued that a certain recurrent 
net model, which he called a “neuring machine,” is Turing universal. The model in Pollack 
( 1  987) consisted of a finite number of neurons of two different kinds, having identity and 
threshold responses, respectively. The machine was high order; that is, the activations were 
combined using multiplications as opposed to just linear combinations only. Hartley and Szu 
(1987) discovered a similar result. 

Siegelmann and Sontag considered a network of neurons computing linear combinations 
and a piecewise sigmoidal-like activation function. They proved that the computational power 
of their network depends on the numbers utilized as weights: If the weights are integers, the 
network computes as a finite automaton. If the weights are rational numbers, the network is 
equivalent in power to a Turing machine (Siegelmann and Sontag 1995). When weights are 
general real numbers, the network turns out to have super-Turing capabilities. However, it is 
sensitive to resource constraints and thus is not a tautology (Siegelmann and Sontag 1994). 

Kilian and Siegelmann (1993) constructed a network of sigmoidal neurons which is 
Turing universal, although it is exponentially slower than the Siegelmann-Sontag net. They 
generalized their result to other sigmoidal-like nets. 

3. SIMULATION 

Here, we use the general definition of finite automaton with no initial state and with 
sequential output. As a mathematical object, an automaton is a quintuple 

consisting of sets S, U, and Y (called respectively the state, input, and output spaces), as well 
as two functions 

f : S x U + S ,  h : S + Y  
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(called the next-state and the output maps, respectively). Ajinite automaton is one for which 
each of the sets S, U ,  and Y is finite. 

We start by introducing the notion of simulation. In general, given an automaton M = 
(S, U, Y ,  f, h ) ,  the map f can be extended by induction to arbitrary input sequences. That 
is, for any sequence ul, . . . , U k  of values in U ,  and q E S 

f * ( q ,  u 1 , .  . - 3 U k )  

isdefinedastheiteratedcomposition f(f(. . . f ( f ( q ,  ul), u2), - -  . . . , U k - l ) ,  uk). Supposenow 
given two automata M = (S, U ,  Y ,  f, h )  and% = (3, U, Y ,  f, h )  which have the same input 
and output sets. The automaton a simulates M if there exist two maps 

ENC: S + s  and D E C : S + S ,  

called the encoding and decoding maps respectively, such that, for each q E S and each 
sequence w = u 1 ,  . . . , u k  of elements of U, 

f*(q, w )  = DEC [J,(ENC [ql ,  w>l, h(q)  = X(ENC 191). 

Assume that for some integer m the input value set U consists of the vectors el,  . . . , em in 
R”’, where ei is the ith canonical basis vector, that is, the vector having a 1 in the ith position 
and zero in all other entries. Similarly, suppose that Y consists of the vectors el, . . . , ep  in 
RP. (The assumption that U and Y are of this special “unary” form is not very restrictive, 
as one may always encode inputs and outputs in this fashion.) The 0 vector denotes the 
no-information in both input and output ends. 

4. MAINRESULT 

The following interpolation fact holds for any function e which satisfies property (*): 

Lemma 1. For any activation function e that satisfies property (*), there exist constants 
00, mi, bi, ci E R ,  i = 1 . 2 , 3  SO that the function 

i=l  

satisfies f(-1) = f ( 0 )  = 0 and f (1)  = 1 . 

Before proving the above lemma, we show how the theorem follows from it: 

Theorem 1. Every finite automaton can be simulated by a neural net with any activation 
function that satisfies property (*). 

In particular, we show that any finite automaton with s states and m input values can be 
simulated by a network of N = 3sm neurons whose activation function Q satisfies propcrty 
(*I. 
Proof of the Theorem. Assume that the states of the finite automaton M to be simulated 
are (61, . . . , &]. A neural network that simulates M has N = 3sm neurons and is built as 
follows. Denote the coordinates of the state vector n E RN by X i j k ,  i = 1, . . . s, j = 1, . . . , m, 
k = 1,2, 3. 
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Consider the Boolean variables g,, for r = 1, . . . , s, u = 1, . . . , m, that indicate if the 
current state of M is r and the last input read was u .  We will express these variables as 

where the weights w,,, O r , k  will be described later. We write ( g r u )  for a matrix indexed by 
r and u.  In terms of these quantities, the update equations for T = 1, . . . , s, u = 1, . . . , rn, 
k = 1,2,3, can be expressed as: 

where 

and where b r U k  as well as Cruk will also be specified below. Finally, for each 1 = 1, . . . , p ,  
the Ith coordinate of the output is defined as 

Sru  := 11 I f(q1- eu) = q r l  

where 7j := ( i lh l (q i )  = I )  for the coordinate hl of the function h ,  and c is any constant so 
that do) # e(c>.  

The proof that this is indeed a simulation is as follows: 

1. We first prove inductively on the steps of the algorithm that the expressions ( g r u )  are 
always of the type El,, where Eij denotes the binary matrix that its ijth entry has the 
value 1 and all the rest have the value 0. Furthermore, except for the starting time, E,, 
indicates that the simulated finite automata is in state r and its last read input was u.  

0 We start the network with an initial state xo E RN so that the starting (gi ,)  has 
the form Er1, where qr is the corresponding state of the original automaton. It is 
easy to verify that such x ’ s  are possible, since in Eq. ( 5 )  the different equations are 
uncoupled for different r and u, and not all weights W r v k  for k = 1 2 ,3  can vanish; 
otherwise in Lemma 5 ,  the function f (which is used as g r u )  is constant. 

0 Assume ( g i j )  has indeed the Boolean values as stated at any time; that is, only one 
of the gru has the value 1 and the rest are in 0, the associated state of the finite 
automata is qr and the last read input is uu. Then, the expression 

can only take the values - 1 0, or 1. The value 1 can only be achieved for this sum 
if both u,  = 1 and there is some i E Sr” so that gij = 1, that is, if the current state 
of the original machine is qi and f (qi, e,) = q r .  

By Lemma 1 ,  there exist values O r u ,  W r U k ,  b r v k ,  Cruk (k = 1 . . . 3 )  SO that f ( y r , )  
(which is here the value of g r u  at time t + 1) assumes the value 1 only if Yru was 1 and 
is 0 for the other two cases. This proves the correctness in terms of the expressions 
g i j .  The vectors X r u k  take the values Q(brukyrU + cruk), as described by Eq. (6). 



512 COMPUTATIONAL hTELLIGENCE 

2. The encoding and decoding functions are defined as follows: The encoding map ENC [qr] 
maps qr into any fixed vector x so that Eq. (5) gives ( g i j )  = E,1. The decoding map 
DEC [x] maps those vectors n that result in (gij) = E r ,  ( r  = 1 . . . s, u = 1 . . . m) into 
qr and is arbitrary on all other elements of R N .  

In the next section, we prove the lemma. 

5. PROOF OF THE ABOVE LEMMA 

Proof. We prove more than required; namely, we show that for each choice of three numbers 
r-1, ro, rl E R there exist wo, wi ,  bi, ci E R ,  i = 1, 2, 3 so that, denoting 

3 
f (y )  = ~0 + C w i e ( b i y  + C i ) .  

i = l  

it holds that f(-1) = r-1, f ( 0 )  = ro, and f ( 1 )  = r l .  To prove this, it suffices to show that 
there are bi, ci (i = 1,2 ,3) ,  so that the matrix 

1 e M - 1 )  + c1l d W - 1 )  +c21 @3(-1)  + 01 
x b c  = e[bl(O) + c11 e[b2(0) + c21 e[b3(0) + c3l 

e[h(l) + c1l e[b2(1) + c21 e[b3(1) + c31 

Z A =  R ,  

( 
is nonsingular. Hence, for all R = COL ( r -  1, ro, r l )  there exists a vector A = COL ( ~ 1 ,  w2, u3) 
so that 

and this solves our problem with wg = 0. We will prove this latter property for a certain 
function Z, of the form a@)  + b, and this will imply the result for 4. 

Let mi, i = 1 , 2 , 3  be maps on the real numbers so that (mi(-l), mi(O), mi(1)) = ei 
(ei E R3 is the ith canonical vector). Let U = { - 1,0, 1) .  We say that k q-neurons gj linearly 
 interpolate[^] the map mi if there exist constants uf,  . . . , wt so that fi (u) = xi=l wjg,(u) 
and 

for all u E U .  These neurons are said to r-upproximate[U] mi if 
fi (u) = mi (u) 

Ifi(u) - mi(u)l < 

forallu E U .  

Proposition 1. There are three 7-t-neurons (i.e., threshold neurons, also called Heaviside 
neurons) that interpolate[U] the maps mi, i = 1 , 2 , 3 .  

Proof. Let 

h 2 ( X )  = 7-t (x - f )  
h3(X) = ‘H (-x - i). 
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The interpolation is by: ml = h2 (w:  = 0, w i  = 1, w i  = 0), m2 = hl - h2 (w: = 1, w; = 
-1, w: = 0), andm3 = h3 (w: = 0, w i  = 0, w3 3 = 1). 

Proposition 2. For all E > 0 there are three e-neurons that c-interpolate[U] the maps mi, 
i = 1 , 2 , 3 .  

Proof. As in property (*) t+ # t-, we can impose t+ = 1, and t- = 0 on e without 
restricting the affine span of the neurons. This is possible by defining the function 

e ( x >  - t -  
t+ - t- * 

G =  

Without loss of generality, we assume t+  = 1 and t- = 0 from now on. So, for each 
6 > 0 there is some r)  > 0 such that for all y ,  ly - il > v 

Inparticulartly, Iy- i l  > wecanchooseA > 4q,andusingthatIFl(A(y-i)) = 3 . 1 ( y - i ) ,  

A similar argument can be applied to ( y  + $) and (-y - k). We conclude that for all E =- 0 
there exists some A so that 

satisfy Ig;(x) - hi(x)l  < ~ / 3  for all u E U .  The result is now clear. 

Now, define the three matrices: 
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