
Computational Intelligence, Volume 12, Number 4, 1996

RECURRENT NEURAL NETWORKS AND FINITE AUTOMATA
HAVA T. SIEGELMANN

Information Systems Engineering, Faculty of Industrial Engineering and Management,
Technion, Haifa 32000, Israel

This article studies finite size networks that consist of interconnections of synchronously evolving processors.
Each processor updates its state by applying an activation function lo a linear combination of the previous states of
all units. We prove that any function for which the left and right limits exist and are different can be applied to the
neurons to yield a network which is at least as strong cornputationally as a finite automaton. We conclude that if
this is the power required, one may choose any of the aforementioned neurons, according to the hardware available
or the learning software preferred for the particular application.

Key wordr: recurrent neural networks, finite state automata, computational power.

1. INTRODUCTION

Recurrent neural networks are capable of approximating rather arbitrary dynamical sys-
tems, and this is of use in adaptive control and signal processing applications (Sontag 1992,
Matthews 1992, Polycarpou and Ioannou 1991). They also constitute a powerful model of
computation (Siegelmann 1993). In speech processing applications and language induction,
recurrent net models are used as identification models, and they are fit to experimental data
by means of a gradient descent optimization (the so-called “backpropagation” technique) of
some cost criterion (Cleeremans et al. 1989, Elman 1990, Giles et al. 1992, Pollack 1990,
Williams and Zipser 1989).

In these networks, the activation of each processor is updated according to a certain type of
function of the activations (x,) and inputs (u,) at the previous instant, with real coefficients-
also called weights-(ai,, bi,, ci). Each processor’s state is updated by an equation of the
type

where N is the number of processors and M is the number of external input signals. The func-
tion Q is called the activation function. The computational and general dynamical properties
of recurrent neural networks depend intimately upon the choice of the activation function.
For example, if Q is a linear function, then the system is essentially computing repeated
matrix multiplications on an initial vector. If Q is the Heaviside function then each neuron
takes on a value in {0, l}, and the system becomes finite state. These qualitatively different
behaviors motivate the study of the power of neural network models under different activation
functions. In particular, we wish to know whether various (popular) neurons constitute a
strong enough machine. For this aim, we consider a mathematical tool: an automaton.

1.1. Automata
An automaton, or sequential machine, is a device which evolves in time, reacting to exter-

nal stimuli and in turn affecting its environment through its own actions. In computer science
and logic, automata theory deals with various formalizations of this concept. In this formal
sense, neural networks constitute a (very) particular type of automata. It is therefore natural
to analyze the information processing and computational power of neural networks through
their comparison with the more abstract general models of automata classically studied in

@ 1996 Blackwell Publishers. 238 Main Street, Cambridge, MA 02142, USA, and 108 Cowley Road, Oxford, OX4 IF, UK.

568 COMPUTATIONAL INTELLIGENCE

computer science. This pennits a characterization of neural capabilities in unambiguous
mathematical terms.

The components of actual automata may take many physical forms, such as gears in
mechanical devices, relays in electromechanical ones, integrated circuits in modern digital
computers, or neurons. The behavior of such an object will depend on the applicable physical
principles. From the point of view of automata theory, however, all that is relevant is the
identification of a set of internal states which characterize the status of the device at a given
moment in time, together with the specification of rules of operation which predict the next
state on the basis of the current state and the inputs from the environment. Rules for producing
output signals may be incorporated into the model as well.

Although the mathematical formalization of automata took place prior to the advent of
digital computers, it is useful to think of computers as a paradigm for automata, in order to
explain the basic principles. In this paradigm, the state of an automaton, at a given time r ,
corresponds to the specification of the complete contents of all RAM memory locations as
well as of all other variables that can affect the operation of the computer, such as registers
and instruction decoders. The symbol n (t) will be used to indicate the state at the time t. At
each instant (clock cycle), the state is updated, leading to x (t + 1). This update depends on the
previous state, as instructed by the program being executed, as well as on external inputs like
keyboard strokes and pointing-device clicks. The notation u (t) will be used to summarize the
contents of these inputs. It is mathematically convenient to consider “no input” as a particular
type. Thus one postulates an update equation of the type

x (t + 1) = f (x (t > . u(t)) (2)

for some mapping f. Also at each instant, certain outputs are produced: update of video
display, characters sent to printer, and so forth; y (t) symbolizes the total output at time t .
(Again, it is convenient to think of no output as a particular type of output.) A mapping

Y O) = h (x (t)) (3)

(which depends only on the present state) provides the output at time t associated to the
internal state at that instant.

A finite state automaton is any automaton for which the sets of internal states ~ (t) , input
letters u (t) , and output letters y (t) are finite.

1.2. Neural Networks and Finite Automata
It has been known at least since the work of McCulloch and Pitts (1943) that finite size

recurrent networks consisting of threshold neurons can simulate finite automata. Motivated
by successful applications in learning and adapting continuous-type networks and the biolog-
ical adequacy of analog computation, the computational power of continuous-type networks
has become of growing interest. Siegelmann and Sontag proved that networks consisting of
a particular type of analog neuron which computes a piecewise linear function may simulate
finite automata (Siegelmann 1993) (and even a various infinite automata, i.e., Turing ma-
chines and super-Turing models). Kilian and Siegelmann (1993) proved that networks with
sigmoidal neurons may simulate finite automata (and Turing machines).

Much speculation was raised about the general characteristics of the activation functions
that are associated with regular functions. Here, we provide such a characteristic.

Let e be any function that satisfies the following property:

Both limx+m e (x) = t+ and limx+-w p (x) = t- exist and t+ # 2-. . (*I

RECURRENT NEURAL NETWORKS AND FINITE AUTOMATA 569

We show that any network of q-neurons of the type

can simulate a finite automaton. Thus, any such network can be chosen for implementation,
depending only on the cost, availability, and the learnability properties of the particular
application.

2. PREVIOUS EFFORT

Some of the previous work on recurrent neural networks has focused on networks of
infinite size. As each neuron is itself a processor, such models of infinite power are less
interesting for the investigation of computational power, compared to our model, which
consists of a finite number of neurons.

There has been previous work concerned with computability by finite networks, however.
The classical result of McCulloch and Pitts (1943) (and Kleene (1956)) showed how to
implement logic gates by threshold networks, and therefore how to simulate finite automata
by such nets.

Another related result was due to Pollack (1987), who argued that a certain recurrent
net model, which he called a “neuring machine,” is Turing universal. The model in Pollack
(1 987) consisted of a finite number of neurons of two different kinds, having identity and
threshold responses, respectively. The machine was high order; that is, the activations were
combined using multiplications as opposed to just linear combinations only. Hartley and Szu
(1987) discovered a similar result.

Siegelmann and Sontag considered a network of neurons computing linear combinations
and a piecewise sigmoidal-like activation function. They proved that the computational power
of their network depends on the numbers utilized as weights: If the weights are integers, the
network computes as a finite automaton. If the weights are rational numbers, the network is
equivalent in power to a Turing machine (Siegelmann and Sontag 1995). When weights are
general real numbers, the network turns out to have super-Turing capabilities. However, it is
sensitive to resource constraints and thus is not a tautology (Siegelmann and Sontag 1994).

Kilian and Siegelmann (1993) constructed a network of sigmoidal neurons which is
Turing universal, although it is exponentially slower than the Siegelmann-Sontag net. They
generalized their result to other sigmoidal-like nets.

3. SIMULATION

Here, we use the general definition of finite automaton with no initial state and with
sequential output. As a mathematical object, an automaton is a quintuple

consisting of sets S, U, and Y (called respectively the state, input, and output spaces), as well
as two functions

f : S x U + S , h : S + Y

570 COMPUTATTONAL LNTELLICENCE

(called the next-state and the output maps, respectively). Ajinite automaton is one for which
each of the sets S, U , and Y is finite.

We start by introducing the notion of simulation. In general, given an automaton M =
(S, U, Y , f, h) , the map f can be extended by induction to arbitrary input sequences. That
is, for any sequence ul, . . . , U k of values in U , and q E S

f * (q , u 1 , . . - 3 U k)

isdefinedastheiteratedcomposition f(f(. . . f (f (q , ul), u2), - - . . . , U k - l) , uk). Supposenow
given two automata M = (S, U , Y , f, h) and% = (3, U, Y , f, h) which have the same input
and output sets. The automaton a simulates M if there exist two maps

ENC: S + s and D E C : S + S ,

called the encoding and decoding maps respectively, such that, for each q E S and each
sequence w = u 1 , . . . , u k of elements of U,

f*(q, w) = DEC [J,(ENC [ql , w>l, h(q) = X(ENC 191).

Assume that for some integer m the input value set U consists of the vectors el, . . . , em in
R”’, where ei is the ith canonical basis vector, that is, the vector having a 1 in the ith position
and zero in all other entries. Similarly, suppose that Y consists of the vectors el, . . . , ep in
RP. (The assumption that U and Y are of this special “unary” form is not very restrictive,
as one may always encode inputs and outputs in this fashion.) The 0 vector denotes the
no-information in both input and output ends.

4. MAINRESULT

The following interpolation fact holds for any function e which satisfies property (*):

Lemma 1. For any activation function e that satisfies property (*), there exist constants
00, mi, bi, ci E R , i = 1 . 2 , 3 SO that the function

i=l

satisfies f(-1) = f (0) = 0 and f (1) = 1 .

Before proving the above lemma, we show how the theorem follows from it:

Theorem 1. Every finite automaton can be simulated by a neural net with any activation
function that satisfies property (*).

In particular, we show that any finite automaton with s states and m input values can be
simulated by a network of N = 3sm neurons whose activation function Q satisfies propcrty
(*I.
Proof of the Theorem. Assume that the states of the finite automaton M to be simulated
are (61, . . . , &]. A neural network that simulates M has N = 3sm neurons and is built as
follows. Denote the coordinates of the state vector n E RN by X i j k , i = 1, . . . s, j = 1, . . . , m,
k = 1,2, 3.

RECURRENT NEURAL NETWORKS AND FINITE AUTOMATA 57 1

Consider the Boolean variables g,, for r = 1, . . . , s, u = 1, . . . , m, that indicate if the
current state of M is r and the last input read was u . We will express these variables as

where the weights w,,, O r , k will be described later. We write (g r u) for a matrix indexed by
r and u. In terms of these quantities, the update equations for T = 1, . . . , s, u = 1, . . . , rn,
k = 1,2,3, can be expressed as:

where

and where b r U k as well as Cruk will also be specified below. Finally, for each 1 = 1, . . . , p ,
the Ith coordinate of the output is defined as

Sru := 11 I f(q1- eu) = q r l

where 7j := (i lh l (q i) = I) for the coordinate hl of the function h , and c is any constant so
that do) # e(c>.

The proof that this is indeed a simulation is as follows:

1. We first prove inductively on the steps of the algorithm that the expressions (g r u) are
always of the type El,, where Eij denotes the binary matrix that its ijth entry has the
value 1 and all the rest have the value 0. Furthermore, except for the starting time, E,,
indicates that the simulated finite automata is in state r and its last read input was u.

0 We start the network with an initial state xo E RN so that the starting (gi ,) has
the form Er1, where qr is the corresponding state of the original automaton. It is
easy to verify that such x ’ s are possible, since in Eq. (5) the different equations are
uncoupled for different r and u, and not all weights W r v k for k = 1 2 ,3 can vanish;
otherwise in Lemma 5 , the function f (which is used as g r u) is constant.

0 Assume (g i j) has indeed the Boolean values as stated at any time; that is, only one
of the gru has the value 1 and the rest are in 0, the associated state of the finite
automata is qr and the last read input is uu. Then, the expression

can only take the values - 1 0, or 1. The value 1 can only be achieved for this sum
if both u, = 1 and there is some i E Sr” so that gij = 1, that is, if the current state
of the original machine is qi and f (qi, e,) = q r .

By Lemma 1 , there exist values O r u , W r U k , b r v k , Cruk (k = 1 . . . 3) SO that f (y r ,)
(which is here the value of g r u at time t + 1) assumes the value 1 only if Yru was 1 and
is 0 for the other two cases. This proves the correctness in terms of the expressions
g i j . The vectors X r u k take the values Q(brukyrU + cruk), as described by Eq. (6).

512 COMPUTATIONAL hTELLIGENCE

2. The encoding and decoding functions are defined as follows: The encoding map ENC [qr]
maps qr into any fixed vector x so that Eq. (5) gives (g i j) = E,1. The decoding map
DEC [x] maps those vectors n that result in (gij) = E r , (r = 1 . . . s, u = 1 . . . m) into
qr and is arbitrary on all other elements of R N .

In the next section, we prove the lemma.

5. PROOF OF THE ABOVE LEMMA

Proof. We prove more than required; namely, we show that for each choice of three numbers
r-1, ro, rl E R there exist wo, wi , bi, ci E R , i = 1, 2, 3 so that, denoting

3
f (y) = ~0 + C w i e (b i y + C i) .

i = l

it holds that f(-1) = r-1, f (0) = ro, and f (1) = r l . To prove this, it suffices to show that
there are bi, ci (i = 1,2 ,3) , so that the matrix

1 e M - 1) + c1l d W - 1) +c21 @3(-1) + 01
x b c = e[bl(O) + c11 e[b2(0) + c21 e[b3(0) + c3l

e[h(l) + c1l e[b2(1) + c21 e[b3(1) + c31

Z A = R ,

(
is nonsingular. Hence, for all R = COL (r - 1, ro, r l) there exists a vector A = COL (~ 1 , w2, u3)
so that

and this solves our problem with wg = 0. We will prove this latter property for a certain
function Z, of the form a@) + b, and this will imply the result for 4.

Let mi, i = 1 , 2 , 3 be maps on the real numbers so that (mi(-l), mi(O), mi(1)) = ei
(ei E R3 is the ith canonical vector). Let U = { - 1,0, 1) . We say that k q-neurons gj linearly
 interpolate[^] the map mi if there exist constants uf, . . . , wt so that fi (u) = xi=l wjg,(u)
and

for all u E U . These neurons are said to r-upproximate[U] mi if
fi (u) = mi (u)

Ifi(u) - mi(u)l <

forallu E U .

Proposition 1. There are three 7-t-neurons (i.e., threshold neurons, also called Heaviside
neurons) that interpolate[U] the maps mi, i = 1 , 2 , 3 .

Proof. Let

h 2 (X) = 7-t (x - f)
h3(X) = ‘H (-x - i).

RECURRENT NEURAL NETWORKS AND Fmm AUTOMATA 573

The interpolation is by: ml = h2 (w: = 0, w i = 1, w i = 0), m2 = hl - h2 (w: = 1, w; =
-1, w: = 0), andm3 = h3 (w: = 0, w i = 0, w3 3 = 1).

Proposition 2. For all E > 0 there are three e-neurons that c-interpolate[U] the maps mi,
i = 1 , 2 , 3 .

Proof. As in property (*) t+ # t-, we can impose t+ = 1, and t- = 0 on e without
restricting the affine span of the neurons. This is possible by defining the function

e (x > - t -
t+ - t- *

G =

Without loss of generality, we assume t+ = 1 and t- = 0 from now on. So, for each
6 > 0 there is some r) > 0 such that for all y , ly - il > v

Inparticulartly, Iy- i l > wecanchooseA > 4q,andusingthatIFl(A(y-i)) = 3 . 1 (y - i) ,

A similar argument can be applied to (y + $) and (-y - k). We conclude that for all E =- 0
there exists some A so that

satisfy Ig;(x) - hi(x)l < ~ / 3 for all u E U . The result is now clear.

Now, define the three matrices:

574 COMPUTATIONAL INTELLIGENCE

ACKNOWLEDGMENT

The author thanks Professor Eduardo Sontag for providing much useful advice.

REFERENCES

CLEEREMANS, A., SERVAN-SCHKEIBER, D., and MCCLELLAND, J. 1989. Finite state automata and simple recurrent

ELMAN, J. 1990. Finding structure in time. Cognitive Science 14: 179-21 1.

GILES, C. L., MILLER, C., C m , D., CHEN, H., SUN, G., and LEE, Y. 1992. Learning and extracting finite state
automata with second-order recurrent neural networks. Neural Computation 4(3).

HARTLEY, R., and SZU, H. 1987. A comparison of the computational power of neural network models. In
Proceedings of IEEE Conf. Neural Networks, pp. 17-22.

KILM, J., and SIEGELMA", H. 1993. On the power of sigmoid neural networks. In Proceedings, 6th ACM
Workshop on Computational Learning Theory.

KLEENE, S. C. 1956. Representation of events in nerve nets and finite automata. In Automata studies. Edited by
C. Shannon and J. McCarthy. Princeton Univ. Press, Princeton, NJ, pp. 3-41.

MATTHEWS, M. 1992. On the uniform approximation of nonlinear discrete-time fading-memory systems using
neural network models. Technical report Ph.D. thesis, ETH No. 9635, E.T.H. Zurich.

MCCULLOCH, W. S., and Pms, W. 1943. A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 5:115-133.

POLLACK, J. B. 1987. On connectionist models of natural language processing. Ph.D. dissertation, Computer
Science Dept. Univ. of Illinois, Urbana, IL.

POLLACK, J. 1990. The induction of dynamical recognizers. Technical report 90-P-Automata, Dept. of Computer
and Information Science, Ohio State Univ.

POLYCARpOu, M. M., and lOA"OU, P. 1991. Identification and control of nonlinear systems using neural network
models: design and stability analysis. Technical report 91-09-01, Department of EUSystems, UCS, Los
Angeles.

networks. Neural Computation 1(3):372.

SIEGELMANN, H. 1993. Foundations of recurrent neural networks. Ph.D. dissertation, Rutgers University.
SLEGELMANN, H. T., and SONTAG, E. D. 1991. Turing computability withneural nets. Appl. Math. Lett. 4(6):77-80.
SIEGELMANN, H. T., and SONTAG, E. D. 1994. Analog computation via neural networks. Theoretical Computer

SIEGELMANN, H. T.. and SONTAG, E. D. 1995. On the computational power of neural networks. 1. Comput. Syst.

SONTAG, E. 1992. Neural nets as systems models and controllers. In Proceedings. 7th Yale Workshop on Adaptive

WILLIAMS, R., and ZIPSER, D. 1989. A learning algorithm for continually running fully recurrent neural networks.

Science 131:331-360.

Sci. 50(1):132-150.

and Learning Systems, pp. 73-79.

Neural Computation l(2).

