
1490 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 6, NOVEMBER 1995

On the Complexity of Training Neural Networks
with Continuous Activation Functions

Bhaskar DasGupta, Hava T. Siegelmann, and Eduardo Sontag, Fellow, ZEEE

Abstract- We deal with computational issues of loading a
ked-architecture neural network with a set of positive and
negative examples. This is the first result on the hardness of
loading a simple three-node architecture which does not consist
of the binary-threshold neurons, but rather utilizes a particular
continuous activation function, commonly used in the neural-
network literature. We observe that the loading problem is
polynomial-time if the input dimension is constant. Otherwise,
however, any possible learning algorithm based on particular
k e d architectures faces severe computational barriers. Similar
theorems have already been proved by Megiddo and by Blum and
Rivest, to the case of binary-threshold networks only. Our theo-
retical results lend further suggestion to the use of incremental
(architecture-changing) techniques for training networks rather
than fixed architectures. Furthermore, they imply hardness of
learnability in the probably approximately correct sense as well.

I. INTRODUCTION

EURAL networks have been proposed as a tool for N machine learning. In this role, a network is trained
to recognize complex associations between inputs and out-
puts that were presented during a supervised training cycle.
These associations are incorporated into the weights of the
network, which encode a distributed representation of the
information that was contained in the patterns. Once trained,
the network will compute an input-output mapping which,
if the training data was representative enough, will closely
match the unknown rule which produced the original data.
Massive parallelism of computation, as well as noise and fault
tolerance, are often offered as justifications for the use of
neural nets as learning paradigms.

By “neural network” we always mean, in this paper, feed-
forward ones of the type routinely employed in artificial neural
nets applications. That is, a net consists of a number of
processors (“nodes” or “neurons”) each of which computes
a function of the type

\

Manuscript received September 22, 1993; revised August 14, 1994. This
work was supported in part by NSF Grant CCR-92-0893 and Air Force Grant

B. DasGupta was with the Department of Computer Science, University of
Minnesota, Minneapolis, MN 55455-0159 and is now with the Department of
Computer Science, University of Waterloo, Ontario, N2L 3G1, Canada.

H. Siegelmann was with the Department of Computer Science, Bar-Ilan
University, Ramat-Gan 52900, Israel and is now with the Department of
Information Systems Engineering, School of Industrial Engineering, Technion,
Haifa 32000, Israel.

E. Sontag is with the Department of Mathematics, Rutgers University,
New Brunswick, NJ 08903 USA.

BEE Log Number 9409378.

AFOSR-9 1-0343.

of its inputs ul, . . . , U k . These inputs are either external (input
data is fed through them), or they represent the outputs y
of other nodes. No cycles are allowed in the connection
graph (feedforward nets rather than “recurrent” nets), and
the output of one designated node is understood to provide
the output value produced by the entire network for a given
vector of input values. The possible coefficients ai and b
appearing in the different nodes are the weights of the network,
and the functions (T appearing in the various nodes are the
node or activation functions. An architecture specifies the
interconnection structure and the U’S, but not the actual
numerical values of the weights themselves.

This paper deals with basic theoretical questions regarding
learning by neural networks. There are three types of such
questions that one may ask, all closely related and comple-
mentary to each other. We next describe all three, keeping for
the end the one that is the focus of this paper.

A possible line of work deals with sample complexity ques-
tions, that is, the quantification of the amount of information
(number of samples) needed to characterize a given unknown
mapping. Some recent references to such work, establishing
sample complexity results, and hence “weak learnability” in
the Valient model, for neural nets, are the papers [3], [20],
[1 I], and [191. The first of these references deals with networks
that employ hard threshold activations, the second and third
cover continuous activation functions of a type (piecewise
polynomial) close to those used in this paper, and the last one
provides results for networks employing the standard sigmoid
activation function.

A different perspective to learnability questions takes a
numerical analysis of approximation theoretic point of view.
There one asks questions such as how many hidden units are
necessary to approximate well, that is to say, with a small
overall error, an unknown function. This type of research
ignores the training question itself, asking instead what is
the best one could do, in this sense of overall error, if the
best possible network with a given architecture were to be
eventually found. Some recent papers along these lines are
[l], [13], and [7], which dealt with single hidden layer nets,
and [8], which dealt with multiple hidden layers.

Yet another direction to approach theoretical questions re-
garding learning by neural networks, and the one that concerns
us here, originates with the work of Judd (see, for instance,
[14] and [15], as well as the related work [4], [17], and [27]).
Judd, like us, was motivated by the observation that the “back-
propagation” algorithm often runs very slowly, especially for
high-dimensional data. Recall that this algorithm is used to

.

’

1045-9227/95$04.00 0 1995 IEEE

DASGUFTA et al.: ON THE COMPLEXITY OF TRAINING NEURAL NETWORKS 1491

find a network (that is, find the weights, assuming a fixed
architecture) that reproduces the observed data. Of course,
many modifications of the vanilla “backprop” approach are
possible, using more sophisticated techniques such as high-
order (Newton), conjugate gradient, or sequential quadratic
programming methods. The “curse of dimensionality,” how-
ever, seems to arise as a computational obstruction to all these
training techniques as well, when attempting to learn arbitrary
data using a standard feedforward network. For the simpler
case of linearly separable data, the perceptron algorithm and
linear programming techniques help to find a network-with
no “hidden units”-relatively fast. Thus one may ask if there
exists a fundamental barrier to training by general feedforward
networks, a barrier that is insurmountable no matter which
particular algorithm one uses. (Those techniques which adapt
the architecture to the data, such as cascade correlation or
incremental techniques, would not be subject to such a barrier.)

In this paper, we consider the tractability of the training
problem, that is, of the question (essentially quoting Judd):
“Given a network architecture (interconnection graph as well
as choice of activation function) and a set of training examples,
does there exist a set of weights so that the network produces
the correct output for all examples?”

The simplest neural network, i.e., the perceptron, consists
of one threshold neuron only. It is easily verified that the
computational time of the loading problem in this case is
polynomial in the size of the training set irrespective of
whether the input takes continuous or discrete values. This
can be achieved via a linear programming technique. On the
other hand, loading recurrent networks (i.e., networks with
feedback loops) is a hard problem. Bruck and Goodman [6]
showed that a recurrent threshold network of polynomial size
cannot solve NP-complete problems unless N P = CO - N P .
The result was further extended by Yao [26] who showed that a
polynomial size threshold recurrent network cannot solve NP-
complete problems even approximately within a guaranteed
performance ratio unless N P = CO - N P .

In the rest of this paper, we focus on feedforward nets only.
We show that for networks employing a simple, saturated,
piecewise linear activation function and two hidden units
only, the loading problem is NP-complete. Recall that if
one establishes that a problem is NP-complete then one has
shown, in the standard way done in computer science, that
the problem is at least as hard as most problems widely be-
lieved to be hard (the “traveling salesman” problem, Boolean
satisfiability problem, and so forth). This shows that, indeed,
any possible neural net learning algorithm (for this activation
function) based on fixed architectures faces severe computa-
tional barriers. Furthermore, our result implies nonlearnability
in the probably-approximately-correct (PAC) sense under the
complexity-theoretic assumption of RP # N P . We generalize
our result to another similar architecture.

The work most closely related to ours is that due to Blum
and Rivest [41. They showed a similar NP-completeness result
for networks having the same architecture but where the
activation functions are all of a hard threshold type, that is,
they provide a binary output y equal to one if the sum in
(1) is positive, and zero otherwise. In their papers, Blum and

Rivest explicitly pose as an open problem the question of
establishing NP-completeness, for this architecture, when the
activation function is “sigmoidal,” and they conjecture that this
is indeed the case. (For the far more complicated architectures
considered in Judd‘s work, in contrast, enough measurements
of internal variables are provided that there is essentially no
difference between results for varying activations, and the
issue does not arise there. It is not clear, however, what the
consequences are for practical algorithms when the obstruc-
tions to learning are due to considering such architectures. In
any case, we address here the open problem exactly as posed
by Blum and Rivest.)

It turns out that a definite answer to the question posed by
Blum and Rivest is not possible. It is shown in [25] that for
certain activation functions U , the problem can be solved in
constant time, independently of the input size, and hence the
question is not NP-complete. In fact, there exist “sigmoidal”
functions, innocent looking qualitatively (bounded, infinite
differentiable and even analytic, and so forth) for which any set
of data can be loaded, and hence for which the loading problem
is not in N P (just answer “yes” to the question “do there
exist weights that learn the given data?”!). The functions used
in the construction in [25] are, however, extremely artificial
and in no way likely to appear in practical implementations.
Nonetheless, the mere existence of such examples means that
the mathematical question is far from trivial.

The main open question, then, is to understand if “rea-
sonable” activation functions lead to NP-completeness results
similar to the ones in the work by Blum and Rivest or if
they are closer to the other extreme, the purely mathematical
construct in [25]. The most puzzling case is that of the standard
sigmoid function, 1/(1 + e-2) . For that case we do not
know the answer yet, but we conjecture that NP-completeness
will indeed hold. (Hoffgen [12] proves the hardness of the
interpolation problem by sigmoidal nets with two hidden units
when the weights are just binary values. This is different,
however, from the problem we are considering.) It is the
purpose of this paper to show an NP-completeness result for
piecewise linear or “saturating” activation function that has
appeared in the neural networks literature, especially in the
context of hardware implementations, and which is relatively
simpler to analyze than the standard sigmoid.

We view our result as a first step in dealing with the general
case of arbitrary piecewise linear functions and as a further
step towards elucidating the complexity of the problem in
general.

The rest of the paper is organized as follows:
In Section I1 we introduce the model (in particular, the 27r-
node architecture) and summarize some previous results.
We also distinguish the case of fixed versus varying input
dimension (and analog versus binary inputs) and observe
that the problem is solvable in polynomial time for
fixed input dimension using standard linear-programming
techniques (see [20] for further positive results on PAC-
learnability when the input dimension is a fixed constant
and the activation functions are piecewise polynomials).
In the rest of the paper we concentrate on binary inputs
only, where the input dimension is not constant.

1492 IEEE TRAkSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 6, NOVEMBER 1995

In Section I11 we prove the hardness of the loading
problem for the 27r-node architecture and use this result
to show the impossibility of learnability for binary inputs
under the assumption of RP # N P .
In Section IV we generalize the hardness of the loading
problem to include another similar architectures with
more nodes in the hidden layer.
In Section V we conclude with some open problems.

Before turning to the next section, we provide a short
overview on complexity classes and probabilistic learnability.

A. Some Complexity Classes

We informally discuss some well-known structural-
complexity classes (the reader is referred to any standard text
on structural complexity classes (e.g., [9] and [lo]) for more
details). Here, whenever we say polynomial time we mean
polynomial time in the length of any reasonable encoding of
the input, and problems referred to here are always decision
problems.

A problem is in the class P when there is a polynomial-
time algorithm which solves the problem. A problem is in
N P when a “guessed” solution for the problem can be verified
in polynomial time. A problem X is NP-hard if and only if
any problem Y in N P can be transformed by a polynomial
time transformation f to X, such that given an instance I
of Y, I has a solution if and only if f(I) has a solution. A
problem is NP-complete if and only if it is both N P and NP-
hard. Examples of NP-complete problems include the traveling
salesperson problem, the Boolean satisfiability problem, and
the set-splitting problem.

A problem X is in the complexity class RP (random
polynomial) with error parameter E (OE 5 1) if and only if
there is a polynomial-time algorithm A such that for every
instance I of X the following holds.

If I is a “yes” instance of X and A outputs “yes” with
probability at least E, and if I is a “no” instance of X then
A always outputs “no.”

It is well known that P C RP C N P , but whether any
of the inclusions is proper is an important open question in
structural complexity theory.

B. Probabilistic Learnability

4 (0, 1) where n is
an integer. We focus on functions computable by architectures
(defined in Section 11-B); hence, we use the terms function
and architecture interchangeably. The set of inputs f-’(O) =
{z I z E (0, l},, f (z) = 0} is the set of negative examples,
where the set of inputs f-’(l) = {z 1 z E (0, l},, f(z) = 1)
is the set of positive examples.

Let C,, be the set of Boolean functions on n variables
defined by a specific architecture A. Then C = Uzl C,
is a class of representations achievable by the architecture
A for all binary input strings. For example, C may be the
class of Boolean formulas computable by one hidden-layer
net with two sigmoidal hidden units and a single threshold
output unit. Given some function f E C, P O S (f) (respec-
tively, NEG(f)) denotes the source of positive (respectively,

A concept is a function f : (0,

negative) examples for f . Whenever POS(f) (respectively,
N E G (f)) is called, a positive or “+” (respectively, negative
or “-”) example is provided according to some arbitrary
probability distribution D+ (respectively, D -) satisfying the
condition

D+(z) = 1
x = f - ’ (1) c D - (z) = 1.
x = f - ’ (O)

A learning algorithm is an algorithm that may access
P O S (f) and N E G (f) . Each access to P O S (f) or N E G (f)
is counted as one step. A class C of representations of an
architecture A is said to be (E, 6)-learnable if and only if, for
some given fixed constants 0 < E, 6 < 1, there is a learning
algorithm L such that for all n E n/, all functions f E C,,
and all possible distributions D+ and D-,

1) L halts in a number of steps polynomial in n, 1 / ~ , 1/6,
and IlAll (where IlAll denotes the size of the architecture

2) L outputs a hypothesis g E C,, such that with probability
at least 1 - S the following conditions are satisfied

A), and

D+(.) < E

D - (z) < E .

X € g - l (l)

A class C of representations of an architecture A is said to
be learnable [16] if and only if it is (e7 6)-learnable for all E

and 6 (where 0 < E, 6 < 1).
Remark 1.1: To prove that a class of representations of an

architecture A is not learnable, it is sufficient to prove that it
is not (E, 6)-learnable for some particular values of E and 6,
and some particular distributions D+ and D-.

As we will see later, our results on NP-completeness of
the loading problem will imply the nonlearnability of the
corresponding concept under the assumption of R P # N P .

11. PRELIMINARIES AND PREVIOUS WORKS

In this section we define our model of computation precisely
and state some previous results for this model.

A. Feedfonvard Networks and the Loading Problem

Let @ be a class of real-valued functions, where each
function is defined on some subset of R. A @-net C is an
unbounded fan-in directed acyclic graph. To each vertex U, an
activation function E @ is assigned, and we assume that
C has a single sink z.

The network C computes a function fc: [0, 11” + R,
where n is the input dimension, as follows. The components of
the input vector 3 = (21, . , 2,) E [0, 11” are assigned to the
sources of C. Let u1 . . . , Uk be the immediate predecessors of
a vertex U. The input for U is then s,(z) = aiy; - t,,
where yi is the value assigned to U; and ai and t , are weights
and threshold of U. We assign the value &(s,(z)) to v. Then

k

DASGUFTA ef al.: ON THE COMPLEXITY OF TRAINING NEURAL NETWORKS 1493

fc = s, is the function computed by C where z is the unique
sink of C.

The architecture A of the @-net C is the structure of the
underlying directed acyclic graph. Hence each architecture A
defines a behavior function that maps from the T real
weights (corresponding to all the weights and thresholds of
the underlying directed acyclic graph) and the input string into
a binary output. We denote such a behavior as the function
pd(WT, [O, 11") H (0, 1). The set of inputs which cause
the output of the network to be zero (respectively, one) are
termed as the set of negative (respectively, positive) examples.
The size of the architecture A is the number of nodes and
connections of A plus the maximum number of bits needed
to represent any weight of A.

The loading problem is defined as follows. Given an ar-
chitecture A and a set of positive and negative examples
M = {(Z, y) 12 E [O, lIn, y E [0, l]}, so that IMI = O(n) ,
find weights $so that for all pairs (3, y) E M

pd(5, 5) = Y.

t

/\
1 2 3 Mn

Fig. 1. A 2 @-node architecture.

and the piecewise linear or "saturating" activation functions
ri, which appears quite.frequently in neural networks literature
([21, VI, [181, [271) defined as

The decision version of the loading problem is to decide (rather

M onto A.

model, called the two-cascade architecture, was

consists of two processors NI and N2 each of which computes
a binary threshold function 7-i. The output of the node in

N 2 . Moreover, all the inputs are to both the nodes

than to find the weights) whether such weights exist that load investigated by Lin and Vitter [171. A two-cascade ~ c ~ t ~ t ~ r e

We henceforth assume that sink z is restricted to be a

the complexity of the decision version of the loading problem
for the activation functions that we consider.

For the purpose of this paper we will be concerned with a
very simple architecture as described in the next section.

gate* This is indeed true for the purpose Of the hidden layer is provided to the input of the output node

N I and N2.

B. The k @-node Architecture
Here we focus on one hidden layer (1HL) architectures. The

k @-node architecture is a 1HL architecture with k hidden 4-
units (for some 4 E @), and an output node with the threshold
activation 7-i. The 2 @-node architecture consists of two hidden
nodes NI and N2 that compute

respectively.
The output node N3 computes the threshold function of the

inputs received from the two hidden nodes, namely a binary
threshold function of the form

for some parameters a, p, and y. Fig. 1 illustrates a 2 @-node
architecture.

The two activation function classes @ that we consider are
the threshold functions 7-i

0 i f z < O
1 i f z > O Z (X) =

C. Loading the k %-Node Architecture
We consider two kinds of inputs: analog (with fixed input

dimension) and binary (with varying input dimension). An
analog input is in [0, l]", where n is a fixed constant. In
the binary case, the input is in (0, 1)" where n is an input
parameter.

Blum and Rivest [4] showed when the inputs are binary
and the training set is sparse (i.e., if n is the length of the
longest string in the training set M , then IMI is polynomial
in n) the loading problem is NP-complete for the 2 'H-node
architecture. In another related paper, Lin and Vitter [17]
proved a slightly stronger result by showing that the loading
problem of two-cascade threshold net with binary inputs is
NP-complete.

When the input is analog (and the dimension is hence con-
stant), however, loading a 1HL network requires a polynomial
time only in the size of the training set. This result is achieved
by utilizing a result described by Megiddo [22].

Theorem 2.1: Let k > 0 be an integer. It is possible to load
any k 7-i-node architecture in polynomial time if the input
dimension is constant.

Before proving Theorem 2.1, we summarize the related
result of Megiddo in [22] regarding polyhedral separability
in fixed dimension.

The following definition is due to Megiddo [22].
De$nition 2.1-k-Polyhedral Separability: Given two sets

of points A and B in Wd, and in integer k > 0, decide whether

1494 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6. NO. 6, NOVEMBER 1995

there exist IC hyperplanes

H j = {@ (Z?)Tp’= x i } , (i? E Wd, xjo E w, j = 1 , . . . , I C)

that separate the sets through a Boolean formula, that is,
associate a Boolean variable vJ with each hyperplane HJ . The
variable wJ is true at a point p ’ ~ W d if (ZJ)Tp’> xi, false if
(i?)Tp’ < x i , and undefined at points lying on the hyperplane
itself. A Boolean formula $ = $(w1, . . . , vk) that separates the
sets A and B is true for each point a’ E A and false for each
point 6 E B.

The following lemma is from [22].
Lemma 2.2 [22]: Let d, IC be constants, and Z represents

the integers numbers. M is a set of points in Zd which
are labeled +/-. Then, there exists an algorithm to decide
whether a set of classified points M can be separated by k
hyperplanes which takes time polynomial in [MI.

Proof of Theorem 2.1: The computational view of the
loading problem of analog input is very similar to the model
of Lemma 2.2. In this case, however, the points are in [0, lId
rather than Zd. The second discrepancy is that the output of
the IC %-node architecture is a linear threshold function of
the hyperplanes rather than an arbitrary Boolean function. The
proof of Lemma 2.2 holds for the analog inputs as well. We add
a polynomial algorithm to test each separating configuration
of the hyperplanes to assure that the output of the network is

0
Remark 2.1: A IC %-node network (where IC is a constant)

with fixed input dimension is also learnable; this follows as a
consequence of a result proven in [20].

indeed a linear threshold function of the hyperplanes.

111. THE LOADING PROBLEM FOR
THE 2 a-NODE ARCHITECTURE

One can generalize Theorem 2.1 and show that it is possible
to load the 2 a-node architecture with analog inputs in
polynomial time. In this section we show that the loading
problem for the 2 a-node architecture is NP-complete when
binary inputs are considered. The main theorem of this section
is as follows.

Theorem 3.1: The loading problem for the 2 r-node archi-
tecture (LaAP) with binary inputs is NP-complete.

A corollary of the above is as follows.
Corollary 3.1: The class of Boolean functions computable

by the 2 .rr-node architecture with binary inputs is not learnable,
unless R P = NP.

To prove Theorem 3.1 we reduce a restricted version of the
set splitting problem, which is known to be NP-complete [9],
to this problem in polynomial time. Due to the continuity of
this activation function, however, many technical difficulties
arise. The proof is organized as follows:

1) Provide a geometric view of the problem (Section 111-A).
2) Introduce the (IC, I)-set splitting problem and the sym-

metric 2-SAT problem (Section 111-B).
3) Prove the existence of a polynomial algorithm that trans-

forms a solution of the (3, 3)-set splitting problem into
a solution of its associated (2, 3)-set splitting problem
(using the symmetric 2-SAT problem) (Section 111-C).

4) Define the three-hyperplane problem and proving it is
NP-complete by reducing from the (2, 3)-set splitting
problem (Section 111-D).

5) Prove the LaAP is NP-complete. This is done using all
the above items (Section 111-E).

In Section III-F, we prove the corollary.

A. A Geometric View of the Loading Problem

We start by categorizing the different types of classifica-
tions produced by the 2 a-node architecture. Without loss
of generality we assume a, p # 0 (if (Y = 0 or p = 0
the network reduces to a simple perceptron which can be
trained in polynomial time). Consider the four hyperplanes
Pi: Cy=l U J , = 0, Pz: U , X ~ = 1, Qi: C:=1 bzxz = 0,
and Q2: Cy=, bzx, = 1 (refer to Fig. 2). Let Fcl, c2 denote the
set of points which lie on the intersection of two n-dimensional
hyperplanes u2x, = c1 and Cyzl b2x, = c2. Consider
thesetofpointSW= {Fo,o, Fo,l, F1,o, F1,1}.Asallpoints
belonging to the same set Fz,J are labeled the same, we
consider “labeling sets F2,J in W’ rather than the individual
points in (0,

Type 1) Either all the sets in W are labeled “+” or all the
sets in W are labeled ‘ I - . ” In that case, all the
examples are labeled “+” or “-,” respectively.

Type 2) Exactly one set in W is labeled “+.” Assume
that this set is F0,o. Then, two different types of
separations exist:

n

a) There exist two half-spaces

such that all the “+” points belong _ _ to H1 A H2
and all the “-” points belong to H1 V H2 (H I and
H2 may be identical).
There exist three half-spaces of the following form b)
[Fig. 2(b)l

H1 : a(Cy=laixi) >
Hz : P(Cr=”=,ixi) >
H3 : C y = i (a ~ i + pbi)xi >

where 0 > y, a, /3 5 y < 0 (hence y > 2y), and
all the “+” and “-” points belong to H1 AH2 A H 3
and H1 V Hz V H3, respectively (here, as well, H1

and H2 may be identical).
If any other set is marked “+,” a similar sepa-

ration is produced.

_ - -

Type 3) Two sets in W are marked “+,” and the remaining
two are labeled “-.” Because the labeling must

1495 DASGUPTA er al.: ON THE COMPLEXITY OF m G NEURAL NETWORKS

This is the symmetrically opposite case of Type
3a).

d) Fo, and Fl, are “+” (similar to Fig. 2(c) with
the labeling of “+” and “-” points interchanged).

3b).
0 This is the symmetrically opposite case of Type

Type 4) Three sets in W are labeled “+.” This case is
symmetrically opposite to Type 2), and thus details
are precluded. Note that two types are possible
in Type 4), namely, Type 4a) and Type 4b), de-
pending upon whether two or three half-spaces are
involved, respectively (similar to q p e 2).

0
0

B. The SET Splitting and Symmetric 2-SAT Problems

Fig. 2. Different classifications produced by the three-node network cor-
responding to different labeling of the points in the intersection of the
hyperplanes.

’h? following problem is referred to as the (k, l)-set

Instance: A set S = {si 11 I i 5 n}, and a collection

Question: Are there k sets SI, e + . , Sk, such that s;nsj = 4
Si for 1 < - i 5 k; and

splitting problem (Ssp) for

C = {cj I 1 <_ jlm} of subsets of S, all of exactly size 1 .

for i # j ,

2 2.

be linearly separable, only the following types of
classifications are possible k Si = S , and c j . .

l s j s m ?
Note that the (k, I)-SSP is solvable in polynomial time if

both IC 5 2 and 1 5 2, but remains NP-complete if IC 2 2 and

a) Fo, 1 and Fo, 0 are “+” [Fig. 2(d)]. Then, the input
space is partitioned via the three half-spaces

I = 3 (see [9]).
For later purposes we consider the symmetric 2-SAT prob-

lem.
Instance: Variables v1 , 212, . . e , v, and a collection D of

one or two literal disjunctive clauses satisfying the condition a (g a i x i) > Y
n

C (a a ; + Pbi)xi > Y vi, j [(Wi v (1 W j)) fz D]&[((lVi) v Vj) # DI.
i=l

Question: Does there exist a satisfying assignment?
Note that the clause (vi V wj) (respectively, ((l v i) V (l v j))) a < y < O , Q’+P<’) ’ .

If p < 0 then all the “+” and “-” points lie in
Hl V (H z A H 3) and K V (K A K) , respectively.
If ,B > 0 then all the “+” and “-” points lie in
H2 V (H 1 A H3) and z V (z A z) , respectively.
Fo, 0 and F1, 0 are “+” [Fig. 2(c)]. Then, the input
space is partitioned via the three half-spaces

b)

n

i=l

(Y > Y , P I r < O , f f + P I r .
If (Y < 0 then all the “+” and “-” points lie in
H1 V (H 2 A H3) and Z V (K A Z) , respectively.
If a > 0 then all the “+” and “-” points lie in
H2 V (H I A H3) and K V (K A E) , respectively.
F1, o and F I , 1 are “+” (similar to Fig. 2(d) with
the labeling of “+” and “-” points interchanged).

c)

is equivalent to both the implications (l v i + vj) and (wj --f

vi) (respectively, (vi --f 1.j) and (wj + TU;), while the
clause w; (respectively, -wi) is equivalent to the implication
(w i -+ vi) (respectively, (w; + -vi)) only. These two
forms of disjunction and implication are used interchangeably.
In a manner similar to [24], we create a directed graph
G = (V, E), where V = {di, & I vi is a variable}, and E =

(gi + gj) E D where gi (respectively, gj) is wi (respectively,
v j) if Zi (respectively, Zj) is d; (respectively, d j) and vi

(respectively, l w j) otherwise}. Note that an edge (l i , l j) in
E is directed from li to Zj. In the symmetric 2-SAT problem,
the graph G has the following crucial property:

4 Complemented and incompleteness vertices alternate in
any path. This is because the edges in G are only of the
form (d i , 6) or (&, d j) for some two indexes i and j
(i = j is possible).

((4, lj) I(i, j E {l , . .* ,n}) , (l i E {di, ai}), (lj E (4, a j }) ,

The following algorithm finds a satisfiable assignment if it
exists or, stops if there is no one (see, for example, [24, pp.
377-3781):

1) Denote by j the transitive closure of +. For any
vi) variable vi such that W; + l v i (respectively, v i

set vi to false (respectively, true).

14% IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6. NO. 6, NOVEMBER 1995

2) Repeat until there is no edge directed into a false literal

Pick an edge directed into a false literal, i.e., of the
type U, -+ TU, (respectively, -wT -+ U,) so that
the variable U, is set to true (respectively, false)
and set w, to false (respectively, true).
Pick an edge directed from a true literal, i.e., of the
type U,. -+ TU, (respectively, TU,. -+ U,) so that
the variable U, is set to true (respectively, false)
and set U, to false (respectively, true).

3) If there is still an unassigned variable, set it arbitrarily

The above algorithm produces a satisfying assignment pro-

The instance of the 2-SAT problem has a solution if and
only if there is no directed cycle in G which contains
both the vertices d; and & for some i.

It is easy to check the above condition in O(IVl) = O(n)
time by finding the strongly connected components of G.
Hence, computing a satisfying assignment or reporting that
no such assignment exists can be done in time polynomial in
the input size.

or from a true literal.

and return to Step 2. Otherwise, halt.

vided the following condition holds:

C. The (k , 1)-Reduction Problem
We prove that under certain conditions, a solution of the

(t, Z)-set splitting instance (S, C) can be transformed into
a solution of the associated (k - 1, 1)-set splitting problem.
More formally, we define the (k, I)-reduction problem, named

Instance: An instance (S, C) of the (k, Z)-SSP, and a
solution (SI , S2 , . . . , sk).

Question: Decide whether there exists a solution (Si, Sh,
e - . , S i - l) to the associated (k - 1, 1)-SSP and construct one
if it exists, where, for all i, j E { 1, 2, ... , k - 1) i # j

(I C , Z)-RP, as follows.

We next state the existence of a polynomial algorithm for the
(3, 3)-reduction problem. Since we are interested in placing
elements of S3 in S1 or Sa, we focus on sets having at
least one element of S3. Since (SI, S2, S3) is a solution
of the (3, 3)-SSP, no set contains three elements of S3.
Let C’ = {cj 11 5 i 5 m} C be the collection of
sets which contain at least one element of 5’3. Obviously,
v j (c j $ si) A (c j $ s 2) A (cj $ s3).

be two disjoint sets. Each element of A U B is to be colored
red or blue so that the overall coloring satisfies the following
valid coloring conditions:

Let A = {ai 11 5 i 5 [SI} and B = { b i l l 5 i 5 ISl}

a) For each set {x,, x,, xP} E C’, where x,, x, E 5’3, at
least one of a, or a, should be colored red if xp E SI and
at least one of b, or b, has to be colored red if xp E S2.

b) For each i, 1 5 i 5 IS(? at least one of a, or b, has to
be colored blue.

c) For each set {x,, x, , xP} such that xp E S3 and x,, xJ E
5’1 (respectively, x,, x3 E Sa), up (respectively, b,) must
be colored red.

Theorem 3.2: The following two statements are true:
a) The (3, 3)-reduction problem is polynomially solvable.
b) If the (3, 3) - R P has no solution, no valid coloring of

A U B exists.
Proofi

a) We show how to reduce the (3, 3)-reduction problem
in polynomial time to the symmetric 2-SAT. As the later
is polynomially solvable part a) will be proven. Assume an
instance where (S, C, SI, S2, S3) is given and (Si , S i) is
to be found. For each element x, E S3 assign a variable U,;

w, = TRUE (respectively, U, = FALSE) indicates that the
element x, is placed in S1 (respectively, S2). For each set
Ck = {x,, x,, xp}, where x,, x, E S3, if xp is in SI, create
the clause TU, v TU, (indicating both w, and U, should not be
true, since otherwise ck Si); if xp is in S2 create the clause
U , V U,; for each set Ck = {x,, x,, xp}, where x,, x, E SI
(respectively, E SZ), create the clause -up (respectively, wP).
Let D be the collection of all such clauses. This instance of the
symmetric 2-SAT problem has a satisfying assignment if and
only if the (3, 3)-RP has a solution for each variable U,, w,
is true (respectively, false) in the satisfying assignment if and
only if x, is assigned into S1 (respectively, S2).

b) Construct the graph G from the collection of clauses D as
described in Section 111-B. If no satisfying assignment exists,
the graph G has a directed cycle containing both d, and d, for
some i. We show that in that case no valid coloring of all the
elements of A U B is possible; rearrange the indexes and names
- of the variable, if necessary, so that the cycle contains dl and
d l , and (due to property 4 of G of Section 111-B) - is of the form

. . . -+ d,, -+ d l , where r and s‘ are two positive integers and
x -+ y denotes an edge directed from vertex x to vertex y in
G (not all of the indexes 1, 2 , . . . , T , l’, 2’, . , s’ need to be

dl + & -+ d3 -+ - e * + d, -+ & -+ dit -+ dit + d3’ -+

distinct).
Case 1

1.

{ext, we consider the following two cases:
Assume a1 is colored red. Hence, b l must be
colored blue due to coloring condition b). Consider
the path from P from & to dl (i.e., the path
dl .rr) d l , where .rr) denotes the sequence of one
or more edges in G). The following subcases are
possible.

) P contains at least one edge of the form dtj -+ dtf
or & -+ dtt for some index t’. Consider the first
such edge along P as we traverse from & to d l .

1.1.1) The edge is of the form dtt + dtt, (that
is, the associated clause is ixtt). Consider
the path P’: - dl .rr) dt , . P’ is of the form

t’ is odd (t’ = 1 is possible). Now, due to

-

-

-

-
- -
dl + dl, + d y -+ -+ dp-1 + dtr and

DASGUPTA ef al.: ON THE COMPLEXITY OF TRAINING NEURAL. NETWORKS 1497

coloring condition a) and b), bt, is colored
red

Proofi We first notice that this problem is in NP as an
affirmative solution can be verified in polynomial time. To

i = l i = l ’ i = 2 ’ . . . i = t ’ - 1 i=t‘
ai: blue red red
b;: blue red blue . .. blue red.

On the other hand, at, is colored red due to
coloring condition c) and the edge dtt -+ dtl .
But, coloring condition b) prevents both at,
and btt to be colored red.

1.1.2) The edge is of the form & + dtl (that
is, the associated clause is xtt). Consider
the path P’: dl y-) dt , . P’ is of the form

t’ is even. Now, due to coloring condition a)
and b), at! is colored red (see below).

i.1 i = l / i = 2 ’ . . . i = t / - l i= t ’

-

- -
- & + dit + & -+ . . . -+ dtt-1 + dtr and

ai : blue red . . . blue red
b;: blue red blue .. . red.

On the other hand, btt is colored red due to
coloring condition c) and the edge dt, -+ dtt .
But, coloring condition b) prevents both at,
and btt to be colored red.

1.2) P contains on edge of the form dt/ + & or
dtt -+ dt , for any index t‘.
Then s’ is even, and because of the coloring
conditions a) and b) we must have b,, colored
blue

i = 1 i = 1’ i = 2 ’ ... i = s ’ - I i = s ’
a; : blue red . . . blue
bi: blue red blue . .. red blue.

-

Now, bl must be colored red because of the edge
d,, + d l , a contradiction.

Case 2) Assume al is colored blue.

-

This case is symmetric to Case 1) if we consider
the path dl ys & instead of the path & ys d l .

0 Hence, part b is proved.

D. The 3-Hyperplane Problem

three-hyperplane problem (3HP), to be NP-complete.

labeled “+” and “-.”

the following forms:

We prove the following problem, which we term as the

Instance: A set of points in an n-dimensional hypercube

Question: Does there exist a separation of one or more of

a) A set of two half-spaces 22 > a0 and H2: $5 > bo such
that all the “+” points are in H I A H2, and all the “-”
points belong to H I V H2?

b) A set of three half-spaces HI: ZZ > ao, H2: 6? > bo
and H3: (u$b)Z > CO such that all the “+” points
belong to H1 A H2 A H3 and all the “-” points belong
to A E V E?

- -

Theorem 3.3: The 3HP is NP-complete.

prove NP-completeness of the 3HL, we reduce the (2, 3)-set
splitting problem to it.

I: S = {si}, C = { c j } , cj C_ S, IS1 = n, lcjl = 3

Given an instance I of the (2, 3)-SSP

for all j

we create the instance I’ of the three-hyperplane problem (as
in [4]):

Ir The origin (On) is labeled “+” for each element s j , the
point p j having one in the j th coordinate only is labeled
“-,” and for each clause cl = { s i , si, s k } , we label
with “+” the point p i j k which has one in its ith, jth,
and lcth coordinates.

We next prove the following.
An instance I’ of the 3HP problem has a solution if and

only if instance I of the (2, 3)-SSP has a solution.
+ Given a solution (SI, S2) of the (2 , 3)-SSP, we create

the following two half-spaces: H1: Cy=1 aixi > - i, where
ai = -1 if si E Sl and ai = 2 otherwise, H2: E:=, bix; >
-f, where bi = -1 if si E S2 and bi = 2 otherwise. This is
a solution of type a) of the three-hyperplane problem.
*
A) If there is a separation of type a), the solution of the

set-splitting is analogous to [4]. Let S1 and S2 be the
set of “-” points p j separated from the origin by H1

and H2, respectively (any point separated by both is
placed arbitrarily in one of them). To show that this
separation is indeed a valid solution, assume a subset
Cd = { x i , xj, x k } so that pi, p j , pk are separated from
the origin by H 1 . Then, also Cd is separated from the
origin by the same hyperplane, contradicting its positive
labeling.

aixi > -f, H2: E:=, bixi >
-f and H3: C;=l(ai + bi)x; > c be the three solution
half-spaces of type b), where 0 > c (since the origin is
labeled “+”). We show how to construct a solution of
the set-splitting problem.
Let S1 and S2 be the set of “-” points p j separated
from the origin by H1 and H2, respectively (any point
separated by both is placed arbitrarily in one of the sets),
and let S3 be the set of points p i separated from the
origin by H3 but by neither H1 nor H2. If S3 = 4 then
SI and S2 imply a solution as in A) above. Otherwise,
the following properties hold

There cannot be a set cj = {s,, s,, s,} where
p,, p , and p, all belong to S,. Otherwise,
a,, a,, a, < c < 0, and the “+” point
corresponding to cj is classified “-” by H3.

Similarly, no set c j exists that is included in
either SI or 5’2.

11) Consider a set {s,, s,, s,}, where p,, p , E
S3, p , E SI. Since a, 5 -i and a, + a, + ay >
- $, we conclude a, + ay > 0. Hence, at least one
of a, or ay must be strictly positive. Similarly, if
p , E 5’2, at least one of b,, by is strictly positive.

B) Otherwise, let H I :

I)

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 6, NOVEMBER 1995

Consider any element s, of 5’3. Since the as-
sociated point p , is classified as “-” by H3,
a, + b, < c < 0. Hence, at least one of a, and
b, is negative for each p,.
If there is a set {s,, sy, s,} where s, E S3,
and sy, s, E SI (respectively, sy, s, E 5’2) then
a, (respectively, b,) is positive. This is because
since sy, s, E SI (respectively, sy, s, E S2),
a y , a, 5 -3 (respectively, by , b, 5 -+), but
a, + ay + a, > - 3 (respectively, b, + by + b, >
-$), and hence a, >

As for condition I), (SI, S2 , 5’3) can be viewed
as a solution of the (3, 3)-SSP. We show that this
solution can be transformed into a solution of the
required (2, 3)-SSP.

(respectively, b, > 4).

Let A = { a i l 1 5 i 5 t} , B = { b i l l 5 i 5 t} , Si, S:!
and S3 be as in Theorem 3.2. Each element x of A U B
is colored red (respectively, blue) if z > 0 (respectively,
x 5 0). Conditions a), b), and c) of valid coloring of A U B
hold because of conditions II), III), and IV) above. Thus,
(SI, S2, S3) is transformed into (Si, Sg)-a solution of the
(2, 3)-SSP. U

E. Loading the 2 x-Node Architecture is NP-complete

Next, we prove that loading the 2 x-node architecture is NP-
complete. We do so by comparing it to the three-hyperplane
problem. To this end, we construct a gadget that will allow the
architecture to produce only separations of Type 2) (Section
III-A), which are similar to those of the 3HP.

We construct such a gadget with two steps: first, in Lemma
3.1, we exclude separations of Type 3), and then we exclude
in separations of Type 4) in Lemma 3.2.

Lemma 3.1: Consider the two-dimensional hypercube in
which (0, O) , (1, 1) are labeled “+,” and (1 , O) , (0, 1) are
labeled “-.” Then the following statements are true:

a) There do not exist three half-spaces H I , H2, H3 as
described in type 3a)-d) in Section 111-A which correctly
classify this set of points.

b) There exist two half-spaces of the form H1: 22 > a0
and H2: k > bo, where ao, bo < 0, such that all the
“+” and “-” points belong to HI A H2 and H1 V H2,
respectively.

- -

Lemma 3.2: Consider the labeled set A: (0, 0, 0),
(1, 0, l), (0, 1, 1) are labeled “+” and (0, 0, l) , (0, 1, O) ,
(1, 0, O) , (1, 1, 1) are labeled “-.” Then, there does not
exist a separation of these points by Type 4) half-spaces as
described in Section 111-A.

The proof of Lemmas 3.1 and 3.2 involve a long case-by-
case analysis and is provided in the Appendix.

Consider the following classification again on a three-
dimensional hypercube: (0, O , O) , (1, 0, l), and (0, 1, 1) are
labeled “+,” and (0, 0, l), (0, 1, 0), (1, 0, 0), and (1, 1, 1)
are labeled “-.” Then, the following statements are true due
to the result in [4]:

a) No single hyperplane can correctly classify the “+” and
“-” points.

b) No two half-spaces H I and H2 exist such that all the
“+” points belong to H1 V H2 and all the “-” points
belong to A z.

c) There exist two half-spaces HI: cy=, Qixi > a0 and
H2: E&, pixi > such that all the “+” points lie in
HI A H2, and all the “-” points lie in HI V H2 (where
X = (21, 2 2 , 2 3) is the input).

Now, we can show that the loading problem for the 2 x-node
architecture is NP-complete.

Proof of Theorem 3.1: First we observe that the problem
is in N P as follows. The classifications of the labeled points
produced by the 2 a-node architecture (as discussed in Section
111-A) are three-polyhedrally separable. Hence, from the result
of [23] one can restrict all the weights to have at most
O(n1ogn) bits. Thus, a “guessed” solution can be verified
in polynomial time.

Next, we show that the problem is NP-complete. Consider
an instance I = (S, C) of the (2, 3)-SSP. We transform it
into an instance I’ of the problem of loading the 2 a-node
architecture as follows: we label points on the (IS1 + 5) -
dimensional hypercube similar to as is * (Section 111-D).

- -

The origin (Olsl+5) is labeled “+,” for each element
sj , the point p j having one in the j th coordinate
only is labeled “-,” and for each clause cl =
{si, s j , s k } , we label with “+” the point pijk
which has one in its ith, jth, and kth coordinates.
The points (On, 0, 0, 0, 0, O) , (On, 0, 0, 0, 1, l),
(O n , 1, 0, 1, 0, O), and (O n , 0, 1, 1, 0, 0) are
marked “+,” and the points (O n , 0, 0, 0 , 1 , 0) ,

0) , (O n , 1, 0, 0, 0, O) , and (O n , 1 , 1 , 1, 0, 0) are labeled
(on, 07 07 07 0, I),

‘‘- >9

(On, 0, 0, 1, 0, o), (O n , 0, 1, 0, 0,

Next, we show that a solution for I exists if and only if
there exists a solution to I’. Given a solution to the (2, 3)-
SSP, by Lemma 3.1 (part b)) and the result in [4] the two
solution half-spaces to I’ are as follows (assume the last five
dimensions are zn+l to 2 , + 5)

where

otherwise ai =

otherwise.
bi =

We map the two solution half-spaces into the 2 a-node
architecture as follows

- z n + 4 + zn+5)I

DASGUFTA el al.: ON THE COMPLEXITY OF T R A I ” G NEURAL NETWORKS 1499

+ xn+4 - .-+4]
1 - N , - N z > - l

N 3 = { 0 - N l - N z < - 1 .

Conversely, given a solution to 1’, by Lemma 3.1 (part a)),
Lemma 3.2 and the result in [4] (as discussed above) the only
type of classification produced by the 2 7r-node architecture
consistent with the classifications on the lower five dimensions
is of Type 2a) (with HI # H z) or 2 b) only, which was shown

0
Remark 3.1: From the above proof of Theorem 3.1 it is

clear that the NP-completeness result holds even if all the
weights are constrained to lie in the set { -2, - 1 , 1) . Thus the
hardness of the loading problem holds even if all the weights
are “small” constants.

to be NP-complete in Theorem 3.3.

F. Leaming the 2 7r Architecture

Here, we prove Corollary 3.1 which states that the functions
computable by the 2 7r-node architecture with binary inputs is
not learnable unless R P = N P . As it is not believed that N P
and R P are equal, the corollary implies that most likely the
2 7r-node architecture is not learnable (i.e, there are particular
values of E and 6 such that it is not (E , 6)-learnable).

Proof of Corollary 3.1: The proof uses a similar tech-
nique to the one applied in the proof of Theorem 9 of [16].
We assume that the functions computed by the 2 7r-node
architecture are learnable and show that it implies an R P
algorithm for solving a known NP-complete problem, that is,
N P = R P .

Given an instance I = (S, C) of the (2, 3)-SSP, we create
an instance I‘ of the 2 7r-node architecture and a set of labeled
points M (this was used in the proof of Theorem 3.1).

The origin (O ’ x ’ + 5) is labeled “+,” for each ele-
ment sj, the point p j having one in the j th co-
ordinate only is labeled “-,” and for each clause
C I = {si, s j , s k } , we label with “+” the point
p i j k which has one in its ith, jth, and kth coordi-
nates. The points (O n , 0, 0, 0, 0, O), (On, 0, 0, 0, I , I) ,
(O n , 1 , 0, 1 , 0, 0) and (O n , 0, 1 , 1 , 0, 0) are marked
“+,” and the points (O n , 0, 0, 0, 1 , 0), (O n , 0, 0, 0, l) ,

and (O n , 1 , 1 , 1 , 0, 0) are labeled “-.”
Let D+ (respectively, 0-) be the uniform distribu-

tion over these “+” (respectively, “-”) points. Choose E <
min { &, &}, and 6 = 1 - E . To prove the corollary
it is sufficient to show that for the above choice of E , 6, D+
and D-, (E, @-learnability of the 2 7r-node architecture can
be used to decide the outcome of the (2, 3)-SSP in random
polynomial time.

Suppose I is an instance of the (2, 3)-SSP and let
(SI, 5’2) be its solution. Then, from the proof of the

(on, 0, 0, 1 , 0, 0), (on, 0, 1 , 0, 0, 01, (on, 1 , 0, 0, , 0)

“only if’ part of Theorem 3.1 (see previous subsection),
there exists a solution to I’ which is consistent with the
labeled points of M. So, if the 2 a-node architecture is
(E , 6)-learnable, then due to the choice of E and 6 (and,
by Theorem 3.1), the probabilistic learning algorithm
must produce a solution which is consistent with M with
probability at least 1 - E, thereby providing a probabilistic
solution of the (2, 3)-SSP. That is, if the answer to the
(2, 3)-SSP question is “YES,” then we answer “YES”
with probability at least 1 - E.

Now, suppose that there is no solution possible for the
given instance of the (2, 3)-SSP. Then, by Theorem 3.1,
there is no solution of the 2 7r-node architecture which
is consistent with M. Hence, the learning algorithm must
always either produce a solution which is not consistent
with M or fail to halt in time polynomial in n, (l / ~) ,
and (1 /6) . In either case we can detect that the learning
algorithm was inconsistent with labeled points or did not
halt in stipulated time, and answer “NO.” In other words,
if the answer to the (2, 3)-SSP is “NO,” we always
answer “NO.”

Since the (2, 3)-SSP is NP-complete (i.e., any problem in
N P has a polynomial time transformation to (2, 3)-SSP), it
follows that any problem in NP has a random polynomial time
transformation to (2, 3)-SSP), it follows that any problem in
NP has a random polynomial time solution, i.e., N P C R P .
But it is well known that R P N P , hence we have
R P = N P . 0

Remark3.2: In a similar manner, the subsequent NP-
completeness result of the loading problem proven in the next
section can be used to provide a proof of the impossibility
of learnability of the associated concept under the assumption
of R P # N P .

Iv . ANOTHER ARCHITECTURE WHICH IS HARD TO LOAD

In this section we discuss an extension of the N P -
completeness result. Inspired by Blum and Rivest [4] who
considered loading a few variations of the k 7-t-node network
in which all activations functions were discrete, we consider
a variations of the IC @-node architecture in which two nodes
compute continuous activation functions. The result of this
section has theoretical importance only, as binary threshold
units are not popular in applications.

Consider a unit G that computes ‘H(C?=, cqxi - q), where
at’s are real constants and PI to xn are input variables which
assume any real value in [0, 11. We say that this unit G
computes a Boolean NAND (i.e., negated AND) function of its
inputs provided its weights and threshold satisfy the following
requirements

For justification, assume that the inputs to node G are binary.
Then, the output of G is one if and only if all its inputs are
zeroes.

Our model consists of r+2 hidden nodes N I , N z , . . . , NT+2
(where r is a fixed polynomial in n, the number of inputs) and
one output node. The nodes N I , N z , . . . , N, in the hidden

1500 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 6, NOVEMBER 1995

Case 1) There are at most two sets. of T I , T 2 , * . . , Tr+2
which contain all the elements of S. Then these
two sets constitute a solution of I.
Example: Let n = 5. If TI = {XI, 2 2 , 2 3 , 212) and
T2 = {x4, z5, y 4 } are the two sets that contain all
the elements of S = {XI, z 2 , 2 3 , 2 4 , 2 5 } , then
the two solution sets SI and S2 are f i

s 1 = (2 1 , 2 2 , 5 3 1

’92 = {IC4r 2 5) .
I

Fig. 3. The “restricted” (2, T) (a, H)-node network.

layer compute the binary threshold functions %, and the
two remaining hidden nodes NT+l and N r + 2 compute the
“saturating activation” functions T [see (2)] . The output node
Nr+3 computes a Boolean NAND function (Fig. 3). We term
this as the “restricted” (2, r) (T, %)-node architecture.

One can generalize Theorem 2.1 and show that the “re-
stricted” (2, r) (n, %)-node architecture can be loaded in
polynomial time in the case when the input dimension is
fixed. The loading problem becomes NP-complete, however,
when (binary) inputs of varying dimensions are considered.
The main theorem of this section is as follows.

fieorem 4.1: The loading problem for the “restricted”
(2, r) (T, %)-node architecture with binary inputs of varying
dimension is NP-complete.

Before proving Theorem 4.1 we show, given an instance
I of the (2, 3)-SSP, how to construct an instance I’ of the
(r + 2, 3)-SSP such that 1 has a solution if and only if I’
has one.

Let 1 = (S, C) be a given instance of the (2, 3)-SSP. We
construct I’ by adding 2r + 2 new elements Y - {yi 1 1 < i <
2r + 2) and creatine the following new sets

Case 2) Otherwise, there are m (m 2 3) sets, TI, - . , T,,
each containing a distinct element of S . At most
one element of Y occurs in each Ti (since two
elements of Y cannot be in the same set with
an element of S without violating the set-splitting
constraint), hence m < r+2. So, there are r+2-m
remaining sets in the solution of the instance I’
and at least 2r + 2 - m elements of Y to be placed
in those sets. By the pigeonhole principle, one of
these remaining r + 2 - m sets must contain at
least three elements of Y (since m 2 3), thus
violating the set-splitting constraint. So, Case 2)

Proof of Theorem 4.1: The “+” and “-” points are (r +
3)-polyhedrally separated by the output of the network in
which the Boolean formula for the polyhedral separation is
the formula for the NAND function. Hence, from the result of
[23] we can restrict all the weights to have at most p(n+r) bits
(where p(x) is some polynomial in 2). Since r is a polynomial
in n, any “guessed” solution may be verified in polynomial
time. So, the problem is in NP.

We next show that the problem is NP-complete. Given an
instance I of the (2, 3)-SSP, we construct an instance I’ of

is not possible. 0

Y U

the “restricted” (2, T) (T, %)-node architecture as follows.
We create first an instance I” of the (r + 2, 3)-SSP (see
Lemma 4.1). We then add the following labeled points, thus
constructing the associated instance 1’.

Create the sets {si, yj, y k } for all 1 5 i 5 n, 1 5 j , lc <
2r + 2, j # IC. This ensures that if a set in a solution of
the set-splitting problem contains an element of S , it may
contain at most one more element of Y.
Create the sets { y i , yj, y k } for all 1 < i , j , k < 2r + 2,
i # j # IC. This ensures that no set in a solution of the set-
splitting problem may contain more than two elements of
Y.

The instance I’ is the architecture along with the follow-
ing set of points: the origin (0l’‘I) is labeled “+,” for
each element s j E s’, the point p j having one in the
jth coordinate only is labeled “-,” and for each clause

Let I’ = (S’ . C’) be the new instance of the (r + 2, 3)-SSP,
where S’ = S U Y, and C’ contains all the sets of C and the
additional sets as described above.

Lemma 4.1: The instance I’ of the (r + 2, 3)-SSP has a
solution if and only if the instance I of the (2, 3)-SSP has
a solution.

Pro08
+ Let (SI, 5’2) be a solution of I. Then, a solution

(TI, T2, . . . , Tr+2) of the instance I’ is as follows

Ti = (y2 i -1 , y 2 i) for 1 5 i 5 r
TR+1 = S I U {Y2r+l}

Tr+2 = 5’2 U { Y Z ~ + Z } .

3 Let (TI, T 2 , + . . , Tr+2) be a solution of I’.

CZ = { 9 i , sj, s k } E C’, we label with “+” the point p i 3 k

which has one in its ith, jth, and lcth coordinates.

Given a solution (5’1, 5’2) of I, we construct a solution
(TI, T2, . . . , TT+2) of I” as described in the proof of Lemma
4.1. Consider the following T + 2 half-spaces

n
1

Hi: 1 6 i , j X j > -- 2 (1 5 2 5 r + 2)
j = 1

where

-1 if s j E Ti
otherwise.

DASGUFTA et al.: ON THE COMPLEXITY OF TRAINING NEURAL NETWORKS 1501

All labeled points of I’ are separated by these half-spaces:
the “+” points lie in A::: Hi and the “-” points lie in

r+2 - vi,, Hi.
- 8 -

We map the r + 2 half-spaces to the “restricted (2 , r)
(a, N)-node architecture as follows. The hidden nodes com-
pute

and the output node Nr+3 computes

*
Conversely, given a solution to the instance I t , we construct

a solution to I. The classification produced by the “restricted”
(2 , r) (T, 7-l)-node architecture is as follows. Each hidden
threshold node Ni (1 5 i 5 T) defines a half-space Hi

V. CONCLUSION AND OPEN PROBLEMS
We have shown that the loading problem is NP-complete

even for a simple feedforward network with a specific “sat-
urated linear” (analog type) activation functions. This adds
to the previously known results stating that the loading of a
simple net with discrete activations is NP-complete ([4]) and
a net with a specific (somehow artificial) analog activation
function has a fast loading ([25]). Unfortunately, our proof
does not seem to generalize to other activation functions. The
following open problems maybe worth investigating further.

Does the NP-completeness result hold for the two o-node
architecture, where D is a more complicated activation
function (e.g., when D is the quadratic spline activation
function or the standard sigmoid)?
What is the complexity of the loading problem for net-
works with more layers? Note that hardness of the loading
problem for networks with one hidden layer does not
necessarily imply the same for networks with more hidden
layers. In fact, it is already known that there are functions
which cannot be computed by threshold networks with
one hidden layer and a constant number of nodes, but
can be computed by threshold networks with two hidden
layers and a constant number of nodes, see [21].
Is there a characterization of the activation functions for
which the loading problem is intractable?

j=1

for some real numbers Si, 1 , . . . , Si, and vi, From the classi-
fications produced by the 2 ?r-node architecture as described
in Section 111-A and since the output node Nr+3 computes a
Boolean NAND function, there are at most j half-spaces (for
2 5 j 5 3) corresponding to the nodes Nr+1 and Nr+2

n

HT+l: x u i x i > a0
i=l
n

i=l
n

Ht: x (a i + b i) z i > c o (r + 3 5 t < r + j) .
i=l

All the “+” points lie in Hi, and all the “-” points lie
in v:zH,.

Let Ti be the “-” points separated from the origin by the
half-space Hi of the output of the network (for 1 5 i 5 r + j ,
2 5 j 5 3). No Ti contains three elements of the same set of

-the instance 1’, otherwise the set itself will be in as well,
contradicting its positive labeling. Consider the sets Ti as the
solution of the instance I”. By Theorem 3.3 the sets Tr+l
to T,+j can be combined to two sets, say T:+l and T1r+2,
without violating the set-splitting constraints. Hence, we have
r+2 sets, T I , Ti,. . . , T,, T:+], as the r+2 solution sets
for the instance I” which satisfy the set-splitting constraint.
Hence, by Lemma 4.1 we can construct the two solution sets

0 (SI, S2) of the instance I.

Proof of Lemma 3.1. a): Since the origin is labeled “+”
it is not possible for three half-spaces of Type 3c) or Type
3d) to correctly classify the above set of points in the two-
dimensional hypercube.

Note that the origin is labeled “+,” and hence it must lie
in at least one of H I or H2 for the three half-spaces of Type
3a) or Type 3b).

Consider the half-spaces as in Type 3a). There are two cases.
Case 1) p > 0. Since and H2 2 H I , all the “+”

points must belong to H I and all the “-” points
must belong to E. Hence, (0, 1) and (1 , 0) must
belong to HZ and we have

C

(4)

Adding inequalities (4) and (3, and since 7 < 0,
we get

Inequality (6) implies that the “+” point (1 , 1)
belongs to HZ and hence in H I A H3. Hence, we
must have

1502 EEJ5 TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 6, NOVEMBER 1995

We find the following three cases

H Z A H3. Then, we must have
1.1) Both the “-” points (0, 1) and (1, 0) belong to - -

Adding inequalities (9) and (10) and since y < 0
we get

Inequality (1 1) contradicts inequality (8).

have
1.2) Both the “-” points belong to z. Then, we must

Adding inequalities (1 2) and (1 3) and since y < P,
we get

Inequality (14) contradicts inequality (7).
1.3) One of the negative points belongs to % but not

to H2 A H3 and the other negative point belongs
to E A E but not to z.

1.3.1) (0, 1) belongs to E A E and (1, 0) belongs
to K. Since (1, 0) belongs to K, we must
have

- _

From inequalities (7) and (15) we must have
Q U Z > 0. On the other hand, inequality (5)
claims that aaz 5 y. We get 0 < y, which
is impossible since y < 0.

1.3.2) (1, 0) belongs t o z A E and (0, 1) belongs
to z. Similar to Case 3.1).

Case 2) /3 < 0. Again, since HI and HZ are parallel, all the
“-” points must lie in Z, and all the ‘ I - ” points
must belong to H z . Hence (1, 0) and (0, 1) must
belong to % which gives

a a 1 5 y - P (16)
aaz 5 Y - P. (17)

By adding inequalities (16) and (17), we get

a(a1 + az) 5 2y - 2p. (18)

Since /3 > y, we have 27 - 2P < y - P. Hence,
from ineclualitv (18) we get a(a , + as) < Y - 0.

2.1)

2.1)

2.3)

Hence, the point (1, 1) lies in K, and hence in
Hz A H3. Then, we have

Now, we have the following three cases.

Both the negative points (1, 0), (0, 1) lie in E A
H1. Then, we have
-

Adding inequalities (21) and (22) we get

From inequalities (19) and (23) we get y <
a(a1 +az)+P(bl +b2) I 27, which is impossible
since y < 0.
Both the negative points (0, 1)) (1, 0) lie in E.
Then, we have

Adding inequalities (24) and (25) we get a(a1 +
az) 5 2y < y (since y < 0) which contradicts
inequality (20).
One of the two negative points lie in E and the
other one lie in H1 A H3 but not E. - -

2.3.1) (1, 0) lies in E and (0, 1) lies in
but not in K. Hence

From inequalities (20) and (26) we have
aaz > 0. On the other hand, from inequality
(17) we have aaz 5 y - P. It implies that
0 < y - ,d which contradicts P > y.

and (1, 0) lies in H1 A H3

but not in E. Similar to Case 2.3.1).
The proof for the ’Qpe 3b) half-spaces is

similar to that of Type 3a) (by interchanging
the roles of the parameters a and 0).

_ _
2.3.2) (0, 1) lies in

Case 3) The following are a set of two possible half-spaces

1 x1-22 > -7j

- 2 1 +xz > -3.
Y \ I I, , , * . ,

DASGUPTA et al.: ON THE COMPLEXITY OF TRAINING NEURAL. NETWORKS 1503

Proof of Lemma 3.2: The case of two half-spaces of ‘Qpe
4a) follows from the result of [4]. We prove the case for
half-spaces of Type 4b)

Let HI: ~ ~ = l a , ~ , > U O , H2: C : = l b , x , > bo and
H3: c,z, > CO be the three half-spaces of 5 p e 4b),
where c, = a, + b, for 1 5 i 5 3 (assuming (2 1 , 2 2 , 2 3) is
the input). The following observations are true:

i) If a0 < 0 (respectively, bo < 0, CO < 0) then all
the examples in A except for the origin lie in
(respectively, H2, H3). The reason is as follows. If
a0 < 0, then since (0, 0, l), (0, 1, 0) and (0, 0, 1) are
“-,” we must have a l , a2, a3 < ao. Then, however,
since a0 < 0, a1 + a3 < 2ao < ao, a2 + a3 < 2ao < ao,
and a1 + a2 + a3 < 3ao < ao, hence the claim follows.

ii) Consider the same set of examples as in A except
that now the origin is not labeled. Then, there does
not exist a single hyperplane that separates the “+”
and “-” points in this set. Assume it does, and let
H: ax1 + bx2 + c23 > d be the hyperplane. Since
(1, 1, 1) is “-,” we must have

--

a + b + c I d. (29)

sifications by the hyperplanes H I , H2, and
H3, we have the following set of inequalities

a2 5 a0 < 0
bi + b2 + b3 5 bo

c3 I CO

bl + b3 > bo > 0
c2 + c3 > Q > 0.

Since bl + b2 + b3 5 bo and bl + b3 > bo,
we have b2 < 0. Since c2 + c3 > CO 2 0, but
c3 < C O , we must have c2 > 0.
Since, however, c2 = a2 + b2, and a2 < 0,
b2 < 0, so c2 < 0, hence a contradiction!

3.1.2) (1, 0, 1) lies in H3 and (0, 1, 1) lies in H2.

Similar to Case 3.1.1).

3.2) bo < 0, ao, CO 2 0. Similar to Case 3.1).
3.3) U O , bo 2 0, CO < 0.

By observation i) above all the points except for
the origin lies in 5. By observation ii) above
both the “+” points (other than the origin) cannot
be correctly classified by H1 alone or Hz alone.

Since (1, 0, 1) and (0, 1, 1) are “+,” we must have
a + c > d, b + c > d. Adding the last two inequalities
we get

3.3.2) (1, 0, 1) lies in H1 and (0, 1, 1) lies in H2.

Considering the “+” and “-” points (other
than the origin) and the corresponding clas-

a + b + 2c > 2d. sifications by the hyperplanes H I , H2 and
H3. we have the following set of inequalities

a1 5 a0
From inequalities (29) and (30) we get

2d - c < U + b + c 5 d e d < c

which implies that the “-” point (0, 0, 1) belongs to
H, a contradiction!

Since the origin is classified as “+” by at least one of the
hyperplanes, at least one of ao, bo, and CO must be negative.
We consider the following cases

Case 1) ao, bo, CO < 0. By observation i) above all the
Hi, a

3 - “+” points except the origin lie in
contradiction!

Case 2) Two of ao, bo, C O , say a0 and bo, are negative.
By observation i) above all the points (except the
origin) are classified as “-” by two of the three
half-spaces, namely half-spaces H I and H 2 , and
by observation ii) above the remaining half-space
H3 cannot correctly classify all of them.

Case 3) One of ao, bo, and Q is negative.

3.1) uo < 0, bo, CO 2 0.
By observation i) above, all the points except for
the origin, lie in K. By observation ii) above both
the “+” points (other than the origin) cannot be
correctly classified by H2 alone of H3 alone.

3.1.1) (1, 0, 1) lies in 2 3 2 and (0, 1, 1) lies in H3.

Considering the “+” and “-” points (other
than the origin) and the corresponding clas-

a1 + a3 > a0 2 0

b2 I bo
b2 + b3 > bo 2 0

c3 5 CO < 0.

Since b2 5 bo, and b2 + b3 > bo 2 0,
we must have b3 > 0. Since a1 5 ao, and
a1 + a3 > a0 2 0, we must have a3 > 0.
So, c3 = a3 + b3 > 0, which contradicts the
inequality c3 < 0 above.

3.3.2) (1, 0, 1) lies in H2 and (0, 1, 1) lies in H I .
0 Similar to Case 3.3.1).

ACKNOWLEDGMENT

The authors wish to thank P. Berman and V. P. Roychowd-
hury for helpful discussions.

REFERENCES

[11 A. R. Barron, “Approximation and estimation bounds for artificial neural
networks,” in Proc. 4th Annu. Workshop Computa. Leaming Theory.

[2] R. Batruni, “A multilayer neural network with piecewise-linear shucture
and backpropagation learning,” IEEE Trans. Neural Networks, vol. 2,

[3] E. B. Baum and D. Haussler, “What size net gives valid generalization?”

[4] A. Blum and R. L. Rivest, “Training a 3-node neural network is NP-

1991 , pp. 243-249.

pp. 395-403, 1991 .

Neural Computa., vol. 1, pp. 151-160, 1989.

complete,” Neural Networks, vol. 1, pp. 117-127, 1992.

[SI J. Brown, M. Barger, and S. Vanable, “Artificial neural network on
a SIMD architecture,” in Proc. 2nd Symp. Frontier Massively Parallel
Computa., Fairfax, VA, 1988, pp. 4347.

[6] J. Bruck and J. W. Goodman, “On the power of neural networks for
solving hard problems,” J . Complexity, vol. 6, pp. 129-135, 1990.

[7] C. Darken, M. Donahue, L. Gurvits, and E. Sontag, “Rate of approxi-
mation results motivated by robust neural network learning,” in Proc.
6th ACM Workshop Computa. Learning Theoy, Santa CNZ, NM, July

[8] B. DasGupta and G. Schnitger, “The power of approximating: a com-
parison of activation functions,” in Advances in Neural Information
Processing Systems 5, C. L. Giles, S. J. Hanson and J. D. Cowan,
Eds. San Mateo, C A Morgan Kaufmann, 1993, pp. 615-622.

191 M. R. Garey and D. Johnson, Computers and Intractability: A Guide to

1993, pp. 303-309.

the Theory of NP-Completeness. San Francisco, C A W. H. Freeman
and Company, 1979.
J. Gill, “Computational Complexity of Probabilistic Turing Machines,”
SIAM J. Computing, vol. 7, no. 4, pp. 675-695, 1977.
P. Goldberg and M. Jer”, “Bounding the Vapnik-Chervonenkis di-
mension of concept classes parameterized by real numbers,” in Proc.
6th ACM Workshop Computa. Learning Theory, Santa CNZ, NM, July
1993, pp. 361-369.
K-U. Hoffgen, “Computational limitations on training sigmoidal neural
networks,” Inform. Process. Lett., vol. 46, pp. 269-274, 1993.
K. L. Jones, “A simple lemma on greedy approximation in Hilbert
space and convergence rates for projection pursuit regression and neural
network training,” Ann. Statistics, to appear.
J. S. Judd, “On the complexity of learning shallow neural networks,” J.
Complexity, vol. 4, pp. 177-192, 1988.
-, Neural Network Design and the Complexity of Learning. Cam-
bridge, MA: MIT Press, 1990.
M. Kearns, M. Li, L. Pitt, and L. Valiant, “On the learnability of Boolean
formulae,” in Proc. 19th ACM Symp. Theory Computing, 1987, pp.
285-295.
J-H. Lin and J. S. Vitter, “Complexity results on learning by neural
networks,” Machine Learning, vol. 6, pp. 211-230, 1991.
R. Lippman, “An introduction to computing with neural nets,” IEEE
ASSP Mag., 1987, pp. 4-22.
A. Macintyre and E. D. Sontag, “Finiteness results for sigmoidal ‘neural‘
networks,” in Proc. 25th Annual Symp. Theory Computing, San Diego,
CA, May 1993, pp. 325-334.
W. Maass, “Bounds for the computational power and learning complex-
ity of analog neural nets,” in Proc. 25th ACM Symp. Theory Computing,
May 1993, pp. 335-344.
W. Maass, G. Schnitger, and E. D. Sontag, “On the computational power
of sigmoid versus boolean threshold circuits,” in Proc. 32nd Annual
Symp. Foundations Comput. Sei., 1991, pp. 767-776.
M. Megiddo, “On the complexity of polyhedral separability,” in Discrete
Computational Geometry, vol. 3, 1988, pp. 325-337.
S. Muroga, Threshold Logic and its Applications. New York: Wiley,
1971.
C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Al-
gorithms and Complexity. Englewood Cliffs, NJ: Prentice-Hall, 1982.
E. D. Sontag, “Feedforward nets for interpolation and classification,” J .
Comp. Syst. Sei., vol. 45, pp. 20-48, 1992.
X. Yao, “Finding Approximate Solutions to NP-hard Problems by
Neural Networks is hard,” Inform. Process. Len., vol. 41, pp. 93-98,
1992.
X-D. Zhang, “Complexity of neural network learning in the real number
model,” preprint, Comp. Sci. Dept., U. Mass., 1992.

Bhasksr DesGupta received the B.S. degree from
Jadavpur University, India, the M.E. degree from
Indian Institute of Science, the M.S. degree from
Pennsylvania State University, University Park, and
is currently a Ph.D. student in the Computer Science
Department at University of Minnesota at Min-
neapolis.

His research interests include complexity of neu-
ral networks, computational geometry, applied com-
binatorics, and graph theory.

Hava T. Siegelmann received the B.A. degree
from Technion, the M.Sc. degree from the Hebrew
University, and the Ph.D. degree from Rutgers Uni-
versity, New Brunwsick, NJ.

She is an Assistant Professor at the Technion
(Israel Institute of Technology). Her interests in-
clude information systems, neural networks, and
high performance computing.

Dr. Siegelmann is a 1994 recipient of the Alon
young-investigator fellowship.

Eduardo Sontag (SM’87, F‘93) received the
Licenciado degree in mathematics from the
University of Buenos Aires, Argentina, in 1972, and
the Ph.D. degree in mathematics from the Center
for Mathematical Systems Theory, University of
Florida, Gainesville, in 1976.

Since 1977, he has been with the Department
of Mathematics at Rutgers University, New
Brunswick, NJ, where he is currently Professor
I1 of Mathematics as well as a Member of the
Graduate Faculties of the Department of Computer

Science and of the Department of Electrical and Computer Engineering. He
is also the Director of the Rutgers Center for Systems and Control. His
major current research interests include control theory and the foundations
of learning and neural networks.

Dr. Sontag has authored over 170 journal and conference papers in the
above areas, as well as the books Topics in Amjicial Intelligence (in Spanish,
Buenos Aues: Prolam, 1972), Polynomial Response Maps (Berlin: Springer,
1979), and Mathematical Control Theory: Deterministic Finite Dimensional
Sysrems (New York Springer, 1990). a mini-course at the 1993 European
Control Conference, and plenaries at the 1993 Jerusalem Conference on
Control Theory and Applications and at the 1992 IFAC Conference on
Nonlinear Control. He is or has been an Associate Editor for various journals,
including: System and Control Letters, IEEE TRANSAC~ONS ON AUTOMATIC
C O ~ O L , Control-Theory and Advanced Technology, Journal of Computer
and Systems Sciences, Dynamics and Control, and Neural Networks. In
addition, he is a co-founder and co-Managing Editor of the Springer journal
Mathematics of Control, Signals, and Systems. He has been Program Director
and Vice-Chair of the Activity Group in Control and Systems Theory of the
Society for Industrial and Applied Mathematics.

