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On the Complexity of Training Neural Networks 
with Continuous Activation Functions 

Bhaskar DasGupta, Hava T. Siegelmann, and Eduardo Sontag, Fellow, ZEEE 

Abstract- We deal with computational issues of loading a 
ked-architecture neural network with a set of positive and 
negative examples. This is the first result on the hardness of 
loading a simple three-node architecture which does not consist 
of the binary-threshold neurons, but rather utilizes a particular 
continuous activation function, commonly used in the neural- 
network literature. We observe that the loading problem is 
polynomial-time if the input dimension is constant. Otherwise, 
however, any possible learning algorithm based on particular 
k e d  architectures faces severe computational barriers. Similar 
theorems have already been proved by Megiddo and by Blum and 
Rivest, to the case of binary-threshold networks only. Our theo- 
retical results lend further suggestion to the use of incremental 
(architecture-changing) techniques for training networks rather 
than fixed architectures. Furthermore, they imply hardness of 
learnability in the probably approximately correct sense as well. 

I. INTRODUCTION 

EURAL networks have been proposed as a tool for N machine learning. In this role, a network is trained 
to recognize complex associations between inputs and out- 
puts that were presented during a supervised training cycle. 
These associations are incorporated into the weights of the 
network, which encode a distributed representation of the 
information that was contained in the patterns. Once trained, 
the network will compute an input-output mapping which, 
if the training data was representative enough, will closely 
match the unknown rule which produced the original data. 
Massive parallelism of computation, as well as noise and fault 
tolerance, are often offered as justifications for the use of 
neural nets as learning paradigms. 

By “neural network” we always mean, in this paper, feed- 
forward ones of the type routinely employed in artificial neural 
nets applications. That is, a net consists of a number of 
processors (“nodes” or “neurons”) each of which computes 
a function of the type 
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of its inputs ul, . . . , U k .  These inputs are either external (input 
data is fed through them), or they represent the outputs y 
of other nodes. No cycles are allowed in the connection 
graph (feedforward nets rather than “recurrent” nets), and 
the output of one designated node is understood to provide 
the output value produced by the entire network for a given 
vector of input values. The possible coefficients ai and b 
appearing in the different nodes are the weights of the network, 
and the functions (T appearing in the various nodes are the 
node or activation functions. An architecture specifies the 
interconnection structure and the U’S, but not the actual 
numerical values of the weights themselves. 

This paper deals with basic theoretical questions regarding 
learning by neural networks. There are three types of such 
questions that one may ask, all closely related and comple- 
mentary to each other. We next describe all three, keeping for 
the end the one that is the focus of this paper. 

A possible line of work deals with sample complexity ques- 
tions, that is, the quantification of the amount of information 
(number of samples) needed to characterize a given unknown 
mapping. Some recent references to such work, establishing 
sample complexity results, and hence “weak learnability” in 
the Valient model, for neural nets, are the papers [3], [20], 
[ 1 I], and [ 191. The first of these references deals with networks 
that employ hard threshold activations, the second and third 
cover continuous activation functions of a type (piecewise 
polynomial) close to those used in this paper, and the last one 
provides results for networks employing the standard sigmoid 
activation function. 

A different perspective to learnability questions takes a 
numerical analysis of approximation theoretic point of view. 
There one asks questions such as how many hidden units are 
necessary to approximate well, that is to say, with a small 
overall error, an unknown function. This type of research 
ignores the training question itself, asking instead what is 
the best one could do, in this sense of overall error, if the 
best possible network with a given architecture were to be 
eventually found. Some recent papers along these lines are 
[l], [13], and [7], which dealt with single hidden layer nets, 
and [8], which dealt with multiple hidden layers. 

Yet another direction to approach theoretical questions re- 
garding learning by neural networks, and the one that concerns 
us here, originates with the work of Judd (see, for instance, 
[14] and [15], as well as the related work [4], [17], and [27]). 
Judd, like us, was motivated by the observation that the “back- 
propagation” algorithm often runs very slowly, especially for 
high-dimensional data. Recall that this algorithm is used to 
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find a network (that is, find the weights, assuming a fixed 
architecture) that reproduces the observed data. Of course, 
many modifications of the vanilla “backprop” approach are 
possible, using more sophisticated techniques such as high- 
order (Newton), conjugate gradient, or sequential quadratic 
programming methods. The “curse of dimensionality,” how- 
ever, seems to arise as a computational obstruction to all these 
training techniques as well, when attempting to learn arbitrary 
data using a standard feedforward network. For the simpler 
case of linearly separable data, the perceptron algorithm and 
linear programming techniques help to find a network-with 
no “hidden units”-relatively fast. Thus one may ask if there 
exists a fundamental barrier to training by general feedforward 
networks, a barrier that is insurmountable no matter which 
particular algorithm one uses. (Those techniques which adapt 
the architecture to the data, such as cascade correlation or 
incremental techniques, would not be subject to such a barrier.) 

In this paper, we consider the tractability of the training 
problem, that is, of the question (essentially quoting Judd): 
“Given a network architecture (interconnection graph as well 
as choice of activation function) and a set of training examples, 
does there exist a set of weights so that the network produces 
the correct output for all examples?” 

The simplest neural network, i.e., the perceptron, consists 
of one threshold neuron only. It is easily verified that the 
computational time of the loading problem in this case is 
polynomial in the size of the training set irrespective of 
whether the input takes continuous or discrete values. This 
can be achieved via a linear programming technique. On the 
other hand, loading recurrent networks (i.e., networks with 
feedback loops) is a hard problem. Bruck and Goodman [6] 
showed that a recurrent threshold network of polynomial size 
cannot solve NP-complete problems unless N P  = CO - N P .  
The result was further extended by Yao [26] who showed that a 
polynomial size threshold recurrent network cannot solve NP- 
complete problems even approximately within a guaranteed 
performance ratio unless N P  = CO - N P .  

In the rest of this paper, we focus on feedforward nets only. 
We show that for networks employing a simple, saturated, 
piecewise linear activation function and two hidden units 
only, the loading problem is NP-complete. Recall that if 
one establishes that a problem is NP-complete then one has 
shown, in the standard way done in computer science, that 
the problem is at least as hard as most problems widely be- 
lieved to be hard (the “traveling salesman” problem, Boolean 
satisfiability problem, and so forth). This shows that, indeed, 
any possible neural net learning algorithm (for this activation 
function) based on fixed architectures faces severe computa- 
tional barriers. Furthermore, our result implies nonlearnability 
in the probably-approximately-correct (PAC) sense under the 
complexity-theoretic assumption of RP # N P .  We generalize 
our result to another similar architecture. 

The work most closely related to ours is that due to Blum 
and Rivest [41. They showed a similar NP-completeness result 
for networks having the same architecture but where the 
activation functions are all of a hard threshold type, that is, 
they provide a binary output y equal to one if the sum in 
(1) is positive, and zero otherwise. In their papers, Blum and 

Rivest explicitly pose as an open problem the question of 
establishing NP-completeness, for this architecture, when the 
activation function is “sigmoidal,” and they conjecture that this 
is indeed the case. (For the far more complicated architectures 
considered in Judd‘s work, in contrast, enough measurements 
of internal variables are provided that there is essentially no 
difference between results for varying activations, and the 
issue does not arise there. It is not clear, however, what the 
consequences are for practical algorithms when the obstruc- 
tions to learning are due to considering such architectures. In 
any case, we address here the open problem exactly as posed 
by Blum and Rivest.) 

It turns out that a definite answer to the question posed by 
Blum and Rivest is not possible. It is shown in [25] that for 
certain activation functions U ,  the problem can be solved in 
constant time, independently of the input size, and hence the 
question is not NP-complete. In fact, there exist “sigmoidal” 
functions, innocent looking qualitatively (bounded, infinite 
differentiable and even analytic, and so forth) for which any set 
of data can be loaded, and hence for which the loading problem 
is not in N P  (just answer “yes” to the question “do there 
exist weights that learn the given data?”!). The functions used 
in the construction in [25] are, however, extremely artificial 
and in no way likely to appear in practical implementations. 
Nonetheless, the mere existence of such examples means that 
the mathematical question is far from trivial. 

The main open question, then, is to understand if “rea- 
sonable” activation functions lead to NP-completeness results 
similar to the ones in the work by Blum and Rivest or if 
they are closer to the other extreme, the purely mathematical 
construct in [25]. The most puzzling case is that of the standard 
sigmoid function, 1/(1 + e-2) .  For that case we do not 
know the answer yet, but we conjecture that NP-completeness 
will indeed hold. (Hoffgen [12] proves the hardness of the 
interpolation problem by sigmoidal nets with two hidden units 
when the weights are just binary values. This is different, 
however, from the problem we are considering.) It is the 
purpose of this paper to show an NP-completeness result for 
piecewise linear or “saturating” activation function that has 
appeared in the neural networks literature, especially in the 
context of hardware implementations, and which is relatively 
simpler to analyze than the standard sigmoid. 

We view our result as a first step in dealing with the general 
case of arbitrary piecewise linear functions and as a further 
step towards elucidating the complexity of the problem in 
general. 

The rest of the paper is organized as follows: 
In Section I1 we introduce the model (in particular, the 27r- 
node architecture) and summarize some previous results. 
We also distinguish the case of fixed versus varying input 
dimension (and analog versus binary inputs) and observe 
that the problem is solvable in polynomial time for 
fixed input dimension using standard linear-programming 
techniques (see [20] for further positive results on PAC- 
learnability when the input dimension is a fixed constant 
and the activation functions are piecewise polynomials). 
In the rest of the paper we concentrate on binary inputs 
only, where the input dimension is not constant. 



1492 IEEE TRAkSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 6, NOVEMBER 1995 

In Section I11 we prove the hardness of the loading 
problem for the 27r-node architecture and use this result 
to show the impossibility of learnability for binary inputs 
under the assumption of RP # N P .  
In Section IV we generalize the hardness of the loading 
problem to include another similar architectures with 
more nodes in the hidden layer. 
In Section V we conclude with some open problems. 

Before turning to the next section, we provide a short 
overview on complexity classes and probabilistic learnability. 

A. Some Complexity Classes 

We informally discuss some well-known structural- 
complexity classes (the reader is referred to any standard text 
on structural complexity classes (e.g., [9] and [lo]) for more 
details). Here, whenever we say polynomial time we mean 
polynomial time in the length of any reasonable encoding of 
the input, and problems referred to here are always decision 
problems. 

A problem is in the class P when there is a polynomial- 
time algorithm which solves the problem. A problem is in 
N P when a “guessed” solution for the problem can be verified 
in polynomial time. A problem X is NP-hard if and only if 
any problem Y in N P  can be transformed by a polynomial 
time transformation f to X, such that given an instance I 
of Y, I has a solution if and only if f(I) has a solution. A 
problem is NP-complete if and only if it is both N P  and NP- 
hard. Examples of NP-complete problems include the traveling 
salesperson problem, the Boolean satisfiability problem, and 
the set-splitting problem. 

A problem X is in the complexity class RP (random 
polynomial) with error parameter E (OE 5 1) if and only if 
there is a polynomial-time algorithm A such that for every 
instance I of X the following holds. 

If I is a “yes” instance of X and A outputs “yes” with 
probability at least E, and if I is a “no” instance of X then 
A always outputs “no.” 

It is well known that P C RP C N P ,  but whether any 
of the inclusions is proper is an important open question in 
structural complexity theory. 

B. Probabilistic Learnability 

4 (0, 1) where n is 
an integer. We focus on functions computable by architectures 
(defined in Section 11-B); hence, we use the terms function 
and architecture interchangeably. The set of inputs f-’(O) = 
{z I z E (0, l},, f ( z )  = 0} is the set of negative examples, 
where the set of inputs f-’(l) = {z 1 z E (0, l},, f(z) = 1) 
is the set of positive examples. 

Let C,, be the set of Boolean functions on n variables 
defined by a specific architecture A. Then C = Uzl C, 
is a class of representations achievable by the architecture 
A for all binary input strings. For example, C may be the 
class of Boolean formulas computable by one hidden-layer 
net with two sigmoidal hidden units and a single threshold 
output unit. Given some function f E C, P O S ( f )  (respec- 
tively, NEG( f ) )  denotes the source of positive (respectively, 

A concept is a function f :  (0, 

negative) examples for f .  Whenever POS( f )  (respectively, 
N E G ( f ) )  is called, a positive or “+” (respectively, negative 
or “-”) example is provided according to some arbitrary 
probability distribution D+ (respectively, D - )  satisfying the 
condition 

D+(z )  = 1 
x = f - ’  (1) c D - ( z )  = 1. 
x = f - ’ ( O )  

A learning algorithm is an algorithm that may access 
P O S ( f )  and N E G ( f ) .  Each access to P O S ( f )  or N E G ( f )  
is counted as one step. A class C of representations of an 
architecture A is said to be (E,  6)-learnable if and only if, for 
some given fixed constants 0 < E, 6 < 1, there is a learning 
algorithm L such that for all n E n/, all functions f E C,, 
and all possible distributions D+ and D-,  

1) L halts in a number of steps polynomial in n, 1 / ~ ,  1/6, 
and IlAll (where IlAll denotes the size of the architecture 

2) L outputs a hypothesis g E C,, such that with probability 
at least 1 - S the following conditions are satisfied 

A), and 

D+(.) < E 

D - ( z )  < E .  

X € g - l ( l )  

A class C of representations of an architecture A is said to 
be learnable [16] if and only if it is (e7 6)-learnable for all E 

and 6 (where 0 < E, 6 < 1). 
Remark 1.1: To prove that a class of representations of an 

architecture A is not learnable, it is sufficient to prove that it 
is not (E, 6)-learnable for some particular values of E and 6, 
and some particular distributions D+ and D-. 

As we will see later, our results on NP-completeness of 
the loading problem will imply the nonlearnability of the 
corresponding concept under the assumption of R P  # N P .  

11. PRELIMINARIES AND PREVIOUS WORKS 

In this section we define our model of computation precisely 
and state some previous results for this model. 

A. Feedfonvard Networks and the Loading Problem 

Let @ be a class of real-valued functions, where each 
function is defined on some subset of R. A @-net C is an 
unbounded fan-in directed acyclic graph. To each vertex U, an 
activation function E @ is assigned, and we assume that 
C has a single sink z. 

The network C computes a function fc: [0, 11” + R, 
where n is the input dimension, as follows. The components of 
the input vector 3 = (21, . , 2,) E [0, 11” are assigned to the 
sources of C. Let u1 . . . , Uk be the immediate predecessors of 
a vertex U. The input for U is then s,(z) = aiy; - t,, 
where yi is the value assigned to U; and ai and t ,  are weights 
and threshold of U. We assign the value &(s,(z)) to v. Then 

k 
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fc = s, is the function computed by C where z is the unique 
sink of C. 

The architecture A of the @-net C is the structure of the 
underlying directed acyclic graph. Hence each architecture A 
defines a behavior function that maps from the T real 
weights (corresponding to all the weights and thresholds of 
the underlying directed acyclic graph) and the input string into 
a binary output. We denote such a behavior as the function 
pd(WT, [O, 11") H (0, 1). The set of inputs which cause 
the output of the network to be zero (respectively, one) are 
termed as the set of negative (respectively, positive) examples. 
The size of the architecture A is the number of nodes and 
connections of A plus the maximum number of bits needed 
to represent any weight of A. 

The loading problem is defined as follows. Given an ar- 
chitecture A and a set of positive and negative examples 
M = {(Z, y) 12 E [O, lIn, y E [0, l]}, so that IMI = O(n) ,  
find weights $so that for all pairs (3, y) E M 

pd(5, 5) = Y. 

t 

/\ 
1 2 3  Mn 

Fig. 1. A 2 @-node architecture. 

and the piecewise linear or "saturating" activation functions 
ri, which appears quite.frequently in neural networks literature 
([21, VI, [181, [271) defined as 

The decision version of the loading problem is to decide (rather 

M onto A. 

model, called the two-cascade architecture, was 

consists of two processors NI and N2 each of which computes 
a binary threshold function 7-i. The output of the node in 

N 2 .  Moreover, all the inputs are to both the nodes 

than to find the weights) whether such weights exist that load investigated by Lin and Vitter [ 171. A two-cascade ~ c ~ t ~ t ~ r e  

We henceforth assume that sink z is restricted to be a 

the complexity of the decision version of the loading problem 
for the activation functions that we consider. 

For the purpose of this paper we will be concerned with a 
very simple architecture as described in the next section. 

gate* This is indeed true for the purpose Of the hidden layer is provided to the input of the output node 

N I  and N2. 

B. The k @-node Architecture 
Here we focus on one hidden layer (1HL) architectures. The 

k @-node architecture is a 1HL architecture with k hidden 4- 
units (for some 4 E @), and an output node with the threshold 
activation 7-i. The 2 @-node architecture consists of two hidden 
nodes NI and N2 that compute 

respectively. 
The output node N3 computes the threshold function of the 

inputs received from the two hidden nodes, namely a binary 
threshold function of the form 

for some parameters a, p, and y. Fig. 1 illustrates a 2 @-node 
architecture. 

The two activation function classes @ that we consider are 
the threshold functions 7-i 

0 i f z < O  
1 i f z > O  Z ( X )  = 

C. Loading the k %-Node Architecture 
We consider two kinds of inputs: analog (with fixed input 

dimension) and binary (with varying input dimension). An 
analog input is in [0, l]", where n is a fixed constant. In 
the binary case, the input is in (0, 1)" where n is an input 
parameter. 

Blum and Rivest [4] showed when the inputs are binary 
and the training set is sparse (i.e., if n is the length of the 
longest string in the training set M ,  then IMI is polynomial 
in n) the loading problem is NP-complete for the 2 'H-node 
architecture. In another related paper, Lin and Vitter [17] 
proved a slightly stronger result by showing that the loading 
problem of two-cascade threshold net with binary inputs is 
NP-complete. 

When the input is analog (and the dimension is hence con- 
stant), however, loading a 1HL network requires a polynomial 
time only in the size of the training set. This result is achieved 
by utilizing a result described by Megiddo [22]. 

Theorem 2.1: Let k > 0 be an integer. It is possible to load 
any k 7-i-node architecture in polynomial time if the input 
dimension is constant. 

Before proving Theorem 2.1, we summarize the related 
result of Megiddo in [22] regarding polyhedral separability 
in fixed dimension. 

The following definition is due to Megiddo [22]. 
De$nition 2.1-k-Polyhedral Separability: Given two sets 

of points A and B in Wd, and in integer k > 0, decide whether 
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there exist IC hyperplanes 

H j  = {@ (Z?)Tp’= x i } ,  (i? E Wd, xjo E w, j = 1 , .  . . , I C )  

that separate the sets through a Boolean formula, that is, 
associate a Boolean variable vJ with each hyperplane HJ . The 
variable wJ is true at a point p ’ ~  W d  if (ZJ)Tp’> xi, false if 
(i?)Tp’ < x i ,  and undefined at points lying on the hyperplane 
itself. A Boolean formula $ = $( w1, . . . , vk) that separates the 
sets A and B is true for each point a’ E A and false for each 
point 6 E B. 

The following lemma is from [22]. 
Lemma 2.2 [22]: Let d, IC be constants, and Z represents 

the integers numbers. M is a set of points in Zd which 
are labeled +/-. Then, there exists an algorithm to decide 
whether a set of classified points M can be separated by k 
hyperplanes which takes time polynomial in [MI. 

Proof of Theorem 2.1: The computational view of the 
loading problem of analog input is very similar to the model 
of Lemma 2.2. In this case, however, the points are in [0, lId 
rather than Zd. The second discrepancy is that the output of 
the IC %-node architecture is a linear threshold function of 
the hyperplanes rather than an arbitrary Boolean function. The 
proof of Lemma 2.2 holds for the analog inputs as well. We add 
a polynomial algorithm to test each separating configuration 
of the hyperplanes to assure that the output of the network is 

0 
Remark 2.1: A IC %-node network (where IC is a constant) 

with fixed input dimension is also learnable; this follows as a 
consequence of a result proven in [20]. 

indeed a linear threshold function of the hyperplanes. 

111. THE LOADING PROBLEM FOR 
THE 2 a-NODE ARCHITECTURE 

One can generalize Theorem 2.1 and show that it is possible 
to load the 2 a-node architecture with analog inputs in 
polynomial time. In this section we show that the loading 
problem for the 2 a-node architecture is NP-complete when 
binary inputs are considered. The main theorem of this section 
is as follows. 

Theorem 3.1: The loading problem for the 2 r-node archi- 
tecture (LaAP)  with binary inputs is NP-complete. 

A corollary of the above is as follows. 
Corollary 3.1: The class of Boolean functions computable 

by the 2 .rr-node architecture with binary inputs is not learnable, 
unless R P  = NP. 

To prove Theorem 3.1 we reduce a restricted version of the 
set splitting problem, which is known to be NP-complete [9], 
to this problem in polynomial time. Due to the continuity of 
this activation function, however, many technical difficulties 
arise. The proof is organized as follows: 

1) Provide a geometric view of the problem (Section 111-A). 
2) Introduce the (IC, I)-set splitting problem and the sym- 

metric 2-SAT problem (Section 111-B). 
3) Prove the existence of a polynomial algorithm that trans- 

forms a solution of the (3, 3)-set splitting problem into 
a solution of its associated (2, 3)-set splitting problem 
(using the symmetric 2-SAT problem) (Section 111-C). 

4) Define the three-hyperplane problem and proving it is 
NP-complete by reducing from the (2, 3)-set splitting 
problem (Section 111-D). 

5) Prove the LaAP is NP-complete. This is done using all 
the above items (Section 111-E). 

In Section III-F, we prove the corollary. 

A. A Geometric View of the Loading Problem 

We start by categorizing the different types of classifica- 
tions produced by the 2 a-node architecture. Without loss 
of generality we assume a, p # 0 (if (Y = 0 or p = 0 
the network reduces to a simple perceptron which can be 
trained in polynomial time). Consider the four hyperplanes 
Pi: Cy=l U J ,  = 0, Pz: U , X ~  = 1, Qi: C:=1 bzxz = 0, 
and Q2: Cy=, bzx, = 1 (refer to Fig. 2). Let Fcl, c2 denote the 
set of points which lie on the intersection of two n-dimensional 
hyperplanes u2x, = c1 and Cyzl b2x, = c2. Consider 
thesetofpointSW= {Fo,o, Fo,l, F1,o, F1,1}.Asallpoints 
belonging to the same set Fz,J are labeled the same, we 
consider “labeling sets F2,J in W’ rather than the individual 
points in (0, 

Type 1) Either all the sets in W are labeled “+” or all the 
sets in W are labeled ‘ I - . ”  In that case, all the 
examples are labeled “+” or “-,” respectively. 

Type 2) Exactly one set in W is labeled “+.” Assume 
that this set is F0,o. Then, two different types of 
separations exist: 

n 

a) There exist two half-spaces 

such that all the “+” points belong _ _  to H1 A H2 
and all the “-” points belong to H1 V H2 ( H I  and 
H2 may be identical). 
There exist three half-spaces of the following form b) 
[Fig. 2(b)l 

H1 : a(Cy=laixi)  > 
Hz : P(Cr=”=,ixi) > 
H3 : C y = i ( a ~ i  + pbi)xi  > 

where 0 > y, a,  /3 5 y < 0 (hence y > 2y), and 
all the “+” and “-” points belong to H1 AH2 A H 3  
and H1 V Hz V H3, respectively (here, as well, H1 

and H2 may be identical). 
If any other set is marked “+,” a similar sepa- 

ration is produced. 

_ - -  

Type 3) Two sets in W are marked “+,” and the remaining 
two are labeled “-.” Because the labeling must 
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This is the symmetrically opposite case of Type 
3a). 

d) Fo, and Fl, are “+” (similar to Fig. 2(c) with 
the labeling of “+” and “-” points interchanged). 

3b). 
0 This is the symmetrically opposite case of Type 

Type 4) Three sets in W are labeled “+.” This case is 
symmetrically opposite to Type 2), and thus details 
are precluded. Note that two types are possible 
in Type 4), namely, Type 4a) and Type 4b), de- 
pending upon whether two or three half-spaces are 
involved, respectively (similar to q p e  2). 

0 
0 

B. The SET Splitting and Symmetric 2-SAT Problems 

Fig. 2. Different classifications produced by the three-node network cor- 
responding to different labeling of the points in the intersection of the 
hyperplanes. 

’h? following problem is referred to as the (k, l)-set 

Instance: A set S = {si 11 I i 5 n}, and a collection 

Question: Are there k sets SI, e + . , Sk, such that s;nsj = 4 
Si for 1 < - i 5 k; and 

splitting problem (Ssp) for 

C = {cj I 1 <_ jlm} of subsets of S, all of exactly size 1 .  

for i # j ,  

2 2. 

be linearly separable, only the following types of 
classifications are possible k Si = S ,  and c j  . .  

l s j s m ?  
Note that the (k, I)-SSP is solvable in polynomial time if 

both IC 5 2 and 1 5 2, but remains NP-complete if IC 2 2 and 

a) Fo, 1 and Fo, 0 are “+” [Fig. 2(d)]. Then, the input 
space is partitioned via the three half-spaces 

I = 3 (see [9]). 
For later purposes we consider the symmetric 2-SAT prob- 

lem. 
Instance: Variables v1 , 212, . . e , v, and a collection D of 

one or two literal disjunctive clauses satisfying the condition a ( g a i x i )  > Y 
n 

C ( a a ;  + Pbi)xi > Y vi, j [(Wi v ( 1 W j ) )  fz D]&[(( lVi )  v Vj) # DI. 
i=l 

Question: Does there exist a satisfying assignment? 
Note that the clause (vi V wj) (respectively, (( l v i )  V ( l v j ) ) )  a < y < O ,  Q’+P<’) ’ .  

If p < 0 then all the “+” and “-” points lie in 
Hl V ( H z A H 3 )  and K V ( K A K ) ,  respectively. 
If ,B > 0 then all the “+” and “-” points lie in 
H2 V ( H 1  A H3) and z V ( z A z ) ,  respectively. 
Fo, 0 and F1, 0 are “+” [Fig. 2(c)]. Then, the input 
space is partitioned via the three half-spaces 

b) 

n 

i=l  

( Y > Y ,  P I r < O ,  f f + P I r .  
If (Y < 0 then all the “+” and “-” points lie in 
H1 V ( H 2  A H3) and Z V  ( K A Z ) ,  respectively. 
If a > 0 then all the “+” and “-” points lie in 
H2 V ( H I  A H3) and K V  ( K A E ) ,  respectively. 
F1, o and F I ,  1 are “+” (similar to Fig. 2(d) with 
the labeling of “+” and “-” points interchanged). 

c) 

is equivalent to both the implications ( l v i  + vj )  and (wj --f 

vi) (respectively, (vi --f 1.j) and (wj + TU;), while the 
clause w; (respectively, -wi) is equivalent to the implication 
( w i  -+ vi) (respectively, (w; + -vi)) only. These two 
forms of disjunction and implication are used interchangeably. 
In a manner similar to [24], we create a directed graph 
G = (V, E), where V = {di, & I  vi is a variable}, and E = 

(gi + gj) E D where gi (respectively, gj) is wi (respectively, 
v j )  if Zi (respectively, Zj) is d;  (respectively, d j )  and vi 

(respectively, l w j )  otherwise}. Note that an edge ( l i ,  l j )  in 
E is directed from li  to Zj. In the symmetric 2-SAT problem, 
the graph G has the following crucial property: 

4 Complemented and incompleteness vertices alternate in 
any path. This is because the edges in G are only of the 
form (d i ,  6) or (&, d j )  for some two indexes i and j 
(i = j is possible). 

((4, lj) I(i, j E {l , . .* ,n})  , ( l i  E {di, ai}), (lj E (4, a j } ) ,  

The following algorithm finds a satisfiable assignment if it 
exists or, stops if there is no one (see, for example, [24, pp. 
377-3781): 

1) Denote by j the transitive closure of +. For any 
vi) variable vi such that W; + l v i  (respectively, v i  

set vi to false (respectively, true). 
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2) Repeat until there is no edge directed into a false literal 

Pick an edge directed into a false literal, i.e., of the 
type U, -+ TU, (respectively, -wT -+ U,) so that 
the variable U, is set to true (respectively, false) 
and set w, to false (respectively, true). 
Pick an edge directed from a true literal, i.e., of the 
type U,. -+ TU, (respectively, TU,. -+ U,) so that 
the variable U, is set to true (respectively, false) 
and set U, to false (respectively, true). 

3) If there is still an unassigned variable, set it arbitrarily 

The above algorithm produces a satisfying assignment pro- 

The instance of the 2-SAT problem has a solution if and 
only if there is no directed cycle in G which contains 
both the vertices d; and & for some i. 

It is easy to check the above condition in O( IVl) = O(n) 
time by finding the strongly connected components of G. 
Hence, computing a satisfying assignment or reporting that 
no such assignment exists can be done in time polynomial in 
the input size. 

or from a true literal. 

and return to Step 2. Otherwise, halt. 

vided the following condition holds: 

C. The ( k ,  1)-Reduction Problem 
We prove that under certain conditions, a solution of the 

(t, Z)-set splitting instance (S, C) can be transformed into 
a solution of the associated (k - 1, 1)-set splitting problem. 
More formally, we define the (k, I)-reduction problem, named 

Instance: An instance (S, C) of the (k, Z)-SSP, and a 
solution (SI ,  S2 , . . . , sk). 

Question: Decide whether there exists a solution (Si, Sh, 
e - .  , S i - l )  to the associated (k - 1, 1)-SSP and construct one 
if it exists, where, for all i, j E { 1, 2, ... , k - 1) i # j 

( I C ,  Z)-RP, as follows. 

We next state the existence of a polynomial algorithm for the 
(3, 3)-reduction problem. Since we are interested in placing 
elements of S3 in S1 or Sa, we focus on sets having at 
least one element of S3. Since (SI, S2, S3) is a solution 
of the (3, 3)-SSP, no set contains three elements of S3. 
Let C’ = {cj  11 5 i 5 m}  C be the collection of 
sets which contain at least one element of 5’3. Obviously, 
v j ( c j  $ si) A (c j  $ s 2 )  A (cj $ s3). 

be two disjoint sets. Each element of A U B is to be colored 
red or blue so that the overall coloring satisfies the following 
valid coloring conditions: 

Let A = {ai 11 5 i 5 [SI} and B = { b i l l  5 i 5 ISl} 

a) For each set {x,, x,, xP} E C’, where x,, x, E 5’3, at 
least one of a, or a, should be colored red if xp E SI and 
at least one of b, or b, has to be colored red if xp E S2. 

b) For each i, 1 5 i 5 IS(? at least one of a, or b, has to 
be colored blue. 

c) For each set {x,, x, , xP} such that xp E S3 and x,, xJ E 
5’1 (respectively, x,, x3 E Sa), up (respectively, b,) must 
be colored red. 

Theorem 3.2: The following two statements are true: 
a) The (3, 3)-reduction problem is polynomially solvable. 
b) If the (3, 3) - R P  has no solution, no valid coloring of 

A U B exists. 
Proofi 

a) We show how to reduce the (3, 3)-reduction problem 
in polynomial time to the symmetric 2-SAT. As the later 
is polynomially solvable part a) will be proven. Assume an 
instance where (S, C, SI, S2, S3) is given and (Si , S i )  is 
to be found. For each element x, E S3 assign a variable U,; 

w, = TRUE (respectively, U, = FALSE) indicates that the 
element x, is placed in S1 (respectively, S2). For each set 
Ck = {x,, x,, xp}, where x,, x, E S3, if xp is in SI, create 
the clause TU, v TU, (indicating both w, and U,  should not be 
true, since otherwise ck Si); if xp is in S2 create the clause 
U ,  V U,; for each set Ck = {x,, x,, xp}, where x,, x, E SI 
(respectively, E SZ), create the clause -up (respectively, wP). 
Let D be the collection of all such clauses. This instance of the 
symmetric 2-SAT problem has a satisfying assignment if and 
only if the (3, 3)-RP has a solution for each variable U,, w, 
is true (respectively, false) in the satisfying assignment if and 
only if x, is assigned into S1 (respectively, S2). 

b) Construct the graph G from the collection of clauses D as 
described in Section 111-B. If no satisfying assignment exists, 
the graph G has a directed cycle containing both d, and d, for 
some i. We show that in that case no valid coloring of all the 
elements of A U B  is possible; rearrange the indexes and names 
- of the variable, if necessary, so that the cycle contains dl and 
d l ,  and (due to property 4 of G of Section 111-B) - is of the form 

. . . -+ d,, -+ d l ,  where r and s‘ are two positive integers and 
x -+ y denotes an edge directed from vertex x to vertex y in 
G (not all of the indexes 1, 2 , .  . . , T ,  l’, 2’, . , s’ need to be 

dl + & -+ d3 -+ - e *  + d, -+ & -+ dit -+ dit + d3’ -+ 

distinct). 
Case 1 

1. 

{ext, we consider the following two cases: 
Assume a1 is colored red. Hence, b l  must be 
colored blue due to coloring condition b). Consider 
the path from P from & to dl (i.e., the path 
dl .rr) d l ,  where .rr) denotes the sequence of one 
or more edges in G). The following subcases are 
possible. 

) P contains at least one edge of the form dtj -+ dtf 
or & -+ dtt for some index t’. Consider the first 
such edge along P as we traverse from & to d l .  

1.1.1) The edge is of the form dtt + dtt, (that 
is, the associated clause is ixtt). Consider 
the path P’: - dl .rr) dt , .  P’ is of the form 

t’ is odd (t’ = 1 is possible). Now, due to 

- 

- 

- 

- 
- - 
dl + dl,  + d y  -+ -+ dp-1 + dtr and 
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coloring condition a) and b), bt, is colored 
red 

Proofi We first notice that this problem is in NP as an 
affirmative solution can be verified in polynomial time. To 

i = l  i = l ’  i = 2 ’  . . .  i = t ’ - 1  i=t‘ 
ai: blue red red 
b;: blue red blue . .. blue red. 

On the other hand, at, is colored red due to 
coloring condition c) and the edge dtt -+ dtl . 
But, coloring condition b) prevents both at, 
and btt to be colored red. 

1.1.2) The edge is of the form & + dtl (that 
is, the associated clause is xtt). Consider 
the path P’: dl y-) dt , .  P’ is of the form 

t’ is even. Now, due to coloring condition a) 
and b), at! is colored red (see below). 

i.1 i = l /  i = 2 ’  . . .  i = t / - l  i= t ’  

- 

- - 
- & + dit + & -+ . . . -+ dtt-1 + dtr and 

ai : blue red . . .  blue red 
b;: blue red blue .. . red. 

On the other hand, btt is colored red due to 
coloring condition c) and the edge dt, -+ dtt . 
But, coloring condition b) prevents both at, 
and btt to be colored red. 

1.2) P contains on edge of the form dt/ + & or 
dtt -+ dt ,  for any index t‘. 
Then s’ is even, and because of the coloring 
conditions a) and b) we must have b,, colored 
blue 

i =  1 i =  1’ i = 2 ’  ... i = s ’ - I  i = s ’  
a; : blue red . . .  blue 
bi: blue red blue . .. red blue. 

- 

Now, bl must be colored red because of the edge 
d,, + d l ,  a contradiction. 

Case 2) Assume al is colored blue. 

- 

This case is symmetric to Case 1) if we consider 
the path dl ys & instead of the path & ys d l .  

0 Hence, part b is proved. 

D. The 3-Hyperplane Problem 

three-hyperplane problem (3HP), to be NP-complete. 

labeled “+” and “-.” 

the following forms: 

We prove the following problem, which we term as the 

Instance: A set of points in an n-dimensional hypercube 

Question: Does there exist a separation of one or more of 

a) A set of two half-spaces 22 > a0 and H2: $5 > bo such 
that all the “+” points are in H I  A H2, and all the “-” 
points belong to H I  V H2? 

b) A set of three half-spaces HI:  ZZ > ao, H2: 6? > bo 
and H3: (u$b)Z > CO such that all the “+” points 
belong to H1 A H2 A H3 and all the “-” points belong 
to A E  V E? 

- -  

Theorem 3.3: The 3HP is NP-complete. 

prove NP-completeness of the 3HL, we reduce the (2, 3)-set 
splitting problem to it. 

I: S = {si}, C = { c j } ,  cj C_ S, IS1 = n, lcjl = 3 

Given an instance I of the (2, 3)-SSP 

for all j 

we create the instance I’ of the three-hyperplane problem (as 
in [4]): 

Ir The origin (On)  is labeled “+” for each element s j ,  the 
point p j  having one in the j th coordinate only is labeled 
“-,” and for each clause cl = { s i ,  si, s k } ,  we label 
with “+” the point p i j k  which has one in its ith, jth, 
and lcth coordinates. 

We next prove the following. 
An instance I’ of the 3HP problem has a solution if and 

only if instance I of the (2, 3)-SSP has a solution. 
+ Given a solution (SI, S2) of the ( 2 ,  3)-SSP, we create 

the following two half-spaces: H1: Cy=1 aixi > - i, where 
ai = -1 if si E Sl and ai = 2 otherwise, H2: E:=, bix; > 
-f, where bi = -1 if si E S2 and bi = 2 otherwise. This is 
a solution of type a) of the three-hyperplane problem. 
* 
A) If there is a separation of type a), the solution of the 

set-splitting is analogous to [4]. Let S1 and S2 be the 
set of “-” points p j  separated from the origin by H1 

and H2,  respectively (any point separated by both is 
placed arbitrarily in one of them). To show that this 
separation is indeed a valid solution, assume a subset 
Cd = { x i ,  xj, x k }  so that pi, p j ,  pk  are separated from 
the origin by H 1 .  Then, also Cd is separated from the 
origin by the same hyperplane, contradicting its positive 
labeling. 

aixi > -f, H2: E:=, bixi > 
-f and H3: C;=l(ai + bi)x; > c be the three solution 
half-spaces of type b), where 0 > c (since the origin is 
labeled “+”). We show how to construct a solution of 
the set-splitting problem. 
Let S1 and S2 be the set of “-” points p j  separated 
from the origin by H1 and H2, respectively (any point 
separated by both is placed arbitrarily in one of the sets), 
and let S3 be the set of points p i  separated from the 
origin by H3 but by neither H1 nor H2. If S3 = 4 then 
SI  and S2 imply a solution as in A) above. Otherwise, 
the following properties hold 

There cannot be a set cj = {s,, s,, s,} where 
p,, p ,  and p, all belong to S,. Otherwise, 
a,, a,, a, < c < 0, and the “+” point 
corresponding to cj is classified “-” by H3. 

Similarly, no set c j  exists that is included in 
either SI or 5’2. 

11) Consider a set {s,, s,, s,}, where p,, p ,  E 
S3, p ,  E SI. Since a, 5 -i and a, + a, + ay > 
- $, we conclude a, + ay > 0. Hence, at least one 
of a, or ay must be strictly positive. Similarly, if 
p ,  E 5’2, at least one of b,, by is strictly positive. 

B) Otherwise, let H I :  

I) 
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Consider any element s, of 5’3. Since the as- 
sociated point p ,  is classified as “-” by H3,  
a, + b, < c < 0. Hence, at least one of a, and 
b, is negative for each p,. 
If there is a set {s,, sy, s,} where s, E S3, 
and sy, s, E SI (respectively, sy, s, E 5’2) then 
a, (respectively, b,) is positive. This is because 
since sy, s, E SI (respectively, sy, s, E S2), 
a y ,  a, 5 -3 (respectively, by ,  b, 5 -+), but 
a, + ay + a, > - 3 (respectively, b, + by + b, > 
-$), and hence a, > 

As for condition I), (SI, S2 , 5’3) can be viewed 
as a solution of the (3, 3)-SSP. We show that this 
solution can be transformed into a solution of the 
required (2, 3)-SSP. 

(respectively, b, > 4). 

Let A = { a i l 1  5 i 5 t} ,  B = { b i l l  5 i 5 t} ,  Si, S:! 
and S3 be as in Theorem 3.2. Each element x of A U B 
is colored red (respectively, blue) if z > 0 (respectively, 
x 5 0). Conditions a), b), and c) of valid coloring of A U B 
hold because of conditions II), III), and IV) above. Thus, 
(SI, S2, S3) is transformed into (Si, Sg)-a solution of the 
(2, 3)-SSP. U 

E. Loading the 2 x-Node Architecture is NP-complete 

Next, we prove that loading the 2 x-node architecture is NP- 
complete. We do so by comparing it to the three-hyperplane 
problem. To this end, we construct a gadget that will allow the 
architecture to produce only separations of Type 2) (Section 
III-A), which are similar to those of the 3HP. 

We construct such a gadget with two steps: first, in Lemma 
3.1, we exclude separations of Type 3), and then we exclude 
in separations of Type 4) in Lemma 3.2. 

Lemma 3.1: Consider the two-dimensional hypercube in 
which (0, O ) ,  (1, 1) are labeled “+,” and ( 1 ,  O ) ,  (0, 1 )  are 
labeled “-.” Then the following statements are true: 

a) There do not exist three half-spaces H I ,  H2, H3 as 
described in type 3a)-d) in Section 111-A which correctly 
classify this set of points. 

b) There exist two half-spaces of the form H1: 22 > a0 
and H2: k > bo, where ao, bo < 0, such that all the 
“+” and “-” points belong to HI A H2 and H1 V H2, 
respectively. 

- -  

Lemma 3.2: Consider the labeled set A: (0, 0, 0), 
(1, 0, l), (0, 1, 1) are labeled “+” and (0, 0, l ) ,  (0, 1, O ) ,  
(1, 0, O ) ,  (1, 1, 1) are labeled “-.” Then, there does not 
exist a separation of these points by Type 4) half-spaces as 
described in Section 111-A. 

The proof of Lemmas 3.1 and 3.2 involve a long case-by- 
case analysis and is provided in the Appendix. 

Consider the following classification again on a three- 
dimensional hypercube: (0, O , O ) ,  (1, 0, l), and (0, 1, 1) are 
labeled “+,” and (0, 0, l), (0, 1, 0), (1, 0, 0), and (1, 1, 1) 
are labeled “-.” Then, the following statements are true due 
to the result in [4]: 

a) No single hyperplane can correctly classify the “+” and 
“-” points. 

b) No two half-spaces H I  and H2 exist such that all the 
“+” points belong to H1 V H2 and all the “-” points 
belong to A z. 

c) There exist two half-spaces HI: cy=, Qixi > a0 and 
H2: E&, pixi > such that all the “+” points lie in 
HI A H2, and all the “-” points lie in HI V H2 (where 
X = (21, 2 2 ,  2 3 )  is the input). 

Now, we can show that the loading problem for the 2 x-node 
architecture is NP-complete. 

Proof of Theorem 3.1: First we observe that the problem 
is in N P  as follows. The classifications of the labeled points 
produced by the 2 a-node architecture (as discussed in Section 
111-A) are three-polyhedrally separable. Hence, from the result 
of [23] one can restrict all the weights to have at most 
O(n1ogn) bits. Thus, a “guessed” solution can be verified 
in polynomial time. 

Next, we show that the problem is NP-complete. Consider 
an instance I = (S, C) of the (2, 3)-SSP. We transform it 
into an instance I’ of the problem of loading the 2 a-node 
architecture as follows: we label points on the (IS1 + 5) -  
dimensional hypercube similar to as is * (Section 111-D). 

- -  

The origin (Olsl+5) is labeled “+,” for each element 
sj ,  the point p j  having one in the j th coordinate 
only is labeled “-,” and for each clause cl = 
{si, s j ,  s k } ,  we label with “+” the point pijk  
which has one in its ith, jth, and kth coordinates. 
The points (On, 0, 0, 0, 0, O) ,  (On, 0, 0, 0, 1, l), 
( O n ,  1, 0, 1, 0, O), and ( O n ,  0, 1, 1, 0, 0) are 
marked “+,” and the points ( O n ,  0, 0, 0 ,  1 ,  0 ) ,  

0 ) ,  ( O n ,  1, 0, 0, 0, O) ,  and ( O n ,  1 ,  1 ,  1, 0,  0 )  are labeled 
(on, 07 07 07 0, I), 

‘‘- >9  

(On, 0, 0, 1, 0, o), ( O n ,  0, 1,  0, 0, 

Next, we show that a solution for I exists if and only if 
there exists a solution to I’. Given a solution to the (2, 3)- 
SSP, by Lemma 3.1 (part b)) and the result in [4] the two 
solution half-spaces to I’ are as follows (assume the last five 
dimensions are zn+l to 2 , + 5 )  

where 

otherwise ai = 

otherwise. 
bi = 

We map the two solution half-spaces into the 2 a-node 
architecture as follows 

- z n + 4  + zn+5 )I 



DASGUFTA el al.: ON THE COMPLEXITY OF T R A I ” G  NEURAL NETWORKS 1499 

+ xn+4 - .-+4] 
1 - N , - N z > - l  

N 3 = {  0 - N l - N z <  - 1 .  

Conversely, given a solution to 1’, by Lemma 3.1 (part a)), 
Lemma 3.2 and the result in [4] (as discussed above) the only 
type of classification produced by the 2 7r-node architecture 
consistent with the classifications on the lower five dimensions 
is of Type 2a) (with HI  # H z )  or 2 b) only, which was shown 

0 
Remark 3.1: From the above proof of Theorem 3.1 it is 

clear that the NP-completeness result holds even if all the 
weights are constrained to lie in the set { -2, - 1 ,  1 ) .  Thus the 
hardness of the loading problem holds even if all the weights 
are “small” constants. 

to be NP-complete in Theorem 3.3. 

F. Leaming the 2 7r Architecture 

Here, we prove Corollary 3.1 which states that the functions 
computable by the 2 7r-node architecture with binary inputs is 
not learnable unless R P  = N P .  As it is not believed that N P  
and R P  are equal, the corollary implies that most likely the 
2 7r-node architecture is not learnable (i.e, there are particular 
values of E and 6 such that it is not ( E ,  6)-learnable). 

Proof of Corollary 3.1: The proof uses a similar tech- 
nique to the one applied in the proof of Theorem 9 of [16]. 
We assume that the functions computed by the 2 7r-node 
architecture are learnable and show that it implies an R P  
algorithm for solving a known NP-complete problem, that is, 
N P  = R P .  

Given an instance I = (S, C) of the (2, 3)-SSP, we create 
an instance I‘ of the 2 7r-node architecture and a set of labeled 
points M (this was used in the proof of Theorem 3.1). 

The origin ( O ’ x ’ + 5 )  is labeled “+,” for each ele- 
ment sj, the point p j  having one in the j th co- 
ordinate only is labeled “-,” and for each clause 
C I  = {si, s j ,  s k } ,  we label with “+” the point 
p i j k  which has one in its ith, jth, and kth coordi- 
nates. The points ( O n ,  0, 0, 0, 0, O), (On, 0, 0, 0, I ,  I ) ,  
( O n ,  1 ,  0, 1 ,  0, 0) and ( O n ,  0, 1 ,  1 ,  0, 0) are marked 
“+,” and the points ( O n ,  0, 0, 0, 1 ,  0), ( O n ,  0, 0, 0, l ) ,  

and ( O n ,  1 ,  1 ,  1 ,  0, 0) are labeled “-.” 
Let D+ (respectively, 0-) be the uniform distribu- 

tion over these “+” (respectively, “-”) points. Choose E < 
min { &, &}, and 6 = 1 - E .  To prove the corollary 
it is sufficient to show that for the above choice of E ,  6, D+ 
and D-, (E, @-learnability of the 2 7r-node architecture can 
be used to decide the outcome of the (2, 3)-SSP in random 
polynomial time. 

Suppose I is an instance of the (2, 3)-SSP and let 
(SI, 5’2) be its solution. Then, from the proof of the 

(on,  0, 0, 1 ,  0, 0), (on, 0, 1 ,  0, 0, 01, (on, 1 ,  0, 0, , 0) 

“only if’ part of Theorem 3.1 (see previous subsection), 
there exists a solution to I’ which is consistent with the 
labeled points of M. So, if the 2 a-node architecture is 
( E ,  6)-learnable, then due to the choice of E and 6 (and, 
by Theorem 3.1), the probabilistic learning algorithm 
must produce a solution which is consistent with M with 
probability at least 1 - E, thereby providing a probabilistic 
solution of the (2, 3)-SSP. That is, if the answer to the 
(2, 3)-SSP question is “YES,” then we answer “YES” 
with probability at least 1 - E. 

Now, suppose that there is no solution possible for the 
given instance of the (2, 3)-SSP. Then, by Theorem 3.1, 
there is no solution of the 2 7r-node architecture which 
is consistent with M. Hence, the learning algorithm must 
always either produce a solution which is not consistent 
with M or fail to halt in time polynomial in n, ( l / ~ ) ,  
and (1 /6 ) .  In either case we can detect that the learning 
algorithm was inconsistent with labeled points or did not 
halt in stipulated time, and answer “NO.” In other words, 
if the answer to the (2, 3)-SSP is “NO,” we always 
answer “NO.” 

Since the (2, 3)-SSP is NP-complete (i.e., any problem in 
N P  has a polynomial time transformation to (2, 3)-SSP), it 
follows that any problem in NP has a random polynomial time 
transformation to (2, 3)-SSP), it follows that any problem in 
NP has a random polynomial time solution, i.e., N P  C R P .  
But it is well known that R P  N P ,  hence we have 
R P  = N P .  0 

Remark3.2: In a similar manner, the subsequent NP- 
completeness result of the loading problem proven in the next 
section can be used to provide a proof of the impossibility 
of learnability of the associated concept under the assumption 
of R P  # N P .  

Iv .  ANOTHER ARCHITECTURE WHICH IS HARD TO LOAD 

In this section we discuss an extension of the N P -  
completeness result. Inspired by Blum and Rivest [4] who 
considered loading a few variations of the k 7-t-node network 
in which all activations functions were discrete, we consider 
a variations of the IC @-node architecture in which two nodes 
compute continuous activation functions. The result of this 
section has theoretical importance only, as binary threshold 
units are not popular in applications. 

Consider a unit G that computes ‘H(C?=, cqxi - q), where 
at’s are real constants and PI to xn are input variables which 
assume any real value in [0, 11. We say that this unit G 
computes a Boolean NAND (i.e., negated AND) function of its 
inputs provided its weights and threshold satisfy the following 
requirements 

For justification, assume that the inputs to node G are binary. 
Then, the output of G is one if and only if all its inputs are 
zeroes. 

Our model consists of r+2 hidden nodes N I ,  N z ,  . . . , NT+2 
(where r is a fixed polynomial in n, the number of inputs) and 
one output node. The nodes N I ,  N z ,  . . . , N, in the hidden 
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Case 1) There are at most two sets. of T I ,  T 2 ,  * . . , Tr+2 
which contain all the elements of S. Then these 
two sets constitute a solution of I. 
Example: Let n = 5. If TI = {XI,  2 2 ,  2 3 ,  212) and 
T2 = {x4, z5, y 4 }  are the two sets that contain all 
the elements of S = {XI, z 2 ,  2 3 ,  2 4 ,  2 5 } ,  then 
the two solution sets SI and S2 are f i  

s 1  = ( 2 1 ,  2 2 , 5 3 1  

’92 = {IC4r 2 5 ) .  
I . . . . . . . . 

Fig. 3. The “restricted” (2, T )  (a, H)-node network. 

layer compute the binary threshold functions %, and the 
two remaining hidden nodes NT+l and N r + 2  compute the 
“saturating activation” functions T [see (2)] .  The output node 
Nr+3 computes a Boolean NAND function (Fig. 3). We term 
this as the “restricted” (2, r )  (T, %)-node architecture. 

One can generalize Theorem 2.1 and show that the “re- 
stricted” (2, r )  (n, %)-node architecture can be loaded in 
polynomial time in the case when the input dimension is 
fixed. The loading problem becomes NP-complete, however, 
when (binary) inputs of varying dimensions are considered. 
The main theorem of this section is as follows. 

fieorem 4.1: The loading problem for the “restricted” 
(2, r )  (T,  %)-node architecture with binary inputs of varying 
dimension is NP-complete. 

Before proving Theorem 4.1 we show, given an instance 
I of the (2, 3)-SSP, how to construct an instance I’ of the 
( r  + 2, 3)-SSP such that 1 has a solution if and only if I’ 
has one. 

Let 1 = (S, C) be a given instance of the (2, 3)-SSP. We 
construct I’ by adding 2r + 2 new elements Y - {yi 1 1 < i < 
2r + 2) and creatine the following new sets 

Case 2) Otherwise, there are m (m 2 3) sets, TI, - . , T,, 
each containing a distinct element of S .  At most 
one element of Y occurs in each Ti (since two 
elements of Y cannot be in the same set with 
an element of S without violating the set-splitting 
constraint), hence m < r+2. So, there are r+2-m 
remaining sets in the solution of the instance I’ 
and at least 2r + 2 - m elements of Y to be placed 
in those sets. By the pigeonhole principle, one of 
these remaining r + 2 - m sets must contain at 
least three elements of Y (since m 2 3), thus 
violating the set-splitting constraint. So, Case 2) 

Proof of Theorem 4.1: The “+” and “-” points are ( r  + 
3)-polyhedrally separated by the output of the network in 
which the Boolean formula for the polyhedral separation is 
the formula for the NAND function. Hence, from the result of 
[23] we can restrict all the weights to have at most p(n+r) bits 
(where p(x) is some polynomial in 2). Since r is a polynomial 
in n, any “guessed” solution may be verified in polynomial 
time. So, the problem is in NP. 

We next show that the problem is NP-complete. Given an 
instance I of the (2, 3)-SSP, we construct an instance I’ of 

is not possible. 0 

Y U 

the “restricted” (2, T )  (T, %)-node architecture as follows. 
We create first an instance I” of the ( r  + 2, 3)-SSP (see 
Lemma 4.1). We then add the following labeled points, thus 
constructing the associated instance 1’. 

Create the sets {si, yj, y k }  for all 1 5 i 5 n, 1 5 j ,  lc < 
2r + 2, j # IC. This ensures that if a set in a solution of 
the set-splitting problem contains an element of S ,  it may 
contain at most one more element of Y. 
Create the sets { y i ,  yj, y k }  for all 1 < i ,  j ,  k < 2r + 2, 
i # j # IC. This ensures that no set in a solution of the set- 
splitting problem may contain more than two elements of 
Y. 

The instance I’ is the architecture along with the follow- 
ing set of points: the origin (0l’‘I) is labeled “+,” for 
each element s j  E s’, the point p j  having one in the 
jth coordinate only is labeled “-,” and for each clause 

Let I’ = (S’ . C’) be the new instance of the ( r  + 2, 3)-SSP, 
where S’ = S U Y, and C’ contains all the sets of C and the 
additional sets as described above. 

Lemma 4.1: The instance I’ of the ( r  + 2, 3)-SSP has a 
solution if and only if the instance I of the (2, 3)-SSP has 
a solution. 

Pro08 
+ Let (SI, 5’2) be a solution of I. Then, a solution 

(TI,  T2, . . . , Tr+2)  of the instance I’ is as follows 

Ti = (y2 i -1 ,  y 2 i )  for 1 5 i 5 r 
TR+1 = S I  U {Y2r+l}  

Tr+2 = 5’2 U { Y Z ~ + Z } .  

3 Let (TI,  T 2 , + .  . , Tr+2) be a solution of I’. 

CZ = { 9 i ,  sj, s k }  E C’, we label with “+” the point p i 3 k  

which has one in its ith, jth, and lcth coordinates. 

Given a solution (5’1, 5’2) of I, we construct a solution 
(TI, T2, . . . , TT+2)  of I” as described in the proof of Lemma 
4.1. Consider the following T + 2 half-spaces 

n 
1 

Hi: 1 6 i , j X j  > -- 2 (1 5 2 5 r + 2 )  
j =  1 

where 

-1 if s j  E Ti 
otherwise. 
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All labeled points of I’ are separated by these half-spaces: 
the “+” points lie in A::: Hi and the “-” points lie in 

r+2 - vi,, Hi. 
- 8 -  

We map the r + 2 half-spaces to the “restricted ( 2 ,  r )  
(a, N)-node architecture as follows. The hidden nodes com- 
pute 

and the output node Nr+3 computes 

* 
Conversely, given a solution to the instance I t ,  we construct 

a solution to I. The classification produced by the “restricted” 
( 2 ,  r )  (T, 7-l)-node architecture is as follows. Each hidden 
threshold node Ni (1  5 i 5 T )  defines a half-space Hi 

V. CONCLUSION AND OPEN PROBLEMS 
We have shown that the loading problem is NP-complete 

even for a simple feedforward network with a specific “sat- 
urated linear” (analog type) activation functions. This adds 
to the previously known results stating that the loading of a 
simple net with discrete activations is NP-complete ([4]) and 
a net with a specific (somehow artificial) analog activation 
function has a fast loading ([25]). Unfortunately, our proof 
does not seem to generalize to other activation functions. The 
following open problems maybe worth investigating further. 

Does the NP-completeness result hold for the two o-node 
architecture, where D is a more complicated activation 
function (e.g., when D is the quadratic spline activation 
function or the standard sigmoid)? 
What is the complexity of the loading problem for net- 
works with more layers? Note that hardness of the loading 
problem for networks with one hidden layer does not 
necessarily imply the same for networks with more hidden 
layers. In fact, it is already known that there are functions 
which cannot be computed by threshold networks with 
one hidden layer and a constant number of nodes, but 
can be computed by threshold networks with two hidden 
layers and a constant number of nodes, see [21]. 
Is there a characterization of the activation functions for 
which the loading problem is intractable? 

j=1 

for some real numbers Si, 1 ,  . . . , Si, and vi, From the classi- 
fications produced by the 2 ?r-node architecture as described 
in Section 111-A and since the output node Nr+3 computes a 
Boolean NAND function, there are at most j half-spaces (for 
2 5 j 5 3) corresponding to the nodes Nr+1 and Nr+2 

n 

HT+l: x u i x i  > a0 
i=l 
n 

i=l 
n 

Ht: x ( a i + b i ) z i > c o  ( r + 3 5 t < r + j ) .  
i=l 

All the “+” points lie in Hi, and all the “-” points lie 
in v:zH,. 

Let Ti be the “-” points separated from the origin by the 
half-space Hi of the output of the network (for 1 5 i 5 r + j ,  
2 5 j 5 3). No Ti contains three elements of the same set of 

-the instance 1’, otherwise the set itself will be in as well, 
contradicting its positive labeling. Consider the sets Ti as the 
solution of the instance I”. By Theorem 3.3 the sets Tr+l 
to T,+j can be combined to two sets, say T:+l and T1r+2, 
without violating the set-splitting constraints. Hence, we have 
r+2 sets, T I ,  Ti,.  . . , T,, T:+], as the r+2 solution sets 
for the instance I” which satisfy the set-splitting constraint. 
Hence, by Lemma 4.1 we can construct the two solution sets 

0 ( SI, S2) of the instance I. 

Proof of Lemma 3.1. a): Since the origin is labeled “+” 
it is not possible for three half-spaces of Type 3c) or Type 
3d) to correctly classify the above set of points in the two- 
dimensional hypercube. 

Note that the origin is labeled “+,” and hence it must lie 
in at least one of H I  or H2 for the three half-spaces of Type 
3a) or Type 3b). 

Consider the half-spaces as in Type 3a). There are two cases. 
Case 1)  p > 0. Since and H2 2 H I ,  all the “+” 

points must belong to H I  and all the “-” points 
must belong to E. Hence, (0, 1)  and (1 ,  0) must 
belong to HZ and we have 

C 

(4) 

Adding inequalities (4) and (3, and since 7 < 0, 
we get 

Inequality (6) implies that the “+” point (1 ,  1) 
belongs to HZ and hence in H I  A H3. Hence, we 
must have 
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We find the following three cases 

H Z  A H3. Then, we must have 
1.1) Both the “-” points (0, 1) and (1, 0) belong to - -  

Adding inequalities (9) and (10) and since y < 0 
we get 

Inequality (1 1) contradicts inequality (8). 

have 
1.2) Both the “-” points belong to z. Then, we must 

Adding inequalities (1 2) and (1 3) and since y < P, 
we get 

Inequality (14) contradicts inequality (7). 
1.3) One of the negative points belongs to % but not 

to H2 A H3 and the other negative point belongs 
to E A E but not to z. 

1.3.1) (0, 1) belongs to E A E  and (1, 0) belongs 
to K. Since (1, 0) belongs to K, we must 
have 

- _  

From inequalities (7) and (15) we must have 
Q U Z  > 0. On the other hand, inequality (5) 
claims that aaz 5 y. We get 0 < y, which 
is impossible since y < 0. 

1.3.2) (1, 0) belongs t o z A E  and (0, 1) belongs 
to z. Similar to Case 3.1). 

Case 2) /3 < 0. Again, since HI  and HZ are parallel, all the 
“-” points must lie in Z, and all the ‘ I - ”  points 
must belong to H z .  Hence (1, 0) and (0, 1) must 
belong to % which gives 

a a 1 5 y - P  (16) 
aaz 5 Y - P. (17) 

By adding inequalities (16) and (17), we get 

a(a1 + az)  5 2y - 2p. (18) 

Since /3 > y, we have 27 - 2P < y - P. Hence, 
from ineclualitv (18) we get a(a ,  + as)  < Y - 0. 

2.1) 

2.1) 

2.3) 

Hence, the point (1, 1) lies in K, and hence in 
Hz A H3. Then, we have 

Now, we have the following three cases. 

Both the negative points (1, 0), (0, 1) lie in E A  
H1. Then, we have 
- 

Adding inequalities (21) and (22) we get 

From inequalities (19) and (23) we get y < 
a(a1 +az)+P(bl +b2)  I 27, which is impossible 
since y < 0. 
Both the negative points (0, 1)) (1, 0) lie in E. 
Then, we have 

Adding inequalities (24) and (25) we get a(a1 + 
az) 5 2y < y (since y < 0) which contradicts 
inequality (20). 
One of the two negative points lie in E and the 
other one lie in H1 A H3 but not E. - -  

2.3.1) (1, 0) lies in E and (0, 1) lies in 
but not in K. Hence 

From inequalities (20) and (26) we have 
aaz > 0. On the other hand, from inequality 
(17) we have aaz 5 y - P. It implies that 
0 < y - ,d which contradicts P > y. 

and (1, 0) lies in H1 A H3 

but not in E. Similar to Case 2.3.1). 
The proof for the ’Qpe 3b) half-spaces is 

similar to that of Type 3a) (by interchanging 
the roles of the parameters a and 0). 

_ _  
2.3.2) (0, 1) lies in 

Case 3) The following are a set of two possible half-spaces 

1 x1-22 > -7j  

- 2 1  +xz  > -3. 
Y \ I  I, , , * .  , 
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Proof of Lemma 3.2: The case of two half-spaces of ‘Qpe 
4a) follows from the result of [4]. We prove the case for 
half-spaces of Type 4b) 

Let HI: ~ ~ = l a , ~ ,  > U O ,  H2: C : = l b , x ,  > bo and 
H3: c,z, > CO be the three half-spaces of 5 p e  4b), 
where c, = a, + b, for 1 5 i 5 3 (assuming ( 2 1 ,  2 2 ,  2 3 )  is 
the input). The following observations are true: 

i) If a0 < 0 (respectively, bo < 0, CO < 0) then all 
the examples in A except for the origin lie in 
(respectively, H2, H3). The reason is as follows. If 
a0 < 0, then since (0, 0, l), (0, 1, 0) and (0, 0, 1) are 
“-,” we must have a l ,  a2, a3 < ao. Then, however, 
since a0 < 0, a1 + a3 < 2ao < ao, a2 + a3 < 2ao < ao, 
and a1 + a2 + a3 < 3ao < ao, hence the claim follows. 

ii) Consider the same set of examples as in A except 
that now the origin is not labeled. Then, there does 
not exist a single hyperplane that separates the “+” 
and “-” points in this set. Assume it does, and let 
H: ax1 + bx2 + c23 > d be the hyperplane. Since 
(1, 1, 1) is “-,” we must have 

-- 

a + b + c I d. (29) 

sifications by the hyperplanes H I ,  H2, and 
H3, we have the following set of inequalities 

a2 5 a0 < 0 
bi + b2 + b3 5 bo 

c3 I CO 

bl + b3 > bo > 0 
c2 + c3 > Q > 0. 

Since bl + b2 + b3 5 bo and bl + b3 > bo, 
we have b2 < 0. Since c2 + c3 > CO 2 0, but 
c3 < C O ,  we must have c2 > 0. 
Since, however, c2 = a2 + b2, and a2 < 0, 
b2 < 0, so c2 < 0, hence a contradiction! 

3.1.2) (1, 0, 1) lies in H3 and (0, 1, 1) lies in H2. 

Similar to Case 3.1.1). 

3.2) bo < 0, ao, CO 2 0. Similar to Case 3.1). 
3.3) U O ,  bo 2 0, CO < 0. 

By observation i) above all the points except for 
the origin lies in 5. By observation ii) above 
both the “+” points (other than the origin) cannot 
be correctly classified by H1 alone or Hz alone. 

Since (1, 0, 1) and (0, 1, 1) are “+,” we must have 
a + c > d, b + c > d. Adding the last two inequalities 
we get 

3.3.2) (1,  0, 1) lies in H1 and (0, 1, 1) lies in H2. 

Considering the “+” and “-” points (other 
than the origin) and the corresponding clas- 

a + b + 2c > 2d. sifications by the hyperplanes H I ,  H2 and 
H3. we have the following set of inequalities 

a1 5 a0 
From inequalities (29) and (30) we get 

2d - c < U +  b +  c 5 d e  d < c 

which implies that the “-” point (0, 0, 1) belongs to 
H, a contradiction! 

Since the origin is classified as “+” by at least one of the 
hyperplanes, at least one of ao, bo, and CO must be negative. 
We consider the following cases 

Case 1) ao, bo, CO < 0. By observation i) above all the 
Hi, a 

3 -  “+” points except the origin lie in 
contradiction! 

Case 2) Two of ao, bo, C O ,  say a0 and bo, are negative. 
By observation i) above all the points (except the 
origin) are classified as “-” by two of the three 
half-spaces, namely half-spaces H I  and H 2 ,  and 
by observation ii) above the remaining half-space 
H3 cannot correctly classify all of them. 

Case 3) One of ao, bo, and Q is negative. 

3.1) uo < 0, bo, CO 2 0. 
By observation i) above, all the points except for 
the origin, lie in K. By observation ii) above both 
the “+” points (other than the origin) cannot be 
correctly classified by H2 alone of H3 alone. 

3.1.1) (1, 0, 1) lies in 2 3 2  and (0, 1, 1) lies in H3. 

Considering the “+” and “-” points (other 
than the origin) and the corresponding clas- 

a1 + a3 > a0 2 0 

b2 I bo 
b2 + b3 > bo 2 0 

c3 5 CO < 0. 

Since b2 5 bo, and b2 + b3 > bo 2 0, 
we must have b3 > 0. Since a1 5 ao, and 
a1 + a3 > a0 2 0, we must have a3 > 0. 
So, c3 = a3 + b3 > 0, which contradicts the 
inequality c3 < 0 above. 

3.3.2) (1, 0, 1) lies in H2 and (0, 1, 1) lies in H I .  
0 Similar to Case 3.3.1). 
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