
On a Learnability Question Associated to Neural Networks with
Continuous Act ivat ions

(Extended Abstract)1

Bhaskar DasGuptat Hava T. Siegelmann* Eduardo Sontag”
Department of Computer Science Department of Computer Science Department of Mathematics

University of Minnesota Bar-Ilan University Rutgers University
Minneapolis, MN 55455-0159 Ramat-Gan 52900, Israel New Brunswick, NJ 08903

dasgupta~cs. unm. edu hava@bi!nacs. cs .biu. ac. il sontag@control. rutgers. edu

Abstract

1 INTRODUCTION
This paper deals with learnability of concept
classes defined by neural networks, showing
the hardness of PAC-learning (in the complex-
ity, not merely information-theoretic sense) for
networks with a particular class of activation.
The obstruction lies not with the VC dimen-
sion, which is known to grow slowly; instead,
the result follows the fact that the loading prob-
lem is NP-complete. (The complexity scales
badly with input dimension; the loading prob-
lem is polynomial-time if the input dimension
is constant.) Similar and well-known theorems
had already been proved by Megiddo and by
Blum and Rivest, for binary-threshold networks.
It turns out the general problem for continuous
sigmoidal-type functions, as used in practical
applications involving steepest descent, is not

NP-hard –there are “sigmoidals” for which the
problem is in fact trivial– so it is an open ques-
tion to determine what properties of the acti-

vation function cause difficulties. Ours is the
first result on the hardness of loading networks
which do not consist of binary neurons; we em-
ploy a piecewise-linear activation function that
has been used in the neural network literature.
Our theoretical results lend further justifica-
tion to the use of incremental (architecture-
changing) techniques for training networks.

*Research supported in part by US Air Force Grant
AFOSR-91-0343

‘Research supported in part by NSF Grant CCR-92-
08913

$A part of the results reported here will also appear in V.
P. Roychowdhury, K. Y. Siu, and A. Orlitsky (eds.), 7’heoret-
ical Advances in Neural Computation and Learning, Kluwer
Academic Publishers, 1994

Permission to copy vvithout fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear? and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
COLT 94- 7/94 New Brunswick, N..J. USA
@ 1994 ACM 0-89791 -655-7/94/0007..$3.50

We show (modulo RP#NP) the hardness of PAC learn-
ing for concept classes defined by certain analog neural
networks; this is a consequence of the fact that the load-
ing problem for a typical such architecture (hypothesis
class) is proved to be NP-complete. Our results are sim-
ilar in spirit those due to Blum and Rivest, except that
we focus on continuous aa opposed to binary node func-
tions. Continuous sigmoidal-type functions are used in
all practical applications involving steepest descent, and
for these, the loading problem is not in general NP-
hard –there are “sigmoidals” for which the problem is
in fact trivial– so it is an open question to determine
what properties of the activation function cause difficul-
ties. Ours is the first result on the hardness of loading
networks which do not consist of binary neurons; we
employ a piecewise-linear activation function that has
been used in the neural network literature.

1.1 WHY NEURAL NETS?

Artificial Neural networks have become a very popu-
lar tooi for machine learning, and many papers have
been written dealing with their application to practical
problems. In this role, a network is trained to recog-

nize complex associations between inputs and outputs
that were presented during a supervised training cycle.
These associations are incorporated into the weights of
the network, which encode a distributed representation
of the information that was contained in the patterns.
Once thus “trained,” the network will compute an in-
put/output mapping which, if the training data was
representative enough, it is hoped will closely match
the unknown rule which produced the original data. It
is customary to find claims in the experimental liter-
ature to the extent that neural networks are particu-
larly good for prediction. Our objective in this, as well
as related work we have done, is to critically analyze
such claims from a theoretical viewpoint. In particu-
lar, in the case of this paper, from the point of view of
PAC learning. (Massive parallelism of computation, aa
well as noise and fault tolerance, are often also offered

47

as practical justifications for the use of neural nets as
learning paradigms; we do not consider those aspects in
this paper.)

By “neural network” we always mean, in this paper,
feedforward ones of the type routinely employed in ar-
tificial neural nets applications. That is, a net consists
of a number of processors (‘(nodes” or “neurons”) each
of which computes a function of the type

‘=u($aiui+b)(1)

of its inputs U1, uk. These inputs are either external
(input data is fed through them) or they represent the
outputs y of other nodes. No cycles are allowed in the
connection graph and the output of one designated node
is understood to provide the output value produced by
the entire network for a given vector of input values.
The possible coefficients ai and b appearing in the dif-
ferent nodes are the weights of the network, and the
functions u appearing in the various nodes are the node

or activation functions. An architecture specifies the in-
terconnection structure and the u’s, but not the actual
numerical values of the weights themselves.

In most practical work, u is the “standard sigmoid func-
tion” 1/(1 + e-z), though other continuous activations
(see below) are less frequently used as well. The “train-
ing” process is based on steepest descent minimization
of a cost function, so as to fit weights to data samples;
this is essentially the so-called “backpropagation” ap-
proach. (Sometimes more sophisticated techniques such
as high-order (Newton), conjugate gradient, or sequen-
tial quadratic programming methods are used too.) It
is well-known that these numerical techniques tend to
run slowly, especially for high-dimensional data. Thus
one may ask, as done by Judd and others (see for in-
stance [14, 15, 5, 17, 28]) if there exists a fundamental

barrier to training by general feedforward networks, a
barrier that is insurmountable no matter which partic-
ular algorithm one uses. (Those techniques which adapt

the architecture to the data, such as cascade correla-
tion or incremental techniques, would not be subject to
such a barrier.) Thus one must consider the tractability
of the following decision problem (“loading”): Given a

network architecture (interconnection graph as well as

choice of activation function) and a set of training ez-

amples, does there exist a set of we~ghts so that the net-

work produces the correct output for all examples?

1.2 PAC LEARNING AND LOADING

The simplest neural network, i.e., the perception, con-
sists of one threshold neuron only. It is easily verified
that the computational time of the loading problem in
this case is polynomial in the size of the training set
irrespective of whether the input takes cent inuous or
discrete values. This can be achieved via a linear pro-
gramming technique. On the other hand, we show that,
for networks employing a simple, saturated piecewise-
linear activation function, and two hidden units only,

the loading problem is NP-complete. This shows that,
indeed, any possible neural net learning algorithm (for
this activation function) based on fixed architectures
faces severe computational barriers. Furthermore, our
result implies non-learnability in the PAC sense under
the comDlexitv-theoretic assumption of RP d iVP. We

.“ .

also generalize our result to another similar architecture.

The work most closely related to ours is that due to
Blum and Rivest; see [5], These authors showed a simi-
lar NP-completeness result for networks having the same
architecture, but where the activation functions are all
of a hard threshold type, that is, they provide a binary
output y equal to 1 if the sum in equation (1) is posi-
tive, and O otherwise, In their papers, Blum and Rivest
explicitly posed as an open problem the question of es-
tablishing NP-com~leteness, for this architecture, when
the activ~tion func~ion is “sigmoidal” and they conjec-
ture that this is indeed the case. [For the architectures\
considered in Judd’s work, in contrast, enough measure-
ments of internal variables are provided that there is
essentially no difference between results for varvin~ ac-. .“

tivations, and the issue does not arise there, However,
it is not clear what are the consequences for practical
algorithms when the obstructions to learning are due to
considering such architectures. In any case, we address
here the o~en problem exactly as p~sed by Blum and

Rivest.)

It turns out that a definite answer to the question posed
by Blum and Rivest is not possible. It is shown in [24]
that for certain activation functions n, the problem can
be solved in constant time, independently of the input
size, and hence the question is not NP-complete. In
fact, there exist %igmoidal)’ functions, innocent-looking
aualitativelv (bounded. infinite differentiable and even. “\

analytic, and so forth) for which any set of data can be
loaded, and hence for which the loading problem is not
in NP, The functions used in the construction in [24]
are however extremelv artificial and in no wav likel~ to
appear in practical implementations. Nonet~eless, ‘the
mere ezistence of such examples means that the math-
ematical question is nontrivial.

The main open question, then, is to understand if “rea-
sonable” activation functions lead to NP-completeness
results similar to the ones in the work by Blum and
Rivest or if they are closer to the other extreme, the
purely mathematical construct in [24]. The most puz-
zlirw case is that of the standard sim%o~d function. 1/(1+
e-z~. For that case we do not kno; the answer yet: but
we conjecture that NP-completeness will indeed hold.
(In this context we should mention the very recent and
independent work by Hoffgen in [12]; he proves the hard-
ness of the interpolation problem by sigmoidal nets with
two hidden units when the weights are –severelv– re-. .
stricted to take just binary values. The binary assump-
tion simplifies matters considerably, and in any case
however the intemolation as oDDosed to classification
problem is com~l;telv different’~rom the Drob]em that
we are considering). It is the purpose of this paper to
show an NP-completeness result for the piecewise linear

48

or ‘(saturating” activation function; this is an activa-
tion that has regularly appeared in the neural networks
literature, especially in the context of hardware imple-
mentations –see e.g. [3, 6, 18, 28]– and which is much
simpler to analyze than the standard sigmoid. We view
our result as a first step in dealing with the general case
of arbitrary piecewise linear functions, and as a further
step towards elucidating the complexity of the problem
in general.

1.3 OTHER QUESTIONS

For completeness, we mention other approaches to the
critical analysis of the capabilities of neural networks for

“learning” objectives. One line of work deals with sam-

ple complexity questions, that is, the quantification of
the amount of information (number of samples) needed
in order to characterize a given unknown mapping. Some
recent references to such work, establishing sample com-
plexity results, and hence “weak learnability y“ in the
PAC model, for neural nets, are the papers [4, 20, 11,
19]; the first of these references deals with networks that
employ hard threshold activations, the second and third
cover continuous activation functions of a type (piece-
wise polynomial) close to those used in this paper, and
the last one provides results for networks employing the
standard sigmoid activation function. A different per-
spective to learnability questions takes a numerical anal-
ysis or approximation theoretic point of view, There one
asks questions such as how many hidden units are nec-
essary in order to approximate well, that is to say, with
a small overall error, an unknown function. This type
of research ignores the training question itself, asking
instead what is the best one could do, in this sense of
overall error, if the best possible network with a given
architecture were to be eventually found. Some recent
papers along these lines are [2, 13, 7], which deal with
single hidden layer nets –the last reference comparing
different error measures- and [8], which dealt with mul-
tiple hidden layers. Finally, one may ask about the dif-
ficulties of steepest descent “backprop” methods due to

local minima in error surfaces; see [25] and references
there. A related question deals with the multiplicity
of possible networks that represent the same concept
(and hence give rise to multiple weights achieving same
cost in the “backprop” objective function); for that see
[26, 1].

1.4 ORGANIZATION OF THE PAPER

The rest of the paper is organized as follows:

c In section 2 we introduce the model, distinguish the

case of fixed versus varying input dimension (and
analog versus binary inputs) and state our results
precisely. We also observe that the loading prob-
lem is polynomial-time when the input dimension
is fixed.

● In section 3 we prove the hardness of the loading
problem for the 2 m-node architecture and use this

result to show the impossibility of learnability for
binary inputs under the assumption of RP # NP,

● In section 4 we prove the hardness of the loading

problem for the “Restricted” (2, r) (z, H)-node ar-
chitecture with binary inputs

Due to space limitations, details of some proofs are
omitted; they can be found in [9].

2 PRELIMINARIES AND
STATEMENT OF RESULTS

Let @ be a class of real-valued functions, where each
function is defined on some subset of Ill. A @net C is
an unbounded fan-in directed acyclic graph, To each
vertex v, an activation function I#V G @ is assigned, and
we assume that C’ has a single sink w. The network
C’ computes a function fc : [0, 1]” A IR as follows,
The components of the input vector x = (ZI, ~n) c
[0, I]n are assigned to the sources of G. Let VI,..., v~
be the immediate predecessors of a vertex v. The input

for v is then SV(z) = ~~=1 ai~; – 6., where y~ is the
value assigned to vi and a and b are the weights of v.
We assign the value #. (sV(z)) to v. Then jc = @z(sz)
is the function computed by C where z is the unique
sink of C.

The architecture A of the @-net C’ is the structure of the
underlying directed acyclic graph. Hence each architec-
ture d defines a behavior function PA that maps from
the r real weights (corresponding to all the weights and
thresholds of the underlying directed acyclic graph) and
the input string into a binary output. We denote such a
behavior as the function PA(IR’, [0, I]n) * {O, 1} The
set of inputs which cause the output of the network to
be O (resp. 1) are termed as the set of negattve (resp.
positive) examples, The size of the architecture A is the
number of nodes and connections of A plus the maxi-
mum number of bits needed to represent any weight of
A.

The loading problem is defined as follows: Given an ar-
chitecture A and a set of positive and negative exam-
ples itf = {(z, y) I z E [O,l]n, y E {0,1}}, so that Iikl[=
O(n); find weights d so that for all pairs (x, y) c M:

@A(ti,~) = ~.

The decision version of the loading problem is to decide
(rather than to find the weights) whether such weights
exist that load Al onto A.

The PAC-learning problem for a Q-net C is as follows.
Assume that C computes a function f and let n ~

N. Let !-l(0) = {z [z E {O, l}n, ~(z) = O} (resp.

~-1(1) = {Z I x G {O, l}n, ~(z) = 1}) denote the
set of negative (resp. positive) examples. Let Cn be
the set of Boolean functions on n variables computable
by a specific architecture A. Then C = U~l c. is a

class of representations achievable by the architecture
A for all binary input strings. Given some function

~ E C, POS(~) (resp. iVEG(f)) denotes the source

49

of positive (resp. negative) examples for f. Whenever
F’OS(~) (resp. lfEG(-f)) is called, a positive or ‘+’
(resp. negative or’- ‘) example is provided according to
some arbitrary probability distribution D+ (resp. D-)
satisfying the conditions ~==f-l(ll D+(z) = 1 (resp.

Z.=t-l(o) ~-(~) = 1). A learning algorithm is an al-
gorithm that may access POS(~) and IVli?G(~). Each
access to POS(f) or NEG(f) is counted as one step. A
class C of representations of an architecture A is said to
be /earnable[16] iff, for any given constants O < e, 6<1,

there is a learning algorithm L such that for all n c N,
all functions f c L’n, and all possible distributions D+

and

(a)

(b)

D-, - -

L halts in number of steps polynomial in n, ~, ~,
and IIdl I (where IIAl I denotes the size of the archi-
tecture d),

L outputs a hypothesis g E C. such that with prob-
ability at least 1—6 the followirm conditions are sat-

In this paper we focus on 1 hidden layer (lHL) archi-
tectures and we will be concerned with two very simple
architectures as described below. The k O-node archi-
tecture is a lHL architecture with k hidden qLunits (for
some 4 E 0), and an output node with the threshold
activation ?t. The 2 O-node architecture consists of two
hidden nodes N1 and N2 that compute:

i=l i=l

The output node IV3 computes the threshold function of
the inputs received from the two hidden nodes, namely
a binary threshold function of the form

for some parameters a, ~, and 7. Figure 1 illustrates a
2 Q-node architecture.

t

Figure 1: A 2 @-node architecture

The two activations function classes @ that we consider
are the binary threshold functions ?i and the piecewise

50

linear or “saturating” activation functions r (which ap-
pears quite frequently in neural networks literature[3, 6,
18, 28]) defined as

{

O ifx<O
7r(z) = z ifO~z~l (2)

1 ifx>l.

Inspired by Blum and Rivest[5] who considered load-
ing a few variations of the k ‘H-node network, in which
all activations functions were discrete; the second archi-
tecture we consider is a lHL-architecture in which the
function of the output node is restricted. Consider a
unit G that computes ?f(~~=l ~ixi —q), where ai’s are

real constants and Z1 to Zn are input variables which
assume any real value in [0, 1]. Let a = ~~=1 ffi.

We say that this unit G computes a Boolean NAND
(i.e., negated AND) function of its inputs provided its
weights and threshold satisfy the following requirements:

cx~<q<O I<i<n (3)

For justification, assume that the in~uts to node G are
bin~ry. Then, the output of G is o;e iff all its inputs
are zeroes.

A

1

Figure 2: The “Restricted” (2, r) (x, H)-node network.

Our second architecture consists of r + 2 hidden nodes
NI, Nz, N,+z (where r is a fixed polynomial in n,

the number of inputs) and one output node. The nodes
N1, N2, ..., IVr in the hidden layer compute the binary
threshold functions X, and the two remaining hidden
nodes Nr+l and Nr+z compute the “saturating activa-
tion” functions n (equation 2). The output node N,+3
computes a Boolean AND function. We term this as the
“Restricted” (2, r) (n, H)-node architecture.

We consider two kinds of inputs: analog and binary.

An analog input is in [0, l]d, where d is a fixed constant,
also called the input dimension. In the binary case, the
input is in {O, 1}* where n is an input parameter.

2.1 FIXED INPUT DIMENSION

When the input is analog (and the dimension is hence
constant), loading a k ~-node architecture or a k 7-1-

node architecture can be done in time polynomial on

the size of the training set. This result is very easy,
and we include it here only for completeness. It is an
immediate consequence of a result by Megiddo ([21])
(see also [20], Theorem 4.3). The above result for analog
inputs can be generalized for the case of the “restricted”
(2, r) (m, M)-node architecture as well.

2.2 VARYING INPUT DIMENSION (AND
BINARY INPUTS)

Blum and Rivest [5] showed when the inputs are binary
and the training set is sparse the loading problem is
NP-Complete for the 2 ‘?i-node architecture. In an-
other related paper, Lin and Vitter[17] proved a slightly
stronger result by showing that the loading problem
of 2-cascade threshold net with binary input is NP-
complete,

In contrast to the case of fixed input dimension, we show
in this section that the loading problem for the 2 ~-node
architecture is NP-complete when (binary) inputs of ar-
bitrary dimension are considered, The main theorem of
this section is as follows.

Theorem 2.1 The loading problem for the 2 x-node ar-

chitecture (LrAP) with binary inputs is NP-complete.

In fact, allowing more hidden units may still make the
loading problem hard, if a suitable restriction on the
function computed by the output unit is assumed, ss
illustrated by the following theorem.

Theorem 2.2 The loading problem for the “Restricted”

(2, r) (n, 7f)-node architecture with binary inputs is NP-

complete.

A corollary of the above theorems is as follows.

Corollary 2.1 The class of Boolean functions computable

by the 2 ~-node architecture or by the “Restricted” (2, r)

(7, H)-node architecture with binary inputs is not learn-

able, unless RP = NP.

3 PROOF FOR HARDNESS OF

LOADING FOR 2 T-NODE
ARCHITECTURE WITH

VARYING INPUT DIMENSION

To prove theorem 2,1 we reduce a restricted version of
the set splitting problem, which is known to be NP-
complete [l O], to this problem in polynomial time. How-
ever, due to the continuity of this activation function,
many technical difficulties arise. The proof is organized
as follows:

1. Providing a geometric view of the problem [section
3.1].

2. Introducing the (k, I)-set splitting problem and the
symmetric 2-SAT problem [section 3.2].

3

4.

5

3.1

Proving the existence of a polynomial algorithm
that transforms a solution of the (3,3)-set split-
ting problem into a solution of its associated (2,3)-
set splitting problem (using the symmetric 2-SAT
problem) [section 3.3],

Defining the 3-hyperplane problem and proving it
is NP-complete by reducing from the (2,3)-set split-
ting problem [section 3.4].

Proving that the LnAP is NP-complete. This is
done using all the above items[section 3.5].

A GEOMETRIC VIEW OF THE
LOADING PROBLEM

(4 0)

%$$’%
6) (0

Figure 3: Different classifications produced by the 3-
node network.

We start by categorizing the different types of classifica-
tions produced by the 2 x-node architecture, Without
loss of zeneralitv we assume cr. B 20. Consider the 4.
hyperpl;nes Ml : ~~=1 aixi =’0, ~2 : ~~=1 IJiXi = 1,

PI : ~=1 bizi = O, and Pz : ~~=1 bi~i = 1 (refer to fig,
3). Let (cl, CZ) denote the set of points in the (n – l)-
dimensional facet corresponding to ~=1 ai xi = C1 and

~~=1 bizi = C2. As all points belonging to one facet are
labeled equally, we consider “labeling the facets” rather
than the single points.

Type 1. All facets are labeled either ‘+’ or ‘-’. In
that case, all the examples are labeled ‘+’ or ‘-’,
respectively,

Type 2. Exactly one facet is labeled ‘+’, Assume that
this facet is (0,0). Then, two different types of sep-
arations exist:

(a) There exist two halfspaces HI and Hz such
that all the ‘+’ points belon~o 171 A H2 and
all the ‘–’ points belong to 111 V ~ (Ifl and
172 may be identical).

51

(b) There exist three hyperplanes of the following
form (fig. 3(b)):

i=l ,=1

n

Hs : ~(~ai + $bi)zi > Y

i=l

where O > 7, a,~ < 7 < 0 (hence y > 27),
and all the ‘+’ and ‘–’ points belong to 111 A
Hz A Hs and HI v ~ v ~, respectively.

If any other facet is marked ‘+’, a similar separation
is produced,

Type 3. Two facets are marked ‘+’ and the remain-
ing two are labeled ‘–’. Because the labeling must
be linearly separable, only the following types of
classifications are possible:

(a)

(b)

(c)

(d)

(O, 1) and (O, O) are ‘+’ (fig. 3(d)), Then, the
input space is partitioned via the three halfs-
paces:

n n

,=1 ,=1

where B>y, aS7<Oanda+/35y. IfD<
O (resp. ~ > 0) then all the ‘-I-’ and ‘–’ points
lie” in 111 V (H2 A H3) (resp. Hz V (Hl A H3))

and ~V (~A~) (resp. ~V (~A~)),
respectively.

(O, O) and (1, O) are ‘+’ (fig. 3(c)). Then, the
input space is partitioned via the three halfs-
paces:

n n

,=1 ,=1

n

,=1

where a>y, ~~y<O anda+ ~57.

If a <0 (resp. a > O) then all the ‘+’ and ‘–’
points lie in 1-11V (Hz A H3) (resp. 112 V (Hl A.—
H3)) and ZV(KAH3) (resp. HIv(HzAHs)),
respectively.
(1, O) and (1,1) are ‘+’ (similar to fig. 3(d)
with the labeling of ‘+’ and ‘—’ points inter-
changed). This is the symmetrically opposite
case of type 3(a).

(O, 1) and (1,1) are ‘+’ (similar to fig. 3(c)
with the labeling of ‘+’ and ‘—’ points inter-
changed). This is the symmetrically opposite
case of type 3(b).

Type 4. Three facets are labeled ‘+’. This case is sym-
metrical y opposite to type 2, and thus details are
precluded.

3.2 THE SET SPLITTING AND
SYMMETRIC 2-SAT PROBLEMS

The following problem is referred to as the (k, i)-set
splitting problem (SSP) for k ~ 2.

INSTANCE: A set S = {si I 1 ~ i ~ n}, and a
collection C = {cj I 1 < j < m} of subsets of S, all of
exactly size 1.

QUESTION: Are there k sets S1, ,.., sk, such that

si n Sj = # for i # j, U~=lSi = S, and Cj ~ S, for
l~i~kandl~j~m?

Note that the (k, Z)-SSP is solvable in polynomial time
if both k ~ 2 and 1 s 2, but remains NP-complete if
k z 2 and 1 = 3 (see [10]).

For later purposes we consider the symmetric 2-SAT

problem:

INSTANCE: Variables WI, V2, v. and a collection
D of one or two literal disjunctive clauses satisfying the

condition: Vi, j [(vi V (~~j)) @ D] & [((~vi) V ~j) @ D].

QUESTION: Decide whether there exists a satisfying
assignment, and find one if exists.

In a manner similar to [23], we create a directed graph

G = (V, E), where where V = {di, ~ [vi is a variable},
and E= {(ii, l~) I (i)j ~ {l, n}). (1; E {di, ~dz}), (~j

E {dj, =dj}), (ii --+ {j) c D}. Note that an edge (z, y)
in E is directed from z to y. In the symmetric 2-SAT
problem, the graph G has the following crucial property:

(t) Complemented and uncomplemented vertices alter-
nate in any path. This is because the edges in G
are only of the form (di, ~) or (~, dj) for some two
indices i and j (i = j is possible).

It is easy to design a polynomial-time algorithm that
produces a satisfying assignment provided the following
condition holds (see, for example, [23, pp 377-378]):

The instance of the 2-SAT problem has a so-

lution if and only if there is no directed cyc~

in G which contains both the uertzces di and di

for some i.

It is easy to check the above condition in 0(1 V 1) =

O(n) time by finding the strongly connected compo-

nents of G. Hence, computing a satisfying assignment
(or, reporting that no such assignment exists) can be
done in time polynomial in the input size.

3.3 THE (k, i)-REDUCTION PROBLEM

We prove that under certain conditions, a solution of the

(k, I)-set splitting instance (S, C) can be transformed
into a solution of the associated (k – 1, 1)-set splitting
problem. More formally, we define the (k, 1)-reduction
problem ((k, i)-RP) as follows:

INSTANCE: An instance (S, C’) of the (k, 1)-SSP, and
a solution (S1, S2, . . ., S~).

52

QUESTION: Decide whether there exists a solution

(S:, sj,..., Sj_l) to the associated (k – 1, /)-SSP and

construct one if exists, where, for all i, j E {1,2, k –

1} i#j:

Sj=S~UTi fi~Sk (Tin Tj)=# U#~~Tp=Sk

We next state the existence of a polynomial algorithm

for the (3, 3)-reduction problem. Since we are interested

in placing elements of S3 in S1 or SZ, we focus on sets

having at least one element of S3. Since (Sl, S2, S3) is a

solution of the (3, 3)-SSP, no set contains 3 elements of

S3. Let C’ = {cj I 1< i < m} ~ C be the collection of

sets which contain at least one element of S3, obviously,

v~(cj ~ Sl) A (Cj ~ S2) A (Cj ~ S3).

Let A={aill <i<lSl}and B= {bill Si<lSl}be

two disjoint sets. Each element of A U B is to be colored

‘red’ or ‘blue’ so that the overall coloring satisfies the

valid coloring conditions:

(a) For each set {Xi, xj, ZP} G C’, where xi, zj c SS, at

least one of ai or aj should be colored red if XP c SI

and at least one of bi or bj has to be colored red if

Xp E S2.

(b) For each i, 1< i < ISI, at least one of ai or bi has

to be colored blue.

(c) For each set {xi) Zj, x,} such that z, 6 S3 and

~i, Zj E S1 (resp. Z;, Zj c S2), aP (resp. bP) must

be colored red.

Theorem 3.1 The following two

(a) The (3, 3)-reduction problem

able.

statements are true:

is polynomzally solv-

(b) If the (3, 3)-RP has no solution, no valid coloring

of A lJ B exists.

Proof Idea. Part (a) is proved by showing how to re-

duce the (3, 3)-reduction problem in polynomial time to

the symmetric 2-SAT and noting that the later prob-

lem is polynomially solvable. To prove part (b) con-

struct the graph G from the collection of clauses D aa

described in section 3.2. If no satisfying assignment ex-

ists, the~raph G has a directed cycle containing both

di and di for some i. The proof can be completed by

showing that in that case no valid coloring of all the

elements of A u B is possible. ❑

3.4 THE 3-HYPERPLANE PROBLEM

We prove the following problem, which we term w the

3-hyperplane problem (3HP), to be NP-complete.

INSTANCE: A set of points in an n-dimensional hy-

percube labeled ‘+’ and ‘–’.

QUESTION: Does there exist a separation of one or

more of the following forms:

(a)

(b)

A set of two halfspaces FM > a. and Hz : ~Z > b.

such that all the ‘+’ points are in 111 A H2, and all

the 1–) points belong to ~ V ~?

A set of 3 halfspaces HI : ii5 > ao, H2 : ~Z > b.

and 113 : (a + b); > co such that all the ‘+’ points

bel~ to_l’l AH2 AH3 and all the ‘–’ points belong

to H1VH2V~?

Theorem 3.2 The $hyperplane problem a’sNP-complete.

Proof. We first notice that this problem is in NP aa an

affirmative solution can be verified in polynomial time.

To prove NP-completeness of the 3HL, we reduce the

(2,3)-set splitting problem to it. Given an instance 1 of

the (2,3)-SSP:

1: S={ Si}, C={ Cj}, cjCS, lSl=n, lc~l=3 for

all ~

we create the instance I’ of the 3-hyperplane problem

(like in [5]):

* The origin (On) is labeled ‘+’; for each ele-

ment sj, the point pj having 1 in the jth coor-

dinate only is labeled ‘–’; and for each clause

c1 = {si, sj, Sk}, we label with ‘+’ the point

Pijk which has 1 in its iih, jth, and k$h coordi-
nates.

The theorem is proved by showing that an instance I’

of the 3-hyperplane problem has a solution if and only if

instance 1 of the (2,3)-SSP has a solution using Theorem

3,1 and some additional arguments. ❑

3.5 LOADING THE 2 7-NODE

ARCHITECTURE IS NP-COMPLETE

Next, we prove that loading the 2 r-node architecture

is NP-complete. We do so by comparing it to the 3-

hyperplane problem. To this end, we construct a gadget

that will allow the architecture to produce only separa-

tions of type 2 (section 3.1), which are similar to those

of the 3HP.

We construct such a gadget with two steps: first, in

Lemma 3.1, we exclude separation of type 3, and then

we exclude in separations of type 4 in Lemma 3.2. Their

proofs are omitted in this abstract.

Lemma 3.1 Consider the 2-dimensional hypercube tn

which (O, O), (1,1) are labeled ‘+’, and (1, O), (O, 1) are

labeled ‘–’. Then the following statements arc true:

(a)

(b)

There do not exist three halfspaces HI, H2, H3 as

described in type 3(a)-(d) in section 3.1 which cor-

rectly classify th~s set of points.

There exist two halfspaces of the form HI : Z; > a.

and H2 : ~Z > bo, where ao, b. <0, such that all the

‘+’ and ‘–’ points belong to Hl A H2 and XV ~,
respect ively.

53

Lemma 3.2 Consider the labeled sei A: (0,0,0), (1,0,1),

(0,1,1) are labeled ‘-k’, and (0,0,1), (0,1,0), (1, 0,0),

(1,1,1) are labeled ‘–’. Then, there does not exist a sep-

aration of these points by type 4 halfspaces as described

in section 3.1.

Proof of theorem 2.1. First we observe that the

problem is in NP as follows. The classifications of the

labeled points produced by the 2 ~-node architecture

(as discussed in section 3.1) are 3-polyhedrally separa-

ble, Hence, from the result of [22] one can restrict all

the weights to have at most O(n log n) bits. Thus, a

“guessed solution can be verified in polynomial time.

Next, we show that the problem is NP-complete, Con-

sider an instance I = (S, C) of the (2,3)-SSP. We trans-

form it into an instance 1’ of the problem of loading the

2 mnode architecture as follows: we label ~oints on the

+5) hypercube similar to as is * (sec~ion 3.4).

The origin (01s1+5) is labeled ‘+’; for each ele-

ment s,, the point pj having 1 in the jth coor-

dinate only is labeled ‘-’; and for each clause cl =

{si, $j, s~}, we label with ‘+’ the point Pijk which

hss 1 in its i’h, jth, and kth coordinates. The
points (0’’,0,0,0,0,0), (0’’,0,0,0,1,1), (On,lj 0}1, O,O)
and (O”, O, 1, 1,0, O) are marked ‘+’, and the points
(0’’) 0,0,0,1,0), (On, o,o, o,o)l), (o~, o,o,l, o,o),

(0’’,0, 1,0,0,0), (0’’,1,0,0,0,0) and (On,l,l,l, O,O)

are labeled ‘—’.

To complete the proof we need to show that a solution

for 1 exists iff the given architecture correctly classifies

all the ‘+’ and ‘–’ points of the instance 1’, This can

be done using Lemma 3.1, Lemma 3.2, the results in

[5] and the different types of classifications produced by

this architecture as described in section 3.1. ❑

Remark 3.1 From the above proof of theorem 2.1 it is

clear that the NP-completeness result holds even if all

the weights are constrained to lie in the set {–2, –1, 1}.

Thus the hardness of the loading problem holds even if

all the weights are ‘[small” constants.

4 PROOF FOR THE HARDNESS OF

LOADING FOR THE

“RESTRICTED” (2, r) (r, H)-NODE

ARCHITECTURE WITH

VARYING INPUT DIMENSION

In this section we discuss the proof of Theorem 2.2.

Before proving Theorem 2.2 we show, given an instance

1 of the (2, 3)-SSP, how to construct an instance 1’ of

the (r + 2, 3)-SSP such that 1 has a solution iff 1’ has

one.

Let I = (S, C) be a given instance of the (2, 3)-SSP. We

construct I’ by adding 2r + 2 new elements Y = {yi I

1 ~ i ~ 2r +2} and creating the following new sets:

●

●

Let

Create the sets {si, yj, y~} for all 1 ~ z ~ n, 1 <

j, k ~ 2r + 2, j # k. This ensures that if a set

in a solution of the set-splitting problem contains

an element of S, it may contain at most one more

element of Y,

Create the sets {Vi, yj, y~} for all 1< i,~, k s 2r-1-2,

i # j # k. This ensures that no set in a solution
of the set-splitting problem may contain more than

two elements of Y.

I’ = (S’ .01 be the new instance of the [r+ 2. 3)-

SSP, whe~e S’ ~ S U Y, and C’ contains all /he ‘sets ~f

C and the additional sets as described above,

Lemma 4,1 The instance I’ of the (r + 2, 3)-SSP has

a solution if and only if the instance I of the (2, 3)-SSP

has a solution.

Proof.

+

Let (S1, S2) be a solution of 1. Then, a solution

(2’,, !!-2,..., T,+z) of the instance 1’ is as follows:

Ti = {~zi-ljyzi} for 1< i ~ r

Tr+~ = S1 u {yz,+l}

Tr+z = S2 U {yz,+2 }

+

Let (T1, T2,. ... Tr+z) be a solution of 1’.

Case 1. There are at most two sets of T1, T2, . ~., Tr+2

which contain all the elements of S, Then these two sets

constitute a solution of I.

Case 2. Otherwise, there are m (m z 3) sets,

Tl, ..., Tm, each containing a distinct element of S. At

most one element of Y occurs in each Ti (since two ele-

ments of Y cannot be in the same set with an element of

S without violating the set-splitting constraint), hence

m < r +2. So, there are r + 2 – m remaining sets in the
solution of the instance 1’ and at least 2r + 2 — m ele-

ments of Y to be placed in those sets, By the pigeonhole

principle, one of these remaining r + 2 – m sets must

contain at least three elements of Y (since m z 3), thus

violating the set-splitting constraint. So, case 2 is not

possible. ❑

Proof of Theorem 2,2. The ‘+’ and ‘–’ points are

(r+ 3)-polyhedrally separated by the output of the net-

work in which the Boolean formula for the polyhedral

separation is the formula for the NAND function. Hence,

54

from the result of [22] we can restrict all the weights to

have at most p(n + r) number of bits (where p(z) is

some polynomial in z). Since r is a polynomial in n,

any “guessed” solution may be verified in polynomial

time, So, the problem is in NP.

We next show that the problem is NP-complete. Given

an instance 1 of the (2, 3)-SSP, we construct an instance

1’ of the “Restricted” (2, r) (r, H)-node architecture as

follows. We create first an instance I“ of the (r+ 2, 3)-

SSP (see Lemma 4.1). We then add the following la-

beled points, thus constructing the associated instance
7)

1,

The instance 1’ is the architecture along with the

following set of points: The origin (O1s’1) is labeled

‘+’; for each element S, 6 S’, the point ~j having
1 in the jth coordinate only is labeled ‘ —‘; and for

each clause cl = {s,, Sj, sk } ~ C’, we label with

‘+’ the point pi,k which haa 1 in its i$~, jth, and

kth coordinates.

e
Given a solution (S1, S2) of 1, we construct a solu-

tion (T1, Tz, 0.,, T,+2) of I“ as described in the proof

of Lemma 4.1. Consider the following r + 2 halfspaces:

where,

All labeled points of I’ are separated by these halfs-

paces: the ‘i-f points lie in A~~fHi and the ‘–’ points

We map the r + 2 halfspaces to the

(T, ?f)-node architecture as follows.

compute:

n

j=l
.

“Restricted” (2, r)

The hidden nodes

i=l. ..r

.
Ivr+l = ‘[-(~ 6r+l,jzj)l

j=l

j=l

and the output node NV+3 computes:

*
Conversely, given a solution to the instance I’, we con-

struct a solution to I. The classification produced by

the “Restricted” (2, r) (m, W)-node architecture is as fol-

lows. Each hidden threshold node Ni (1 ~ i ~ r) defines

a halfspace Hi:

n

j=l

for some real numbers 6i,1, . ~., bi,n and vi. From the

classifications produced by the 2 ~-node architecture as

described in section 3.1 and since the output node N,+a

computes a Boolean NAND function, there are at most

j halfspaces (for 2 ~ j s 3) corresponding to the nodes

N.+l and Nr+z:

n

H.+1 : ~ aiz; > afj

i=l

n

Hr+2 : ~bixi > b.

;=1

Ht:~(ai+bi)~i>co (r+3~i!~~+j)

i=l

All the ‘+’ points lie in A~g” Hi, and all the ‘–’ points

lie in V~~~.

Let Ti be the ‘–’ points separated from the origin by

the halfspace Hi of the output of the network (for 1 ~

i < r + j, 2 ~ j < 3). No Ti contains three elements of

the same set of the instance 11, otherwise the set itself

will be in Ti as well, contradicting its positive label-

ing, Consider the sets Ti as the solution of the instance

I“. By Theorem 3.2 the sets T,+l to T.+j can be com-

bined to 2 sets, say T/fl and T~~2, without violating

the set-splitting constraints. Hence, we have r + 2 sets,

Tl, T2, Tr. T’ T’

1“
r I j ~+2 ~ w the r + 2 solution sets for

the instance I“ w lch satisfy the set-splitting constraint.

Hence, by Lemma 4.1 we can construct the two solution

sets (S1, S2) of the inst ante 1. 0

Remark 4.1 The proof of Corollary 2.1 follows by us-

ing the Theorems 2.1 and 2.2 and a technzque used in

the proof of Theorem 9 in [16].

References

[1]

[2]

Albertini, F., E.D. Sontag, and V. Maillot,

“Uniqueness of weights for neural networks,” in Ar-

tificial Neural Networks for Speech and Vision (R.

Mammone, cd.), Chapman and Hall, London, 1993,

pp. 115-125.

Barron, A. R., “Approximation and estimation

bounds for artificial neural networks”, Proc. dth

Annual Workshop on Computational Learning

Theory, Morgan Kaufrnann, 1991, pp. 243-249. See

also “Universal Approximation Bounds for Super-

positions of a Sigmoidal Function ,“ IEEE Trans.

Info. Theory 39(1993): 930-945.

55

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Batruni, R., “A multilayer neural network with

piecewise-linear structure and back-propagation

learning,” IEEE Transactions on Neural Networks

2(1991): 395-403.

Baum, E, B., and Haussler, D., “What size net

gives valid generalization? ,“ Neural Cornput ation,

1(1989): 151-160

Blum, A., and Rivest, R. L., “Training a 3-Node

Neural Network is NP-Complete,” Neural Net-

works, 5(1992): 117-127.

Brown, J., M. Garber, and S. Vanable, “Artificial

neural network on a SIMD architecture,” in Proc.

2nd Symposium on the Frontier of Massively Par-

allel Computation, Fairfax, VA, 1988, pp. 43-47,

Darken, C., Donahue, M., Gurvits, L., and Son-

tag, E., “Rate of approximation results motivated

by robust neural network learning,” Proc. 6th

ACM Workshop on Computational Learning The-

ory, Santa Cruz, July 1993, pp. 303-309.

DasGupta, B., and Schnitger, G., “The power of

approximating: a comparison of activation func-

tions,” in Advances in Neural Information Pro-

cesstrzg Systems 5 (Giles, C. L., Hanson, S. J., and

Cowan, J .D., eds), Morgan Kaufmann, San Mateo,

CA, 1993, pp. 615-622.

DasGupta, B., Siegelmann, H. T., and Sontag, E,,

“On the Complexity of Training Neural Networks

with Continuous Activation Functions”, Tech Re-

port # 93-61, Department of Computer Science,

University of Minnesota, September, 1993.

Garey, M. R., and Johnson, D., Computers and

Intractability: A Guide to the Theory of NP-

Completenessj W .H .Freeman and Company, San

Francisco, 1979.

Goldberg, P., and Jerrum, M., “Bounding the

Vapnik-Chervonenkis dimension of concept classes

parametrized by real numbers,” Proc. 6th ACM

Workshop on Computational Learning Theory,

Santa Cruz, July 1993, pp. 361-369.

Hoffgen K-U., “Computational limitations on

training sigmoidal neural networks,” Information

Processing Letters, 46(1993), pp. 269-274.

Jones, K. L., “A simple lemma on greedy approxi-

mation in Hilbert space and convergence rates for

projection pursuit regression and neural network
training,” Annals of Statistics, 20(1992): 608-613.

Judd, J .S., “On the complexity of learning shallow

neural networks,” J. of Complexity, 4(1988): 177-

192.

Judd, J. S., Neural Network Design and the Com-

plexity of Learning, MIT Press, Cambridge, MA,

1990.

Kearns, M., Li, M., Pitt, L., and Valiant, L., ‘(On

the learnability of Boolean formulae,” Proc. of the

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

19th ACM Symp. Theory of Computing, 1987, pp.

285-295.

Lin, J-H., and Vitter, J. S., “Complexity results on

learning by neural networks,” Machine Learning,

6(1991): 211-230.

Lippmann, R., “An introduction to computing

with neural nets,” IEEE Acoustics, Speech, and

Signal Processing Magazine, 1987, pp. 4-22.

Macintyre, A., and Sontag, E. D., “Finiteness re-

sults for sigmoidal ‘neural’ networks,” Proc. .25th

Annual Symp. Theory Computing, San Diego, May

1993, pp. 325-334.

Maass, W,, “Bounds for the computational power

and learning complexity of analog neural nets,”

Proc. of the 25th ACM Symp. Theory of Compui-

ing, May 1993, pp. 335-344.

Megiddo, M., “On the complexity of polyhedral

separability y,” Discrete Computational Geometry,

3(1988): 325-337.

Muroga, S., Threshold Logic and its Applications,

John Wiley & Sons Inc., 1971.

Papadimitriou, C. H., and Steiglitz, K., Combina-

torial Optimization: Algorithms and Complexity,

Prentice-Hall, Englewood Cliffs, 1982.

Sontag, E. D., “Feedforward nets for interpolation

and classification ,’) J. Comp. Syst. Sci., 45(1992):

20-48.

Sontag, E.D. and H .J. Sussmann, “Backpropaga-

tion can give rise to spurious local minima even for

networks without hidden layers,” Complex Systems

3(1989): 91-106.

Sussmann, H. J., “Uniqueness of the weights for

minimal feedforward nets with a given input-

output map,” Neural Networks 5(1992): 589-593.

Zhang, B., L. Zhang, and H. Zhang, “A quantita-

tive analysis of the behavior of the PLN network,”

Neural Networks 5(1992): 639-661.

Zhang, X-D., “Complexity of neural network learn-

ing in the real number model,” preprint, Comp. Sci.

Dept., U. Mass., 1992.

56

