
. . A . . Via Neural Networks Analog computation

Hava T. Siegelmann

Department of Computer Science
Rutgers University

New Brunswick, NJ 08903

Abstract

W e pursue a particular approach to analog compu-
tation, based on dynamical systems of the type used
in neural networks research. Our systems have a fized
structure, invariant in time, corresponding to an un-
changing number of “neurons”. If allowed ezponential
time for computation, they turn out to have unbounded
power. However, under polynomial-time constraints
there are limits on their capabilities, though being
more powerful than Turing Machines. (A similar but
more restricted model was shown to be polynomial-time
equivalent to classical digital computation in the pre-
vious work [17].) W e note that these networks are
not likely t o solve polynomially NP-hard problems, as
the equality “ P = NP ” in our model implies the al-
most complete collapse of the standard polynomial hi-
erarchy. In contrast to classical computational models,
the models studied here ezhibit at least some robustness
with respect to noise and implementation errors.

1 Introduction

“Neural networks ” have attracted much attention
lately as models of analog computation. Such nets con-
sist of a finite number of simple processors, each of
which computes a scalar -real-valued, not binary -
function of an integrated input. This scalar function,
or “activation, ” is meant to reflect the graded response
of biological neurons to the net sum of ezcitatory and
inhibitory inputs affecting them. The ezistence of feed-
back loops in the interconnection graph gives rise to a
dynamical system. In this paper, we introduce a math-
ematical model f o r such recurrent neural networks,
and we study their computational abilities.

1.1 Main Results

W e focus on recurrent neural networks. In these
networks, the activation of each processor is updated

98

Eduardo D. Sontag

Department of Mathematics
Rutgers University

New Brunswick, NJ 08903

according to a certain type of piecewise af ine function
of the activations (z j) and inputs (uj) at the previous
instant, with real coeficients -also called weights-
(ai j , bij, ~ i) . Each processor i, (i = 1,. . . , N) updates
its state by an equation of the type

(” j = l j = l)
M

zi(t + 1) = 0 a i j z j (t) + bijuj(t) + ci (1)

where N is the number of processors and M is the
number of external input signals. The function U is
the simplest possible “sigmoid, ” namely the saturated-
linear function:

0 i f x < O
(2) a(.) := z if 0 5 z 5 1 { 1 i f z > l .

W e will give later a precise definition of language ac-
ceptance for these computational models.

W e prove that neural networks can recognize in
polynomial time the same class of languages as those
recognized by Turing Machines that consult sparse
oracles in polynomial time (the class P/poly); they
can recognize all languages, including of course non-
computable ones, in exponential time. Furthermore,
we show that almost every language requires ezponen-
tial recognition time. (For simplicity, we give our
main results in terms of recognition; it i s also pos-
sible to provide a more general version regarding the
computation of more general functions.)

The proofs of the above results will be consequences
of the following equivalence. For functions T : IN 3 IN
and S : IN + IN, let NETR (T) be the class of all func-
tions computed b y neural networks in time T(n) -that
is, recognition of strings of length n is in time at most
T(n) - and let CIRCUIT (S) the class of functions com-
puted by non-uniform families of circuits of size S(n)
-that is, circuits for input vectors of length n have
size at most S(n). We show that i f F is so that F (n) 2
n, then NETR (F(n)) C CIRCUIT (Poly(F(n))) and

0-8186-3630-0193 $3.00 0 1993 IEEE

-- - -

CIRCUIT (F(n)) C NETR (Poly(F(n))). This equiv-
alence will allow us to make use of results from the
theory of (nonuniform) circuit complezity.

We show that i f one allows multiplications in ad-
dition to only linear operations in each neuron, that
is, i f one considers instead what are often called high
order neural nets, the computational power does not
increase. Even further, and perhaps more surprising,
no increase in computational power (up to polynomial
time) can be achieved by letting the activation function
be not necessarily the simple saturated linear one in
equation (2)) but any function which satisfies certain
reasonable assumptions. Also, no increase results even
i f the activation functions are not necessarily identical
in the diferent processors.

One might ask about using such analog models,
maybe high order nets, to “solve” NP-hard problems
in polynomial time. We introduce a nondeterministic
model and show that the equality P = NPin the nets
model is very not likely as it would imply the collapse
of the polynomial hierarchy to CZ.

The models used here have a weak property of %-
bustness” to noise and to implementation error, in the
sense that small enough changes in the network would
not aflect the computation. The robustness includes
changes in the precise form of the activation function,
in the weights of the network, and even an error in
the update. I n classical models of (digital) computa-
tion, this type of robustness can not even be properly
defined.

A Previous Related Result

In our previous work [17], we showed that i f one re-
stricts to nets all whose interconnection weights are
rational numbers, which we call rational nets, then
one obtains a model of computation that is polynomi-
ally related to Turing Machines. More precisely, given
any multi-tape Turing Machine, one can simulate it in
real time by some network with rational weights, and
of course the converse simulation in polynomial time
is obvious. Here we are interested in the case when
weights are arbitmry real numbers. (It turns out that,
as far as the results given here, the ezistence of just
one irrational weight is all that is needed.)

1.2 The Model

The model we work with i s that described by an iter-
ation equation such as (1). For notational simplicity,
we often summarize this equation, writing “ x + (t) ” in-
stead of %(t + 1) ” and then dropping arguments t ; we

also write this in vector fom, an

x+ = U(AX + BU + C) (3)

where x is now a vector of size N = number of pro-
cessors, U is a vector of size M = number of inputs,
c is an N-vector, and A and B are, respectively, real
matrices of sizes N x N and N x M. (Now U de-
notes application of U into each coordinate of x.) Of
course, one can drop the vector c from this descrip-
tion at the cost of adding a coordinate xo 1 1, but it
is oflen useful to have c ezplicitly, and this allows us
to take initial states to be z = 0, which corresponds to
the intuitive idea that the system is at rest before the
first input appears.

As part of the description, we assume that we
have singled out a subset of the N processors, say
t i l , ..., Xi,; these are the p output processors, and
they are used to communicate the outputs of the net-
work to the environment. Thus a net is specified by
the data (A, B, c) together with a subset of its nodes.

I n our further development, both input and output
channeb will be forced to carry only binary data. Input
and output are streams, that is, one input letter is
transferred at each time (via M binaqt lines) and one
output letter is produced at a time (and appears in the
output via p binary lines). As opposed to the I/O, the
computations inside the network will in general involve
continuous real values.

We call a system defined by equations such as (9)
simply a network or processor network. I n the neu-
ral network literature, these are called recurrent first-
order neural nets. W e show later that considering
higher-order nets, those in which multiplications of ac-
tivations and/or inputs are allowed, does not result in
any gain in computational capabilities (up to polyno-
mial time).

The Finite Structure

We should emphasize from the outset that our net-
works are built up of finite19 many processors, whose
number does not increase with the length of the in-
put. There is a small number of input channels (just
two in o w main result), into which inputs get pre-
sented sequentially. We aasume that the structure of
the network, including the values of the interconnec-
tion weights, does not change in time but rather re-
mains constant. What changes in time are the ac-
tivation values, or outputs of each processor, which
are used in the nezt iteration. (A synchronous update
model is used.) In this sense our model is very “uni-
form” in contmst with certain models used in the past,
including those used in [9] or in the cellular automata

99

literature, which allow the number of units to increase
over time and often even the structure to change de-
pending on the length of inputs being presented.

The Meaning of Real Weights

One may ask about the meaning of real weights. In
response, we recall that our intention is to model sys-
tems in which certain real numbers -corresponding to
values of resistances, capacitances, physical constants,
and so forth- may not be directly measurable, indeed
may not even be computable real numbers, but they
affect the “macroscopic” behavior of the system. For
instance, imagine a spring/mass system. The dynam-
ical behavior of this system is influenced by several
real valued constants, such as s t i f iess and f ic t ion
coeficients. On any finite time interval, one could
replace these constants by rational numbers, and the
same qualitative behavior is observed, but the long-
term characteristics of the system depend on the true
values. We take this use of real numbers as a basic
feature of analog computation. (Another characteris-
tic would be the use of differential as opposed to dif-
ference equations, but technical dificulties make that
further study harder, and we will defer it to future
work.)

What is interesting is to find a class of such sys-
tems which on the one hand is rich enough to ezhibit
behavior that is not captured by digital computation,
while still being amenable to useful theoretical analy-
sis, and in particular so that the imposition of resource
constmints results in nontrivial reduction of computa-
tional power. That this is in accordance with models
currently used in neural net studies, is especially at-
tractive.

The remainder of this paper is organized as follows:
Section 2 includes the baeic definitions of networks and
circuits, and states the main theorem regarding the re-
lationships between these two models. Sections $ and 4
contain the proof of this theorem: Section 9 shows that
CIRCUIT (F (n)) CNETR (Poly(F(n))) , and section 4
proves that NETR (F (n)) CIRCUIT (Poly(F(n))) . Sec-
tion 5 states some corollaries for neural networks
which follow from the above relation with circuits. W e
also define there a notion of nondeterministic network.
In section 6, we show that our model does not gain
power if one lets each neuron compute a polynomial
function -rather than just affine combinations- of
the activations of all the neurons and the ezternal in-
puts, OT by allowing more general activation functions
than the piecewise linear one.

We now turn to precise definitions.

2 Basic Definitions

As we discussed above, we consider synchronous
networks which can be represented as dynamical sys-
tems whose state at each instant is a real vector x (t) E
RN. The i th coordinate of this vector represents the
activation value of the i th processor at time t . In ma-
triz form, the equations are as in ($), for suitable ma-
trices A, B and vector c.

Given a system of equations such as (S), an ini-
tial state x (1) , and an infinite input sequence U =
u (l) , u (2) , ... , we can define iteratively the state
x (t) at time t , for each integer t 2 1, as the value ob-
tained by recursively solving the equations. This gives
rise, in turn, to a sequence of output values, by re-
stricting attention to the output processors; we refer
to this sequence as the “output produced by the input
U” starting from the given initial state.

2.1 Recognizing Languages

To define what we mean by a net recognizing a lan-
guage L (0, l}+, we must first define a formal net-
work, a network which adheres to a r ig id encoding of
its input and output. We proceed as in [17] and define
formal nets with two binary input lines. The first of
these is a data line, and it as used to carry a binary
input signal; when no signal is present, it defaults to
zero. The second is the validation line, and it indi-
cates when the data line is active; it takes the value
“1” while the input is present there and “0” there-
after. We use “D” and “V” to denote the contents of
these two lines, respectively, so

4 t) = (D (t) , W)) E (0, 112

for each t . We always take the initial state x(1)
to be zero and to be an equilibrium state, that is,
a(A0 + BO + c) = 0 . We assume that there are two
output processors, which also take the role of data and
validation lines and are denoted Od(t) , O,(t) respec-
tively.

(The convention of using two input lines allows us
to have all ezternal signals be binary; of course many
other conventions are possible and would give rise to
the same results, for instance, one could use a three-
valued input, say with values { - l , O , l}, where ’9” in-
dicates that no signal is present, and fl are the two
possible binary input values.)

We now encode each word CY = a1 -.-ak E { O , 1}+
as follows. Let uLo(t) = (Va(t), D a (t)) , t = 1, ... ,
1 1 ~ bere -

1
0 otherwise ,

i f t = 1, ..., k
K(t) =

100

1 1 1 1 1

and
i f t = 1, ..., k

Da(t) = { ? otherwise .
Given a formal net h f , with two inputs as above, we
say that a word a w classified in time T , i f the follow-
ing property holds: the output sequence

dt) = (Od(t)i

produced by U, when starting from z(1) = 0 has the
form o* = 0 . . .0~ ,000 .~ . , 0, = 0 . * ~ 0 1 0 0 0 - ~ ~ , v v

7- 1 7-1
where r), = 0 or 1.

Let T : IN --+ IN be a function on natural numbers.
W e say that the language L C {0,1}+ is recognized in
time T by the formal net hf provided that each word
a E {0,1}+ is classified in time T 5 T(lal), and
equab 1 when a E L and is = 0 otherwise.

2.2 Circuit Families

W e briefly recall some of the basic definitions of
non-uniform families of circuits. A Boolean circuit ia
a directed acyclic graph. Its nodes of in-degree 0 are
called input nodes, while the rest are called gates and
are labeled by one of the Boolean functions AND, OR,
or NOT (the first two seen as functions of many vari-
ables, the last one as a unary function). One of the
nodes, which has no outgoing edges, is designated as
the output node. The size of the circuit w the total
number of gates. Adding i f necessary eztra gates, we
aasume that nodes are arranged into levels 0 , 1, . . ., d,
where the input nodes are at level zero, the output node
is at level d, and each node only has incoming edges
from the previous level. The depth of the circuit is d,
and its width is the mazimum size of each level. Each
gate computes the corresponding Boolean function of
the values from the previoua level, and the value ob-
tained w considered as an input to be used by the suc-
cessive level; in this fashion each circuit computes a
Boolean function of the inputs.

A family of circuits C is a set of circuits {cn, n E
IN} . These have sizes Sc(n) , depth Dc(n), and width
Wc(n) , n = 1 ,2 , . . ., which are assumed to be mono-
tone nondecreasing functions. If L s {0 , I }+ , we say
that the language L is computed by the family C i f the
characteristic function of L n { O , l}n is computed by
c,, , for each n E IN.

The qualifier “nonuniform” serves as a reminder
that there is no requirement that circuit families be
recursively described. It is this lack of classical com-
putability that makes circuits a possible model of
resource-bounded “computing, ” as emphasized in [l d] .

W e will show that recurrent neural networku, although
more ”uniform” in the senue that they have an un-
changing physical structure, share ezactly the same
power.

If L is recognixed by the formal net Af in time T ,
we write 4~ = L and TH = T . If L is computed by
the family of circuits C, we write 4c = L. W e are
interested in comparing the functions TN and SC for
formal nets and circuits so that 4~ = 4c.

2.3 Statement Of Result

Recall that N E T R (T (~)) is the class of languages
recognized by formal networks (with real weights) in
time T(n) and that CIRCUIT (S(n)) is the class of lan-
guages recognized by (non-uniform) families of circuits
of size S(n).

Theorem 1 Let F be so that F (n) 2 n.
NETR (F (n)) CCIRCUIT (Poly(F(n))), and
CIRCUIT (F (n)) ~ N E T R (Poly(F(n))).

Then,

I

More precisely, we prove the following two facts.
For each function F (n) 2 n:

CIRCUIT (F(n)) NETR (nFa(n)).

0 NETR (F (n)) CIRCUIT (F3(n)).

3 Circuit Families Are Simulated By
Networks

We start by reducing circuit families to networks.
The proof will construct a fized, uuniversaln net, hav-
ing roughly N = 1000 processors, which, through the
setting of a particular real weight which encodes an
entire circuit family, can simulate that family.

Theorem 2 There exists a positive integer N such
that the following property holds: For each circuit
family C of size +(n) there exista an N-processor
formal network hf = hf(C) so that 4d = 4~ and
T N (~) = O(nS&(n)) .

The proof is provided in the remainder of this section.

3.1 The circuit Encoding

Given a circuit ci-with size si and width wi , we
encode it as a sequence over the alphabet {0,2,4,6}

101

called en[ci]. This sequence corresponds to a concate-
nated encoding of its gates provided in a bottom-up
manner.

W e encode a non-uniform family of circuits, C as
an infinite sequence

e(C) = 8 EE[cl] 8 EE[cz] 8 EE[cg] - - , (4)

where q c i] is the encoding of ci in the reversed order.
This allows fo r a decoding procedure that reveals the
gates in a bottom u p manner, thus allowing for a quick
simulation of the circuit.

Let c* be the interpretation of formula (4) in base 9.
That is,

m

where ri is the i th bit of e(C).

A Possible Encoding

Given a circuit c-with size s, width w , and wi gates
in the i th level-we encode it as a finite sequence over
the alphabet {0,2,4,6} , as follows:

0 The encoding of each level i starts with the letter
6. Levels are encode d successively, starting with
the bottom level and ending with the top one.

0 At each level, gates are encoded successively. The
encoding of a gate g consists of three parts-a
starting symbol, a %digit code fo r the gate type,
and a code to indicate which gate feeds into it:

- It starts with the letter 0.
- A two digit sequence {42,44,22} denotes the

type of the gate, { A N D, OR, NOT} respec-
tively.

- If gate g is in level i , then the input to g is
represented as a sequence in {2,4}”’-1, such
that the j t h position in the sequence is 4 if
and only i f the j t h gate of the (i - 1)th level
feeds into gate g .

The encoding of a gate g in lese1 i is of length (wi- l+
3) . The length of the encoding of a circuit c is l (c) E
Ien(c)I = O(sw) .

Cantor Like Set Encoding

The number c ̂ which encodes a family of circuits, or
one that is a suf iz of such an encoding, is a num-
ber between [0,1]. However, not every value in [0,1]

appears. The set of possible values is not continuoua
and has uholes”. Such a set of values uwith holes” is
a Cantor set. Its self-similar structure means that bit
(base 9) shifts preserve the “holes.”

The advantage of this approach is that there is never
a need to distinguish among two very close numbers in
order to read the desired circuit out of the encoding;
the circuit can be then retrieved with finite-precision
operations employing a finite number of neurons.

I n the proof, we ezhibit a network having as one of
its weights e (all other weights are rational numbers),
which upon receiving an input a of size n, computes
(i.e. retrieves) en[c,]. Then the network simulates the
operation of circuit ci on the input a step by step.

3.2 A Circuit Retrieval

Lemma 3.1 For each (non-uniform) family o f cir-
cuits C there exists a 16-processor network NR(C) with
one input line such that, starting from the zero initial
state and given the input signal

u (1) = 1 1 e . . 100.. .12 = 1-2-” , v
n

u(t) = 0 f o r t > 1 ,

n / R (C) outputs

Proof. Let C = {0,2,4,6,8}. Denote by Cg the “Can-
tor g-set,” which consists of all those real numbers q
which admit an ezpansion of the form

00

q =
i=l

with each ai E E. Let A : R -+ [0,1] be the function

i f x < O

i f x > l .
- L9.J i f 0 < x 5 1 (7) A[x] :=

Let E : R --+ [0,1] be the function

i f x < O

i f x > l .
i f O < x < 1 (8)

Note that, for each

we may think of E[q] as the “select left” opemtion,
since

and of A[q] as the “shift left” opemtion, since
2[q] = a1 7

00

A[q] = ai+l/gi E C9 *

i= l

For each i 2 0 , q E C g , 2[Ai[q]] = ai+1 . The following
procedure summarizes the task to be performed by the
network constructed below, which in turn satisfies the
requirements of the lemma.

Procedure Retrieval(C, n)
Variables counter, y , z
Begin

counter c 0, y t 0, z c C,
While counter < n

Parbegin
e c A[%]
i f 2 [z] = 8 then increment counter

Parend,
While Z[z] < 8

Parbegin
z c A[z]
Y + ;b + E[t-I)

Parend,
Retum(y)

End

The functions A and E can not be pmgmmmed
within the neuml network model due to their &:on-
tinuity. However, we can program the functions A, E,
which coincide with A, Z respectively on Cg:

8

= C(--l)j49q - j) 7 (9)
j = O

and
3

q q] = 2 a(9q - (2 j + 1)) . (10)
j =O

It is easy to provide a network of 16 processors that
ezecutes the above procedure for the substitute func-
tions A and 2. I

3.3 Circuit Simulation By A Network

Let a E {0,1}” be a binary sequence. Denote by
en[&] the sequence E {2,4}” that substitutes (2ai + 2)
for each ai, and by =[a] the interpretation of en[a] in
base 9, that is, en[a]lg. We nezt construct a “universal
net ” for interpreting circuits.

Lemma 3.2 There exists a network Af*, such that for
each circuit c and binary sequence a, starting from the
zero initial state and applying the input signal

U1 = S[c]OO. . . U 2 = S[a]OO... ,
nr, outputs

T T

where y is the response of circuit c on the input a, and
T = O(l(c) + IaI).
Proof. It is easy t o verih that, given any circuit de-
scription with gates ordered bottom up, there is a three-
tape Turing Machine which can simulate the given cir-
cuit in time O(l(c) + lal). Indeed, we proved in ([17])
that i f M is a E-tape Turing Machine with s states
which computes in time T a function f on binary in-
put strings, then there exists a rational network n’,
which consists of 9’s + s + 28k + 2 pFessors , that
computes the same function f in time O (T) . Closer
counting shows that less than 1000 processors sufice.

I

Remark 3.3 If the lemma would only require an es-
timate of a polynomial number of processors, as o p
posed to the more precise estimate that we obtain,
the proof would have been immediate from the con-
sideration of the circuit value problem (CVP). This is
the problem of recognizing the set of all pairs <z, y>,
where 2 E {0,1}+, and y encodes a circuit with 1.1
input lines which outputs 1 on input z. It is known

0 that CVP E P ([3] volume I , pg 110).

3.4 The General Proof

Proof of Theorem 2.
Let C be a circuit family. We construct the required
formal network as a composition of the following three
networks:

e A n input network, n/l, which receives the input

U1 = aoo. . .
U2 = 1 1 ... 1 o o . . . , -

I 4

and computes =[a] and 2~212, f o r each a E
(0, l}+. This network is trivial to implement.

e A retrieval network, h f ~ (c) , as described in
Lemma 3.1, which receives 2~212 from h f ~ , and
computes Gi[clal]. (Note that during the encod-
ing operation, network hf~ produces an output of
zero, and A f ~ (c) remains in its initial state 0.)

103

A simulation network, hfs, as stated in Lemma
3.2, which receives G[clal] and =[a(, and com-
putes

Notice that out of the above three networks, only h f ~
depends on the specific family of circuits C. Moreover,
all weights can be taken to be rational numbers, ez-
cept for the one weight that encodes the entire circuit
family.

The time complexity to compute the response of C to
the input a is dominated by that of retrieving the cir-
cuit description. Thus, the complexity is of order T =
0 (ELIl [(ci)) . We remarked that the length of the
encoding l(ci) is of order O(Wc(i)Sc(i)), which is it-
s e r fO(S i (i)) . Since Sc (i) < S c (i + l) f o r i = ~ 2 , . . . ,
we achieve the claimed bound T = O(lal Si(la1)).

Remark 3.4 In case of bounded fan-in, the "stan-
dard encoding" of circuit cn is of length l (cn) =
O(Sc(n)log(Sc(n))). The total running time of the

0 algorithm is then O(n Sc(n) log(Sc(n))).

4 Networks Are Simulated By Circuit
Families

We nezt state the reverse simulation, of nets by
nonuniform families of circuits.

Theorem 3 Let hf be a formal network that com-
putes in time T : IN -+ IN. There exists a non-
uniform family of circuits C(N) of size O(T3) , depth
O(Tlog(T)) , and width O(T2), that accepts the same
language as hf does. I

The proof is given in the nezt two subsections. In
the first part, we replace a single formal network by a
family of formal networks with small rational weights.
(This is unrelated to the standard fact for threshold
gates that weights can be taken to have nlogn bits.)
In the second part, we simulate such a family of formal
networks by circuits.

4.1 Linear Precision Suffices

Define a processor to be a designated output proces-
sor if its activation value is used as an output of the

network (i.e. it i s an output processor) and is not fed
into any other processor. A formal network, for which
its two output processors are designated, is called an
output designated network. Its processors, which are
not the designated output processors, are called inter-
nal processors.

For the nezt result, we introduce the notion of a q-
truncation net. This is a processor network in which
the update equations take the form

N M
2: = q-Truncation [u(C aij2j + bijuj + ci)] 1

j = 1 j = 1

where q- l hnca t ion means the operation of truncating
after q bits.

Lemma 4.1 Let hf be an output designated network.
If hf computes in time T , there exists a family of T(n)-
Truncation output designated networks hfl(n) such
that

0 For each n, n/,(n) has the same number of pro-
cessors and input and output channels as N does.

The weights feeding into the internal processors
of n/,(n) are like those of h f , but truncated after
O (T (n)) bits.

0 For each designated output processor in h f , if this
processor computes 2: = u(f) , where f is a lin-
ear function of processors and inputs, then _the re-
spective processor in hfl(n) computes u(2 f - .5),
where f is the same as the linear function f but
applied instead to the processors of hfl(n) and
with weights truncated at O (T (n)) bits.

0 The respective output processors of Af and Nl(n)
have the same activation values at all times t 5
T(n).

Proof. We first measure the difference (error) between
the activations of the corresponding internal proces-
sors of n/1(n) and hf at time t 5 T(n). This calcula-
tion is analogous to that of the chop error in floating
point computation, [2]. We use the following notation:
The network has N processors and M input lines. We
denote by L the value (N + M + l), and by W a botnd
on the sum of weights. We denote by &(t), G i j l bij,
and Ei the respective activation values of processors,
and weights of Afl(n). The e m r s considered include:
6, E (0 , l) and 6, > 0 are the truncation errors at
weights and processors, respectively; and E t > 0 is the
largest accumulated error at time t in processors of
n/l(n). Network n/,(n) computes at each step

N M

2' = q-Truncation [o(z i i i j i j + + E ~) I .
j = 1 i=l

W e assume inductively on t that for all internal pro-
cessors i , j , I&(t) - zi(t)l < et. Using the global Lips-
chitz property la(a) - u(b)(< la - 4, it follows that

et < N(W‘ + 6w)Et-1+ (N + M + 1)6, + 6,
5 LWct-1+ La, + 6, .

Therefore,

t-1

et 5 C(LW)’(LG, +a,) 5 (LW)~(LC, +a,) .
i=O

We now analyze the behavior of-the output proces-
sors. W e need to prove that u (2 f - .5) = 0,l-when
u(f) = 0 , l respectively. That is, f I 0 J f < $
and f >_ 1 p > a . This happens if I f - ,fl < i.
Arguing as earlier, the condition ion et < $ suf-
fices. This is translated into the requirement (L6, +
6,) 5 $(LW)-’ . If both 6, and 6, are bounded
by +(LW)-(’-l) , this inequality holds. This hap-
pens when the weights and the processor activations
are truncated after O(t log (LW)) bits. A s L and W
are constants, we conclude as desired that a suficient
truncation for a computation of length T is O(T). I

4.2 The Network Simulation by a Circuit

Lemma 4.2 Let Afl be a family of T(n)-Truncation
output designated networks, where all networks Nl(n)
consist of N processors and the weights are all rational
numbers with O(T) bits. Then, there exists a circuit
family C of size O(T3), depth O(Tlog(T)), and width
O(T2), 80 that c, accepts the same language as Afl(n)
does on (0, l},.

This proof is omitted due to space limitations. The
crucial points are as follows. First, we change the
input convention from feeding serially into the net-
work Afl(n) via the two input lines data and validation
(where the validation line includes n consecutive 1%)
to n bits that are fed simultaneously into the circuit c, .
Then, we associate with each processor p a sukircuit
sc(p). Each processorp E hfl(n) computes a truncated
sum of up to N + 2 numbers, N of which are multipli-
cations of two T-bit numbers. Hardwiring the weights,
we can say that each processor computes a sum of
(TN + 2) (2T)-bit numbers. Using the carry-look-
ahead method, [16], the summation can be computed
via a subcircuit of depth O(log(TN)), width O(T2N) ,
and size O (T 2 N) . (This depth is of the same order as
the lower bound of similar tasks, see [5], [7].)

The proof of Theorem 9 follows immediately from
Lemma 4.1 and Lemma 4.2.

5 Corollaries

Let NET-P and NET-EXP be the classes of languages
accepted by formal networks in polynomial time and
ezponential time, respectively. Let CIRCUIT-P and
CIRCUIT-EXP be the classes of languages accepted by
families of circuits in polynomial and ezponential size,
respectively.

Corollary 5.1 NET-P = CIRCUIT-P and NET-EXP =
CIRCUIT-EXP

The class CIRCUIT-P is often called yP/poly” and co-
incides with the class of languages recognized by !Fur-
ing Machine ”with advice sequences” in polynomial
time. &om [3], volume I, Theorem 5.11, pg 122
(originally, [13]), we conclude as follows:

Corollary 5.2 NET-EXP includes all possible binary
languages. Furthermore, most Boolean functions re-
quire exponential time complexity.

The concept of a nondeterministic circuit family is
usually defined by means of an e z tm input, whose role
is that of an oracle. Similarly, we define a nondeter-
ministic network t o be a network having an eztra bi-
nary input line, the Guess line, in addition to the Data
and Validation lines. A language L accepted by a non-
deterministic formal network Af in time B is defined
05 L = {a13 a guess 794Af(a,d = 1,Tnr(a,7) I
B(lal)).

It is easy to see that Corollary (5.1), stated for the
deterministic case, holds for the nondeterministic case
as well. That is, i f we define NET-NP to be the class
of languages accepted by nondeterministic formal net-
works in polynomial time, and CIRCUIT-NP to be the
class of languages accepted by nondeterministic non-
uniform families of circuits of polynomial size, then:

Corollary 5.3 NET-NP = CIRCUIT-NP . 0

Since NPC NET-NP (one may simulate a nondeter-
ministic Turing Machine by a nondeterministic net-
work with rational weights), the equality NET-NP =
NET-P implies N K CIRCUIT-P = P/poly. Thus, from
[lo] we conclude: I f NET-NP = NET-P then the poly-
nomial hierarchy collapses to &.

The above result says that a theory of computation
similar to that which arises in the classical case of Tur-
ing machine computation is also possible for our model
of analog computation. In particula+, even though the
two models have very different power, the question of
knowing i f the verification of solutions to problems
is really easier than finding solutions, at the core of

105

modern computational complezity, has a precise corre-
sponding version in our setup, and its solution will be
closely related to that of the classical case. Of course,
it ~ O I ~ O W S from this that it i s quite likely that NET-NP
is strictly more powerful than NET-P .

6 Equivalence of Different Dynamical
Systems

W e consider dynamical systems -which we will call
generalized processor networks - with fa r less restric-
tive structure than the recurrent neural network model
which was described an equation (1). W e show that
these networks are not more powerful, up to polyno-
mial time slowdown, than the previously considered
model.

Let N , M , p be natural numbers. A generalized pro-
cessor network is a dynamical system that consists
of N processors XI, 2 2 , . . . XN , and receives its input
q (t) , uz(t), . . . u M (t) via M input lines. A subset of
the N processors, say xi1 ,..., x i p , is the set of out-
put processors of the system, used to communicate the
output of the system to the environment. In vector
form, a generalized processor network D updates its
processors via the dynamic equation

z+ = f (x , u) 7

where x is the current state of the network (a vector),
U is an external input (also possibly a vector), and
f is a composition of functions: f = $ o a, where
T : R ~ + ~ .I+ R~ is some vector polynomial in N + M
variables with real coeficients, and + : RN I+ RN is
any vector function which has a bounded range and is
locally Lipschitz. (Thus, the composite function f =
$ o T again satisfies the same properties.)

W e also assume, as part of the definition of gener-
alized processor network, that, at least for binary in-
puts of the type considered in the definition of uformal
networks,” given in section 2.1, D outputs “soft” bi-
nary information. That is, there ezist two constants
a,P, satisfying a < P and called the decision thresh-
olds, so that each output neuron of D outputs a stream
of numbers each of which is either smaller than a or
larger than P. W e interpret the outputs of each output
neuron y as a binary value:

0 i f y < f f
1 i f Y 2 P

binary(y) =

In the usual model we studied earlier, the values are
always binary, but we allow more generality to show
that even i f one allows more general analog values, no

increase in computational power is attained, at least
up to polynomial time.

A neural network is a special case of a generalized
processor network, in which all coordinates of the func-
tion $ compute the same sigmoidal function, and the
polynomial T is a first order polynomial, that is, an
afine function.

Let T : IN I+ IN be a function from integers into
integers. We say that a generalized processor network
D computes in time T if fo r every input of size n E IN,
D completes its output in no more than T(n) steps.

Theorem 4 Let D be Q generalized processor net-
work which computes via a function f = $ o a, where
the function T(n)-truncation(f) is in Plpoly. Then
there exists a neural network ND which recognizes the
same language as D and which does so with at most
a polynomial time slowdown. Furthermore, i f T(n)-
truncation(+) E P the weights utilized by ND are of
the same type as the coeficients of the polynomial T

(rational or real, respectively).

The proof of this theorem is omitted due to space limi-
tations. Briefly, we prove “linear precision sufices” to
the generalized network similarly to the proof in sub-
section 4.1:

Lemma 6.1 Assume D computes in time T , with de-
cision thresholds a, 0. Then, there is a constant c such
that the function

d n) = c T (n)

satisfies the following property. For each positive in-
teger n, let Q = q(n) . Then, Q-Truncation(D) com-
putes the same function as D on inputs of length at
most n, with decision thresholds

Then, we show that i f T(n)-truncation(f) is i n P ,
one can simulate D via Q neural network with ratio-
nal weights. If, however, T(n)-truncation(f) is in
Plpoly, real weights are required. In both cases, no
more than polynomial slow down in the computation
occurs while simulating.

Corollary 6.2 Adding flexibility to the neural net-
work model, described in Equation (l) , does not add
power to the model, except for a possible polynomial
time speed up. This flexibility includes:

Using a high order polynomial 7~ rather than an
affine function.

I I 1 I

0 Using other 4 functions rather than the satura-
tion we used earlier, including the possibility of
having different functions in different neurons.

0 Allowing for the output to be “soft binary” rather
than pure binary.

Note that networks with high order polynomials
have appeared especially in the language recognition
literature (see e.g. [8] and references there). W e em-
phasize the relationship between these models: Let N I
be neural network (of any order), which recognizes a
language L in polynomial time. Then there is a first
order network N2 which recognizes the same language
L in polynomial time.

Remark 0.3 The networks that we consider are
mildly “robust to noise and to implementation er-
ror” in the sense that small enough perturbations in
weights or the sigmoid activation function do not af-
fect the computation, as long as “soft binary” outputs
are considered. Given any time T , there is some ET so
that an error of ET would not affect the computation
up to a time T. 0

Acknowledgment

This Research was partially supported by US Air
Force Grant AFOSR-91-0343. We wish to thank
Richard Beige1 for suggesting that we study the gen-
eralization of our results to the high-order net case
treated in section 6 . W e are also grateful to Robert
Solovay fo r his useful comments during the early steps
of this research.

References

[l] Alspector J., R.B. Allen, “A neuromorphic VLSI
learning system,” in Advanced Research in VLSI:
Proceedings of the 1987 Stanford Conference, (P.
Loseleben ed.,) MIT Press, Cambridge, MA, 1987:

[2] Atkinson K.E., A n Introduction to Numerical
Analysis, Wiley, New York, 1989.

[3] Balcazar J.L., J. Diaz, J. Gabam, Structural
Complezity, Springer- Verlag, Berlin, 1988.

[4] Blum L., M. Shub, and S. Smale, “On a theory of
computation and compleaity over the real numbers:
N P completeness, recursive functions, and univer-
sal machines, ” Bull. A.M.S. 21(1989): 1-46.

[5] Chandra A.K., L. Stockmeyer, U. Vishkin, %‘on-
stant depth reducibility,” SIAM J. Computing
13(1984): 423-439.

31 3- 34 9.

[6] Eberhardt S.P., T . Daud, D. A . Kerns, T. X.
Brown, and A . P. Thakoor, “Competitive neural
architecture for hardware solution to the assign-
ment problem,” Neural Networks 4(1989): 481-
442.

[Y] Furst M., J.B.Saze, M. Sipser “Parity, circuits,
and the polynomial-time hierarchy, ” Proc. 22nd
IEEE Symp. Foundations of Comp. Sci., 1981:

[8] Gales, C.L., D. Chen, C.B. Miller, H.H. Chen,
G.Z. Sun and Y.C. Lee, “Second-Order Recur-
rent Neural Networks for Grammatical Inference,”
Proceedings of the International Joint Conference
on Neural Networks, vol. 2 (1 991), pp. 873-281.

Comm.
on Pure and Applied Mathematics 41(1988):

[lo] Karp R.M., R. Lipton, “Turing Machines that
take advice, Enseign. Math. 28(1982): 191-209.

(111 Maass W., G. Schnitger, and E.D. Sontag, “On
the computational power of sigmoid versus Boolean
threshold circuits,” Proc. 32nd IEEE Symp. Foun-
dations of Comp. Sci., 1991: 76Y-7Y6.

[12] MacLennan B.J., “Continuous symbol systems:
The logic of connectionism,” in D.S. Levine
and M. Aparicio I V (eds.), Neural Networks
for Know ledge Representation and Inference,
Lawrence Erlbaum, Hillsdale, NJ, 1992.

[13] Muller D.E., “Complezity in electronic switching
circuits, IRE 2hans. Electronic Comp. 5 (1 956):

[l4] Parbetry I., “Know ledge, understanding,
and computational complezity, ” Technical Report
CRPDC-92-2, Center for Research in Parallel and
Distributed Computing, Department of Computer
Sciences, University of North Texas, Feb. 1992.

[15] Penrose R., The Emperor’s New Mind, Ozford
University Press, Ozford, 1989.

[16] Savage J.E. The Complezity of Computing, New
Tork, Wiley, 1976.

[17] Siegelmann H.T., E.D. Sontag, “On the com-
putational power of neural nets,” in Proc. Fifth
ACM Workshop on Computational Learning The-
ory, Pittsburgh, July 1992: 440-449.

[18] Vergis A., K. Steiglitz, B. Dickinson, “The com-
plezity of analog computation,” in Math. and
Computers in Simulation 28(1986): 91-113.

[19] Wolpert D., “A computationally universal field
computer which is purely linear,” Los Alamos Na-
tional Laboratory report LA- UR-91-293Y.

260-2YO.

[9] Hong J . W., “On Connectionist Models,

1099- 1050.

.

15-19.

I

107

