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Abstract 

W e  pursue a particular approach to  analog compu- 
tation, based on dynamical systems of the type used 
in neural networks research. Our systems have a fized 
structure, invariant in time, corresponding to  an un- 
changing number of “neurons”. If allowed ezponential 
time for computation, they turn out to  have unbounded 
power. However, under polynomial-time constraints 
there are limits on their capabilities, though being 
more powerful than Turing Machines. (A similar but 
more restricted model was shown to be polynomial-time 
equivalent to  classical digital computation in the pre- 
vious work [17].) W e  note that these networks are 
not likely t o  solve polynomially NP-hard problems, as 
the equality “ P = NP ” in our model implies the al- 
most complete collapse of the standard polynomial hi- 
erarchy. In contrast to  classical computational models, 
the models studied here ezhibit at least some robustness 
with respect to  noise and implementation errors. 

1 Introduction 

“Neural networks ” have attracted much attention 
lately as models of analog computation. Such nets con- 
sist of a finite number of simple processors, each of 
which computes a scalar -real-valued, not binary - 
function of an integrated input. This scalar function, 
or “activation, ” is meant to  reflect the graded response 
of biological neurons to the net sum of ezcitatory and 
inhibitory inputs affecting them. The ezistence of feed- 
back loops in the interconnection graph gives rise to a 
dynamical system. In this paper, we introduce a math- 
ematical model f o r  such recurrent neural networks, 
and we study their computational abilities. 

1.1 Main Results 

W e  focus on recurrent neural networks. In these 
networks, the activation of each processor is updated 
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according to  a certain type of piecewise af ine function 
of the activations ( z j )  and inputs (uj) at the previous 
instant, with real coeficients -also called weights- 
(ai j ,  bij, ~ i ) .  Each processor i, (i = 1,. . . , N )  updates 
its state by an equation of the type 

(” j = l  j = l  ) 
M 

zi(t + 1) = 0 a i j z j ( t )  + bijuj(t)  + ci (1) 

where N is the number of processors and M is the 
number of external input signals. The function U is 
the simplest possible “sigmoid, ” namely the saturated- 
linear function: 

0 i f x < O  
(2) a(.) := z if 0 5 z 5 1 { 1 i f z > l .  

W e  will give later a precise definition of language ac- 
ceptance for these computational models. 

W e  prove that neural networks can recognize in 
polynomial time the same class of languages as those 
recognized by Turing Machines that consult sparse 
oracles in polynomial time (the class P/poly); they 
can recognize all languages, including of course non- 
computable ones, in exponential time. Furthermore, 
we show that almost every language requires ezponen- 
tial recognition time. (For simplicity, we give our 
main results in terms of recognition; it i s  also pos- 
sible to  provide a more general version regarding the 
computation of more general functions.) 

The proofs of the above results will be consequences 
of the following equivalence. For functions T : IN 3 IN 
and S : IN + IN, let NETR (T)  be the class of all func- 
tions computed b y  neural networks in time T(n) -that 
is, recognition of strings of length n is in time at most 
T(n) - and let CIRCUIT ( S )  the class of functions com- 
puted by  non-uniform families of circuits of size S(n) 
-that is, circuits for input vectors of length n have 
size at most S(n). We show that i f  F is so that F ( n )  2 
n, then NETR (F(n))  C CIRCUIT (Poly(F(n))) and 
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CIRCUIT (F(n) )  C NETR (Poly(F(n))). This equiv- 
alence will allow us to make use of results from the 
theory of (nonuniform) circuit complezity. 

We  show that i f  one allows multiplications in ad- 
dition to only linear operations in each neuron, that 
is, i f  one considers instead what are often called high 
order neural nets, the computational power does not 
increase. Even further, and perhaps more surprising, 
no increase in computational power (up to polynomial 
time) can be achieved by letting the activation function 
be not necessarily the simple saturated linear one in 
equation (2)) but any function which satisfies certain 
reasonable assumptions. Also, no increase results even 
i f  the activation functions are not necessarily identical 
in the diferent processors. 

One might ask about using such analog models, 
maybe high order nets, to  “solve” NP-hard problems 
in polynomial time. We  introduce a nondeterministic 
model and show that the equality P = NPin the nets 
model is very not likely as it would imply the collapse 
of the polynomial hierarchy to CZ. 

The models used here have a weak property of %- 
bustness” to  noise and to  implementation error, in the 
sense that small enough changes in the network would 
not aflect the computation. The robustness includes 
changes in the precise form of the activation function, 
in the weights of the network, and even an error in 
the update. I n  classical models of (digital) computa- 
tion, this type of robustness can not even be properly 
defined. 

A Previous Related Result 

In  our previous work [17], we showed that i f  one re- 
stricts to  nets all whose interconnection weights are 
rational numbers, which we call rational nets, then 
one obtains a model of computation that is polynomi- 
ally related to Turing Machines. More precisely, given 
any multi-tape Turing Machine, one can simulate it in 
real time by some network with rational weights, and 
of course the converse simulation in polynomial time 
is obvious. Here we are interested in the case when 
weights are arbitmry real numbers. (It turns out that, 
as far as the results given here, the ezistence of just 
one irrational weight is all that is needed.) 

1.2 The Model 

The model we work with i s  that described by an iter- 
ation equation such as (1). For notational simplicity, 
we often summarize this equation, writing “ x + ( t )  ” in- 
stead of %(t + 1) ” and then dropping arguments t ;  we 

also write this in vector fom, an 

x+ = U(AX + BU + C )  (3) 

where x is now a vector of size N = number of pro- 
cessors, U is  a vector of size M = number of inputs, 
c is an N-vector, and A and B are, respectively, real 
matrices of sizes N x N and N x M. (Now U de- 
notes application of U into each coordinate of x.) Of 
course, one can drop the vector c from this descrip- 
tion at the cost of adding a coordinate xo 1 1, but it 
is  oflen useful to have c ezplicitly, and this allows us 
to  take initial states to  be z = 0, which corresponds to 
the intuitive idea that the system is at rest before the 
first input appears. 

As part of the description, we assume that we 
have singled out a subset of the N processors, say 
t i l ,  ..., Xi,; these are the p output processors, and 
they are used to communicate the outputs of the net- 
work to  the environment. Thus a net is specified by 
the data (A, B,  c )  together with a subset of its nodes. 

I n  our further development, both input and output 
channeb will be forced to carry only binary data. Input 
and output are streams, that is, one input letter is 
transferred at each time (via M binaqt lines) and one 
output letter is produced at a time (and appears in the 
output via p binary lines). As opposed to the I/O, the 
computations inside the network will in general involve 
continuous real values. 

We  call a system defined by equations such as (9) 
simply a network or processor network. I n  the neu- 
ral network literature, these are called recurrent first- 
order neural nets. W e  show later that considering 
higher-order nets, those in which multiplications of ac- 
tivations and/or inputs are allowed, does not result in 
any gain in computational capabilities (up to polyno- 
mial time). 

The Finite Structure 

We should emphasize from the outset that our net- 
works are built up of finite19 many processors, whose 
number does not increase with the length of the in- 
put. There is  a small number of input channels (just 
two in o w  main result), into which inputs get pre- 
sented sequentially. We  aasume that the structure of 
the network, including the values of the interconnec- 
tion weights, does not change in time but rather re- 
mains constant. What changes in time are the ac- 
tivation values, or outputs of each processor, which 
are used in the nezt iteration. (A synchronous update 
model is used.) In this sense our model is very “uni- 
form” in contmst with certain models used in the past, 
including those used in [9] or in the cellular automata 
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literature, which allow the number of units to increase 
over time and often even the structure to change de- 
pending on the length of inputs being presented. 

The Meaning of Real Weights 

One may ask about the meaning of real weights. In  
response, we recall that our intention is to model sys- 
tems in which certain real numbers -corresponding to 
values of resistances, capacitances, physical constants, 
and so forth- may not be directly measurable, indeed 
may not even be computable real numbers, but they 
affect the “macroscopic” behavior of the system. For 
instance, imagine a spring/mass system. The dynam- 
ical behavior of this system is influenced by several 
real valued constants, such as s t i f iess  and f ic t ion 
coeficients. On any finite time interval, one could 
replace these constants by  rational numbers, and the 
same qualitative behavior is  observed, but the long- 
term characteristics of the system depend on the true 
values. We  take this use of real numbers as a basic 
feature of analog computation. (Another characteris- 
tic would be the use of differential as opposed to dif- 
ference equations, but technical dificulties make that 
further study harder, and we will defer it to future 
work.) 

What is  interesting is to  find a class of such sys- 
tems which on the one hand is rich enough to ezhibit 
behavior that is not captured by digital computation, 
while still being amenable to useful theoretical analy- 
sis, and in particular so that the imposition of resource 
constmints results in nontrivial reduction of computa- 
tional power. That this is in accordance with models 
currently used in neural net studies, is especially at- 
tractive. 

The remainder of this paper is organized as follows: 
Section 2 includes the baeic definitions of networks and 
circuits, and states the main theorem regarding the re- 
lationships between these two models. Sections $ and 4 
contain the proof of this theorem: Section 9 shows that 
CIRCUIT ( F ( n ) )  CNETR (Poly(F(n) ) ) ,  and section 4 
proves that NETR ( F ( n ) )   CIRCUIT (Poly(F(n))) .  Sec- 
tion 5 states some corollaries for neural networks 
which follow from the above relation with circuits. W e  
also define there a notion of nondeterministic network. 
In  section 6, we show that our model does not gain 
power if one lets each neuron compute a polynomial 
function -rather than just affine combinations- of 
the activations of all the neurons and the ezternal in- 
puts, OT by  allowing more general activation functions 
than the piecewise linear one. 

We  now turn to precise definitions. 

2 Basic Definitions 

As  we discussed above, we consider synchronous 
networks which can be represented as dynamical sys- 
tems whose state at each instant is a real vector x ( t )  E 
RN. The i th  coordinate of this vector represents the 
activation value of the i th processor at time t .  In ma- 
triz form, the equations are as in ($), for suitable ma- 
trices A, B and vector c.  

Given a system of equations such as (S), an ini- 
tial state x (1 ) ,  and an infinite input sequence U = 
u ( l ) , u ( 2 ) ,  ... , we can define iteratively the state 
x ( t )  at time t ,  for each integer t 2 1, as the value ob- 
tained by  recursively solving the equations. This gives 
rise, in turn, to  a sequence of output values, by re- 
stricting attention to the output processors; we refer 
to this sequence as the “output produced by the input 
U” starting from the given initial state. 

2.1 Recognizing Languages 

To define what we mean by  a net recognizing a lan- 
guage L (0, l}+, we must first define a formal net- 
work, a network which adheres to  a r ig id  encoding of 
its input and output. We  proceed as in [17] and define 
formal nets with two binary input lines. The first of 
these is a data line, and it as used to carry a binary 
input signal; when no signal is  present, it defaults to 
zero. The second is the validation line, and it indi- 
cates when the data line is active; it takes the value 
“1” while the input is present there and “0” there- 
after. We use “D” and “V” to denote the contents of 
these two lines, respectively, so 

4 t )  = ( D ( t ) ,  W ) )  E (0, 112 

for each t .  We  always take the initial state x(1) 
to be zero and to be an equilibrium state, that is, 
a(A0 + BO + c )  = 0 . We assume that there are two 
output processors, which also take the role of data and 
validation lines and are denoted Od(t) ,  O,(t) respec- 
tively. 

(The convention of using two input lines allows us 
to have all ezternal signals be binary; of course many 
other conventions are possible and would give rise to 
the same results, for instance, one could use a three- 
valued input, say with values { - l , O ,  l}, where ’9” in- 
dicates that no signal is present, and fl are the two 
possible binary input values.) 

We  now encode each word CY = a1 -.-ak E { O ,  1}+ 
as follows. Let uLo(t)  = (Va(t), D a ( t ) )  , t = 1, ... , 
1 1 ~  bere - 

1 
0 otherwise , 

i f t  = 1, ..., k 
K(t)  = 
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1 1 1 1  1 

and 
i f t =  1, ..., k 

Da(t) = { ? otherwise . 
Given a formal net h f ,  with two inputs as above, we 
say that a word a w classified in time T ,  i f  the follow- 
ing property holds: the output sequence 

dt)  = (Od(t)i 

produced by U, when starting from z(1) = 0 has the 
form o* = 0 . . .0~ ,000 .~ .  , 0, = 0 . * ~ 0 1 0 0 0 - ~ ~ ,  v v 

7- 1 7-1 
where r), = 0 or 1. 

Let T : IN --+ IN be a function on natural numbers. 
W e  say that the language L C {0,1}+ is  recognized in 
time T by the formal net hf provided that each word 
a E {0,1}+ is classified in time T 5 T(lal), and 
equab 1 when a E L and is = 0 otherwise. 

2.2 Circuit Families 

W e  briefly recall some of the basic definitions of 
non-uniform families of circuits. A Boolean circuit ia 
a directed acyclic graph. Its nodes of in-degree 0 are 
called input nodes, while the rest are called gates and 
are labeled by one of the Boolean functions AND, OR, 
or NOT (the first two seen as functions of many vari- 
ables, the last one as a unary function). One of the 
nodes, which has no outgoing edges, is  designated as 
the output node. The size of the circuit w the total 
number of gates. Adding i f  necessary eztra gates, we 
aasume that nodes are arranged into levels 0 ,  1, . . ., d,  
where the input nodes are at level zero, the output node 
is at level d,  and each node only has incoming edges 
from the previous level. The depth of the circuit is  d,  
and its width is  the mazimum size of each level. Each 
gate computes the corresponding Boolean function of 
the values from the previoua level, and the value ob- 
tained w considered as an input to  be used by the suc- 
cessive level; in this fashion each circuit computes a 
Boolean function of the inputs. 

A family of circuits C is a set of circuits {cn,  n E 
IN} . These have sizes Sc(n) ,  depth Dc(n),  and width 
Wc(n ) ,  n = 1 ,2 , .  . ., which are assumed to be mono- 
tone nondecreasing functions. If L s {0 ,  I }+ ,  we say 
that the language L is computed by the family C i f  the 
characteristic function of L n { O ,  l}n is computed by 
c,, , for each n E IN. 

The qualifier “nonuniform” serves as a reminder 
that there is no requirement that circuit families be 
recursively described. It is this lack of classical com- 
putability that makes circuits a possible model of 
resource-bounded “computing, ” as emphasized in [ l d ] .  

W e  will show that recurrent neural networku, although 
more ”uniform” in the senue that they have an un- 
changing physical structure, share ezactly the same 
power. 

If L is  recognixed by the formal net Af in time T ,  
we write 4~ = L and TH = T .  If L is computed by 
the family of circuits C, we write 4c = L.  W e  are 
interested in comparing the functions TN and SC for 
formal nets and circuits so that 4~ = 4c. 

2.3 Statement Of Result 

Recall that N E T R ( T ( ~ ) )  is  the class of languages 
recognized by formal networks (with real weights) in 
time T(n) and that CIRCUIT (S(n)) is the class of lan- 
guages recognized by (non-uniform) families of circuits 
of size S(n).  

Theorem 1 Let F be so that F ( n )  2 n. 
NETR ( F ( n ) )  CCIRCUIT (Poly(F(n))), and 
CIRCUIT ( F ( n ) )  ~ N E T R  (Poly(F(n))). 

Then, 

I 

More precisely, we prove the following two facts. 
For each function F ( n )  2 n: 

CIRCUIT (F(n ) )  NETR (nFa(n)).  

0 NETR ( F ( n ) )  CIRCUIT (F3(n)).  

3 Circuit Families Are Simulated By 
Networks 

We start by reducing circuit families to  networks. 
The proof will construct a fized, uuniversaln net, hav- 
ing roughly N = 1000 processors, which, through the 
setting of a particular real weight which encodes an 
entire circuit family, can simulate that family. 

Theorem 2 There exists a positive integer N such 
that the following property holds: For each circuit 
family C of size +(n) there exista an N-processor 
formal network hf = hf(C) so that 4d = 4~ and 
T N ( ~ )  = O(nS&(n)) .  

The proof is provided in the remainder of this section. 

3.1 The circuit Encoding 

Given a circuit ci-with size si and width wi ,  we 
encode it as a sequence over the alphabet {0,2,4,6} 
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called en[ci]. This sequence corresponds to a concate- 
nated encoding of its gates provided in a bottom-up 
manner. 

W e  encode a non-uniform family of circuits, C as 
an infinite sequence 

e(C) = 8 EE[cl] 8 EE[cz] 8 EE[cg] - - , ( 4 )  

where q c i ]  is the encoding of ci in the reversed order. 
This allows fo r  a decoding procedure that reveals the 
gates in a bottom u p  manner, thus allowing for a quick 
simulation of the circuit. 

Let c* be the interpretation of formula (4)  in base 9. 
That is, 

m 

where ri is the i th bit of e(C). 

A Possible Encoding 

Given a circuit c-with size s, width w ,  and wi gates 
in the i th level-we encode it as a finite sequence over 
the alphabet {0,2,4,6} ,  as follows: 

0 The encoding of each level i starts with the letter 
6. Levels are encode d successively, starting with 
the bottom level and ending with the top one. 

0 At each level, gates are encoded successively. The 
encoding of a gate g consists of three parts-a 
starting symbol, a %digit code fo r  the gate type, 
and a code to indicate which gate feeds into it: 

- It starts with the letter 0. 
- A two digit sequence {42,44,22} denotes the 

type of the gate, { A N  D, OR, NOT}  respec- 
tively. 

- If gate g is in level i ,  then the input to g is 
represented as a sequence in {2,4}”’-1, such 
that the j t h  position in the sequence is 4 if 
and only i f  the j t h  gate of the ( i  - 1)th level 
feeds into gate g .  

The encoding of a gate g in lese1 i is of length (wi- l+ 
3 ) .  The length of the encoding of a circuit c is l (c)  E 
Ien(c)I = O(sw) .  

Cantor Like Set Encoding 

The number c  ̂ which encodes a family of circuits, or 
one that is a suf iz  of such an encoding, is a num- 
ber between [0,1]. However, not every value in [0,1] 

appears. The set of possible values is not continuoua 
and has uholes”. Such a set of values uwith holes” is 
a Cantor set. Its self-similar structure means that bit 
(base 9) shifts preserve the “holes.” 

The advantage of this approach is that there is never 
a need to  distinguish among two very close numbers in 
order to read the desired circuit out of the encoding; 
the circuit can be then retrieved with finite-precision 
operations employing a finite number of neurons. 

I n  the proof, we ezhibit a network having as one of 
its weights e (all other weights are rational numbers), 
which upon receiving an input a of size n, computes 
(i.e. retrieves) en[c,]. Then the network simulates the 
operation of circuit ci on the input a step by  step. 

3.2 A Circuit Retrieval 

Lemma 3.1 For each (non-uniform) family o f  cir- 
cuits C there exists a 16-processor network NR(C) with 
one input line such that,  starting from the zero initial 
state and given the input signal 

u (1 )  = 1 1  e . .  100.. .12 = 1-2-” ,  v 
n 

u(t) = 0 f o r t  > 1 , 

n / R ( C )  outputs 

Proof. Let C = {0,2,4,6,8}.  Denote by  Cg the “Can- 
tor g-set,” which consists of all those real numbers q 
which admit an ezpansion of the form 

00 

q = 
i=l 

with each ai E E. Let A : R -+ [0,1] be the function 

i f x < O  

i f x > l .  
- L9.J i f  0 < x 5 1 (7) A[x] := 

Let E : R --+ [0,1] be the function 

i f x < O  

i f x > l .  
i f O < x <  1 ( 8 )  

Note that, for each 



we may think of E[q] as the “select left” opemtion, 
since 

and of A[q] as the “shift left” opemtion, since 
2[q] = a1 7 

00 

A[q] = ai+l/gi E C9 * 

i= l  

For each i 2 0 ,  q E C g ,  2[Ai[q]] = ai+1 . The following 
procedure summarizes the task to be performed by the 
network constructed below, which in turn satisfies the 
requirements of the lemma. 

Procedure Retrieval(C, n) 
Variables counter, y ,  z 
Begin 

counter c 0, y t 0, z c C,  
While counter < n 

Parbegin 
e c A[%] 
i f  2 [ z ]  = 8 then increment counter 

Parend, 
While Z[z]  < 8 

Parbegin 
z c A[z] 
Y + ;b + E[t-I) 

Parend, 
Retum(y)  

End 

The functions A and E can not be pmgmmmed 
within the neuml network model due to their &:on- 
tinuity. However, we can program the functions A, E, 
which coincide with A, Z respectively on Cg: 

8 

= C(--l)j49q - j )  7 ( 9 )  
j = O  

and 
3 

q q ]  = 2 a(9q - ( 2 j  + 1 ) )  . (10) 
j =O 

It is  easy to  provide a network of 16 processors that 
ezecutes the above procedure for the substitute func- 
tions A and 2. I 

3.3 Circuit Simulation By A Network 

Let a E {0,1}” be a binary sequence. Denote by  
en[&] the sequence E {2,4}” that substitutes (2ai  + 2 )  
for each ai, and by =[a] the interpretation of en[a] in 
base 9, that is, en[a]lg. We  nezt construct a “universal 
net ” for interpreting circuits. 

Lemma 3.2 There exists a network Af*, such that for 
each circuit c and binary sequence a, starting from the 
zero initial state and applying the input signal 

U1 = S[c]OO. . .  U 2  = S[a]OO... , 
nr, outputs 

T T 

where y is the response of circuit c on the input a, and 
T = O(l(c) + IaI). 
Proof. It is  easy t o  verih that, given any circuit de- 
scription with gates ordered bottom up, there is a three- 
tape Turing Machine which can simulate the given cir- 
cuit in time O(l(c)  + lal). Indeed, we proved in ([17]) 
that i f  M is  a E-tape Turing Machine with s states 
which computes in time T a function f on binary in- 
put strings, then there exists a rational network n’, 
which consists of 9’s + s + 28k + 2 pFessors ,  that 
computes the same function f in time O ( T ) .  Closer 
counting shows that less than 1000 processors sufice. 

I 

Remark 3.3 If the lemma would only require an es- 
timate of a polynomial number of processors, as o p  
posed to the more precise estimate that we obtain, 
the proof would have been immediate from the con- 
sideration of the circuit value problem (CVP). This is 
the problem of recognizing the set of all pairs <z, y>, 
where 2 E {0,1}+, and y encodes a circuit with 1.1 
input lines which outputs 1 on input z. It is known 

0 that CVP E P ([3] volume I ,  pg 110). 

3.4 The General Proof 

Proof of Theorem 2. 
Let C be a circuit family. We  construct the required 
formal network as a composition of the following three 
networks: 

e A n  input network, n/l, which receives the input 

U1 = aoo. . .  
U2 = 1 1  ... 1 o o . . .  , - 

I 4  

and computes =[a] and 2~212, f o r  each a E 
(0, l}+. This network is trivial to  implement. 

e A retrieval network, h f ~ ( c ) ,  as described in 
Lemma 3.1, which receives 2~212 from h f ~ ,  and 
computes Gi[clal]. (Note that during the encod- 
ing operation, network hf~  produces an output of 
zero, and A f ~ ( c )  remains in its initial state 0.) 
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A simulation network, hfs, as stated in Lemma 
3.2, which receives G[clal] and =[a(, and com- 
putes 

Notice that out of the above three networks, only h f ~  
depends on the specific family of circuits C. Moreover, 
all weights can be taken to  be rational numbers, ez- 
cept for the one weight that encodes the entire circuit 
family. 

The time complexity to  compute the response of C to  
the input a is  dominated by that of retrieving the cir- 
cuit description. Thus, the complexity is of order T = 
0 (ELIl [(ci))  . We remarked that the length of the 
encoding l(ci)  is of order O(Wc(i)Sc(i)), which is it- 
s e r fO(S i ( i ) ) .  Since Sc ( i )  < S c ( i + l )  f o r i  = ~ 2 , .  . . , 
we achieve the claimed bound T = O(lal Si(la1)). 

Remark 3.4 In case of bounded fan-in, the "stan- 
dard encoding" of circuit cn is of length l (cn)  = 
O(Sc(n)log(Sc(n))). The total running time of the 

0 algorithm is then O(n Sc(n) log(Sc(n))). 

4 Networks Are Simulated By Circuit 
Families 

We nezt state the reverse simulation, of nets by 
nonuniform families of circuits. 

Theorem 3 Let hf be a formal network that com- 
putes in time T : IN -+ IN. There exists a non- 
uniform family of circuits C(N) of size O(T3) ,  depth 
O(Tlog(T)) ,  and width O(T2),  that accepts the same 
language as hf does. I 

The proof is given in the nezt two subsections. In  
the first part, we replace a single formal network by a 
family of formal networks with small rational weights. 
(This is unrelated to  the standard fact for threshold 
gates that weights can be taken to have nlogn bits.) 
In the second part, we simulate such a family of formal 
networks by circuits. 

4.1 Linear Precision Suffices 

Define a processor to be a designated output proces- 
sor if its activation value is  used as an output of the 

network (i.e. it i s  an output processor) and is not fed 
into any other processor. A formal network, for  which 
its two output processors are designated, is called an 
output designated network. Its processors, which are 
not the designated output processors, are called inter- 
nal processors. 

For the nezt result, we introduce the notion of a q- 
truncation net. This is a processor network in which 
the update equations take the form 

N M 
2: = q-Truncation [u(C aij2j + bijuj  + ci)] 1 

j = 1  j = 1  

where q- l hnca t ion  means the operation of truncating 
after q bits. 

Lemma 4.1 Let hf be an output designated network. 
If hf computes in time T ,  there exists a family of T(n)-  
Truncation output designated networks hfl(n) such 
that 

0 For each n, n/,(n) has the same number of pro- 
cessors and input and output channels as N does. 

The weights feeding into the internal processors 
of n/,(n) are like those of h f ,  but truncated after 
O ( T ( n ) )  bits. 

0 For each designated output processor in h f ,  if this 
processor computes 2: = u(f ) ,  where f is a lin- 
ear function of processors and inputs, then _the re- 
spective processor in hfl(n) computes u(2 f - .5), 
where f is the same as the linear function f but 
applied instead to the processors of hfl(n) and 
with weights truncated at O ( T ( n ) )  bits. 

0 The respective output processors of Af and Nl(n)  
have the same activation values at all times t 5 
T(n). 

Proof. We first measure the difference (error) between 
the activations of the corresponding internal proces- 
sors of n/1(n) and hf at time t 5 T(n). This calcula- 
tion is analogous to  that of the chop error in floating 
point computation, [2]. We use the following notation: 
The network has N processors and M input lines. We  
denote by  L the value ( N  + M + l), and by  W a botnd 
on the sum of weights. We  denote by &(t), G i j l  bij, 
and Ei the respective activation values of processors, 
and weights of Afl(n). The e m r s  considered include: 
6, E ( 0 , l )  and 6, > 0 are the truncation errors at 
weights and processors, respectively; and E t  > 0 is the 
largest accumulated error at time t in processors of 
n/l(n). Network n/,(n) computes at each step 

N M 

2' = q-Truncation [o(z i i i j i j  + + E ~ ) I  . 
j = 1  i=l 



W e  assume inductively on t that for all internal pro- 
cessors i , j ,  I&(t) - zi(t)l < et. Using the global Lips- 
chitz property la(a) - u(b)( < la - 4, it follows that 

et < N(W‘ + 6w)Et-1+ ( N  + M + 1)6, + 6, 
5 LWct-1+ La, + 6, . 

Therefore, 

t-1 

et 5 C(LW)’(LG, +a,) 5 (LW)~(LC,  +a,) . 
i=O 

We now analyze the behavior of-the output proces- 
sors. W e  need to prove that u (2 f  - .5) = 0,l-when 
u(f) = 0 , l  respectively. That is, f I 0 J f < $ 
and f >_ 1 p > a . This happens if I f  - ,fl < i. 
Arguing as earlier, the condition ion et < $ suf- 
fices. This is translated into the requirement (L6, + 
6,) 5 $(LW)-’ . If both 6, and 6, are bounded 
by +(LW)-(’-l) , this inequality holds. This hap- 
pens when the weights and the processor activations 
are truncated after O( t log (LW))  bits. A s  L and W 
are constants, we conclude as desired that a suficient 
truncation for  a computation of length T is O(T). I 

4.2 The Network Simulation by a Circuit 

Lemma 4.2 Let Afl be a family of T(n)-Truncation 
output designated networks, where all networks Nl(n) 
consist of N processors and the weights are all rational 
numbers with O(T) bits. Then, there exists a circuit 
family C of size O(T3), depth O(Tlog(T)), and width 
O(T2), 80 that c, accepts the same language as Afl(n) 
does on (0, l},. 

This proof is omitted due to space limitations. The 
crucial points are as follows. First, we change the 
input convention from feeding serially into the net- 
work Afl(n) via the two input lines data and validation 
(where the validation line includes n consecutive 1%)  
to  n bits that are fed simultaneously into the circuit c, . 
Then, we associate with each processor p a sukircuit 
sc(p).  Each processorp E hfl(n) computes a truncated 
sum of up to  N + 2 numbers, N of which are multipli- 
cations of two T-bit numbers. Hardwiring the weights, 
we can say that each processor computes a sum of 
(TN + 2)  (2T)-bit numbers. Using the carry-look- 
ahead method, [16], the summation can be computed 
via a subcircuit of depth O(log(TN)), width O(T2N) ,  
and size O ( T 2 N ) .  (This depth is  of the same order as 
the lower bound of similar tasks, see [5], [7].) 

The proof of Theorem 9 follows immediately from 
Lemma 4.1 and Lemma 4.2. 

5 Corollaries 

Let NET-P and NET-EXP be the classes of languages 
accepted by formal networks in polynomial time and 
ezponential time, respectively. Let CIRCUIT-P and 
CIRCUIT-EXP be the classes of languages accepted by 
families of circuits in polynomial and ezponential size, 
respectively. 

Corollary 5.1 NET-P = CIRCUIT-P and NET-EXP = 
CIRCUIT-EXP 

The class CIRCUIT-P is  often called yP/poly” and co- 
incides with the class of languages recognized by !Fur- 
ing Machine ”with advice sequences” in polynomial 
time. &om [3], volume I, Theorem 5.11, pg 122 
(originally, [13]), we conclude as follows: 

Corollary 5.2 NET-EXP includes all possible binary 
languages. Furthermore, most Boolean functions re- 
quire exponential time complexity. 

The concept of a nondeterministic circuit family is 
usually defined by means of an e z tm  input, whose role 
is that of an oracle. Similarly, we define a nondeter- 
ministic network t o  be a network having an eztra bi- 
nary input line, the Guess line, in addition to  the Data 
and Validation lines. A language L accepted by a non- 
deterministic formal network Af in time B is defined 
05 L = {a13 a guess 794Af(a,d = 1,Tnr(a,7) I 
B(lal)). 

It is easy to  see that Corollary (5.1), stated for the 
deterministic case, holds for the nondeterministic case 
as well. That is, i f  we define NET-NP to be the class 
of languages accepted by nondeterministic formal net- 
works in polynomial time, and CIRCUIT-NP to  be the 
class of languages accepted by nondeterministic non- 
uniform families of circuits of polynomial size, then: 

Corollary 5.3 NET-NP = CIRCUIT-NP . 0 

Since NPC NET-NP (one may simulate a nondeter- 
ministic Turing Machine by a nondeterministic net- 
work with rational weights), the equality NET-NP = 
NET-P implies N K  CIRCUIT-P = P/poly. Thus, from 
[lo] we conclude: I f  NET-NP = NET-P then the poly- 
nomial hierarchy collapses to  &. 

The above result says that a theory of computation 
similar to that which arises in the classical case of Tur- 
ing machine computation is also possible for our model 
of analog computation. In  particula+, even though the 
two models have very different power, the question of 
knowing i f  the verification of solutions to  problems 
is really easier than finding solutions, at the core of 
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modern computational complezity, has a precise corre- 
sponding version in our setup, and its solution will be 
closely related to  that of the classical case. Of course, 
it ~ O I ~ O W S  from this that it i s  quite likely that NET-NP 
is strictly more powerful than NET-P . 

6 Equivalence of Different Dynamical 
Systems 

W e  consider dynamical systems -which we will call 
generalized processor networks - with fa r  less restric- 
tive structure than the recurrent neural network model 
which was described an equation (1). W e  show that 
these networks are not more powerful, up to  polyno- 
mial time slowdown, than the previously considered 
model. 

Let N ,  M ,  p be natural numbers. A generalized pro- 
cessor network is a dynamical system that consists 
of N processors XI, 2 2 ,  . . . XN , and receives its input 
q ( t ) ,  uz(t), . . . u M ( t )  via M input lines. A subset of 
the N processors, say xi1 ,..., x i p ,  is the set of out- 
put processors of the system, used to  communicate the 
output of the system to the environment. In vector 
form, a generalized processor network D updates its 
processors via the dynamic equation 

z+ = f ( x , u )  7 

where x is the current state of the network (a vector), 
U is an external input (also possibly a vector), and 
f is a composition of functions: f = $ o a, where 
T : R ~ + ~  .I+ R~ is some vector polynomial in N + M 
variables with real coeficients, and + : RN I+ RN is 
any vector function which has a bounded range and is 
locally Lipschitz. (Thus, the composite function f = 
$ o T again satisfies the same properties.) 

W e  also assume, as part of the definition of gener- 
alized processor network, that, at least for binary in- 
puts of the type considered in the definition of uformal 
networks,” given in section 2.1, D outputs “soft” bi- 
nary information. That is, there ezist two constants 
a,P, satisfying a < P and called the decision thresh- 
olds, so that each output neuron of D outputs a stream 
of numbers each of which is either smaller than a or 
larger than P. W e  interpret the outputs of each output 
neuron y as a binary value: 

0 i f y < f f  
1 i f Y 2 P  

binary(y) = 

In  the usual model we studied earlier, the values are 
always binary, but we allow more generality to  show 
that even i f  one allows more general analog values, no 

increase in computational power is attained, at least 
up to  polynomial time. 

A neural network is  a special case of a generalized 
processor network, in which all coordinates of the func- 
tion $ compute the same sigmoidal function, and the 
polynomial T is a first order polynomial, that is, an 
afine function. 

Let T : IN I+ IN be a function from integers into 
integers. We say that a generalized processor network 
D computes in time T if fo r  every input of size n E IN, 
D completes its output in no more than T(n)  steps. 

Theorem 4 Let D be Q generalized processor net- 
work which computes via a function f = $ o a, where 
the function T(n)-truncation( f )  is in Plpoly. Then 
there exists a neural network ND which recognizes the 
same language as D and which does so with at most 
a polynomial time slowdown. Furthermore, i f  T(n)- 
truncation(+) E P the weights utilized by ND are of 
the same type as the coeficients of the polynomial T 

(rational or real, respectively). 

The proof of this theorem is omitted due to  space limi- 
tations. Briefly, we prove “linear precision sufices” to 
the generalized network similarly to  the proof in sub- 
section 4.1: 

Lemma 6.1 Assume D computes in time T ,  with de- 
cision thresholds a, 0. Then, there is a constant c such 
that the function 

d n )  = c T ( n )  

satisfies the following property. For each positive in- 
teger n, let Q = q(n) .  Then, Q-Truncation(D) com- 
putes the same function as D on inputs of length at 
most n, with decision thresholds 

Then, we show that i f  T(n)-truncation(f)  is i n  P , 
one can simulate D via Q neural network with ratio- 
nal weights. If, however, T(n)-truncation( f )  is in  
Plpoly, real weights are required. In both cases, no 
more than polynomial slow down in the computation 
occurs while simulating. 

Corollary 6.2 Adding flexibility to the neural net- 
work model, described in Equation (l) ,  does not add 
power to the model, except for a possible polynomial 
time speed up. This flexibility includes: 

Using a high order polynomial 7~ rather than an 
affine function. 



I I  1 I 

0 Using other 4 functions rather than the satura- 
tion we used earlier, including the possibility of 
having different functions in different neurons. 

0 Allowing for the output to be “soft binary” rather 
than pure binary. 

Note that networks with high order polynomials 
have appeared especially in the language recognition 
literature (see e.g. [8] and references there). W e  em- 
phasize the relationship between these models: Let N I  
be neural network (of any order), which recognizes a 
language L in polynomial time. Then there is  a first 
order network N2 which recognizes the same language 
L in polynomial time. 

Remark 0.3 The networks that we consider are 
mildly “robust to noise and to implementation er- 
ror” in the sense that small enough perturbations in 
weights or the sigmoid activation function do not af- 
fect the computation, as long as “soft binary” outputs 
are considered. Given any time T ,  there is some ET so 
that an error of ET would not affect the computation 
up to a time T.  0 
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