
On the powe!r of sigmoid neural networks

Joe Kilian
NEC Research Institute

Princeton, NJ 08540
joet%esearch.nj .nec.edu

Abstract

We investigate the power of recurrent neu-
ral networks that apply the standard sig-
moid activation function: a(z) = [2/(1 +
e-”)] -1. We show that in the noiseless

model, there exists a universal architec-
ture that can be used to compute any re-
cursive function. As a result, basic conver-
gence questions concerning these architec-
tures are shown to be undecidi~ble even for
fixed-size networks. This is the first result
of its kind for the standard sigmoid activa-
tion function; previous techniques only ap-

plied to linearized and truncated versions
of this function. The significance of our
result, besides the proving technique it-
self, lies in the popularity of the sigmoidal
function both in applications of artificial
neural networks and in models of biolog-
ical neural networks. Our techniques can
be applied to a much more general class
of “sigmoid-like” activation functions, sug-
gesting that Turing universality is a rela-
tively common property of recurrent neu-
ral network models.

1 Introduction

We consider the power of recurrent first-order sig-
moidal neural networks. In their simplest form,
an N-state recurrent neural network is an N-
dimensional dynamical system over a bounded sub-
set of the reals (in this paper, over the solid N-
cube [0, l] N), and can be expressed aa a quadru-
ple (N, W, ~, ~). Here N is the dimension of the
network, W = {~~,j c IRl 1 ~ z,j ~ N} and

Permleeion to copy without fee all or part of this matsrial is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and Its date appear, and notice IS given

that copying is by permlss!on of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

andlor specific permission.

ACM COLT ’93 f7f931CA, USA

G 1993 ACM 0-89791-61 1-51931000710137 . ..$1 .50

Hava T. Siegelmann
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903
siegelma@paul. rut gers. edu

e = {61, ON} are called the weights (or con-
stants) and ~ : Et ~ [0, 1] is called the activation
finction. Each neuron i computes its next state,
~i(t + 1) 6 [0, 1],by the formula

‘i(’+l)=f((Ewil’z-ei)“)
The computational and general dynamical proper-
ties of recurrent neural networks depend intimately
upon the choice of the activation function. For ex-
ample, if ~ ia a linear function, then the system
is essentially computing repeated matrix multipli-
cations on an initial vector. If ~ is the Heaviside
function given by

1 forz>O
~(~) = { o otherwise,

then each neuron takes on a value in {O, 1}, and
the system becomes finite-state. These qualitatively
different behaviors motivate the study of the power
of neural network models under different activation
functions.

1.1 Previous Work

Pollack [8] proposed a recurrent net model that is
Turing universal. This model consists of a finite
number of neurons of two different kinds, having
linear and Heaviside responses; the activations were
combined using multiplications aa opposed to just
linear combinations. Thus, this model does not fall
into the framework given above.

Siegelmann and Sontag first demonstrated the Tur-
ing universality of first-order neural nets for a spe-
cific activation function ([10], [11]). Their activation
function, known as the saturated linear function ia
defined by

{

O forz~O
f(x) = z for O<z<l (2)

1 forz~l.

They demonstrated the existence of a single choice
of weights (and hence a constant number of nodes)

137

such that by choosing the initial state of the neu-
ronsone could simulate the behavior ofan arbitrary
Turing machine. More recently they have 8hown
a hierarchy of computational power depending on
whether the weights are allowed to be integers, ra-
tional numbers or arbitrary reals [12]. Koiran [5]
generalized their Turing universality result in [10] to
more general saturated functions (ones that eventu-
ally become constants in both ends), not necessarily
sat urat cd-linear ones.

Given these results, it is natural to ask whether one
can prove Turing universality results for activation
functions used in practice. One activation function
widely considered in the literature is the sigmoid
function, defined by

(3)

Much effort has been directed towards the practical
implementations of sigmoidal neural networks ap-
plications ([1], [2], [3], [9], [13]). However, almost
no previous theoretical work was done on such net-
works, mainly because of technical difficulties en-
countered with the si~moidal function. The mimarv
difficulty is in imple~enting noise-free logic~l oper~
at ions. For instance, even if values x and y were
guaranteed to have “ideal” 0/1 values, we still can-
not exactly compute the logical AND of z and y in
our model. Not only will the answer not take on
an “ideal” 0/1 value, but it will take on slightly dif-
ferent values depending on whether (z, y) = (O, O)
or (z, y) = (O, 1). In particular, continuous fluc-
tuations in the state of the finite control will send
unmanageable amounts of noise throughout the en-
tire system. Indeed, just the fact that it remembers
state information will in subtle ways corrupt the
data. The previous techniques in proving univer-
sality can not be applied here.

We show the existence of a finite dimensional uni-
versal neural network for a large class of activation
functions that includes the standard sigmoid. We
call these functions valid sigmoids.

As a corollary of our result, there is no computable
limit on the running time of a valid-sigmoidal neu-
ral network. Also, if one wishes to emulate a
valid-sigmoidal neural network using fixed-precision
arithmetic, one cannot fix in advance the number
of bits of precision. Thus, our construction may be
thought of aa a negative result concerning real-life
valid- sigmoidal neural networks. One cannot auto-
matically assume that a neural network converges
or enters a detectable oscillatory state within any
reasonable time bound. Also, one cannot a priori
ignore the presence of even the slightest noise or
roundoff error - since our construction is exquisitely
sensitive to both effects.

The rest of the paper is organized as follows. In Sec-
t ion 2, we introduce alarm clock machines and prove

that they are Turing universal. We end this sec-
tion by showing how to substitute the alarm clocks
with counters that behave in a restricted manner.
In Section 3, we describe how to simulate alarm
clock machines by first-order neural networks hav-
ing a valid-sigmoidal activation fucntion, thus prov-
ing their universality.

2 Alarm Clock Machines

An alarm clock machine consists of a restricted fi-
nite control that has access to a finite number of
alarm clocks. Each alarm clock c; has a variable
period pi. If the clock alarms at time ti, then the
clock will next alarm at time t, + p:. Until it is wo-
ken by one or more alarm clocks, the finite control is
required to spend its time in a memoryless “sleep”
state that prevents the data from being corrupted
faster than it can be repaired. When woken, the fi-
nite control is allowed to run for a constant number ‘
of steps, in which it may perform operations such
as delaying a clock (so that it next alarms at ti+ 1
or lengthening the clocks day (setting p: = pi + 1)
before going back to sleep.

Formally, an alarm clock machine A is a triple
(F, k, c) where k, c z 1 and F is a function from
{O, l}~c to a subset of ACTION, where

ACTION = {delay(i), lengthen(i)ll < i s k}u{halt}.

Here, k denotes the number of alarms clocks avail-
able to F, and F is a function that, based on
the history of alarms from the last c time steps,
halts and/or performs some simple operations on
its clocks.

The input to (F, k, c) consists of ((pi, tl), (p~, t&)),
where pi denotes the period of clock i, and time ti
denotes the next time it is set to alarm,

The alarm clock machine operates as follows. For
notational ease, we (conceptually) keep arrays ai (t),
for t c Z and 1 ~ i < k, with each entry initially
set to O. At time step T (initially O), for 1 ~ z < k,
if ti = T, then ai(T) is set to 1 and ti is set to
ti+ pi.This event corresponds to clock i alarming.
Flooksat ai(t)for l~i~kand Z’– c<t~T,

and executes O or more actions, Action deiay(i) sets
titoti+ 1, action lengthen(i) sets pi to pi + 1, and
action halt halts the alarm clock machine.

We make two stipulations on a legal execution of an
alarm clock machine. First, if its input consists of
all O’s, then F outputs the null set of actions (the
machine is “asleep” until woken). Second, we re-
quire that lpi/pj I < 0(1) for all 1 s i, j ~ k. That
is, there is a positive upper bound on the ratio be-
tween any two clock periods. This second restric-
tion allows us to more easily simulate our machines.
In fact, in our proof of Turing universality, we guar-
antee that Pi and pj differ by at most 1.

138

Theorem 1 There ezzsts an alaTm clock machine

(F, k, c) and a recursive encoding function enc(itl)

such that for all Tum”ng machines M and binary
inputs a, (F, k, c) halts on input enc(M, CY) ifl M

halta on input iY. Furthermore, if M halts zn T

steps, then (F, k, c) will halt in 2°[TJ steps. m

We prove thi8 result by a series of reductions to
counter automata, which are known to be Turing
universal.

2.1 Adder Machines

Definition 2.1 An adder machine D(k) is a ma-
chine consisting of a finite control and k adders.
The operations on the adders are

● Inc(adder) for adders i = 1 ... k,

● Compare(Adder-i, Adder-j) is a function with
the range {<, >}.

Definition 2.2 An Adder machine is said to be
simply controlled if its finite control consists of a
combinational circuit only, with no loops.

Lemma 2.3 For every adder machine D(k) with c
stat es in the finite cent rol, there is a simply con-
trolled adder machine D’(k + c) with no more than
c states.

(proof ommitted)

Now, we show the equivalence of adder machines
and counter machines, thus provin,g that adder mac-
hines compute all recursive functions.

Definition 2.4 A counter machine C(k) consists of
a finite control and k counters. The counters hold
whole numbers; the operations on each counter awe:

Test for O, Inc, Dee, and also No change. ([4])

Lemma 2.5 Adder machines and (counter machines
are linear time equivalent.

(proof ommitted)

Corollary 2.6 The class of functions computed by
an adder machine is recursive. V recursive function
~ which is computed by a TM M in time T, 3 an

adder machine that computes # in time 0(2=).

Proof Counter machines with at Ieiwt four countlers
are known to simulate TM’s in exponential tilme
slowdown ([4], page 171, Lemma 7.4). I

2.2 Alarm Clock and Adder ‘Machines

An alarm clock machine A is a special case of a
counter machine, and hence A ~ 22. Next, we show
the other inclusion.

Lemma 2.7 Given a simply controlled adder ma-
chine D(k) that computes in time T, 3 an alarm
clock machine A(O(k2)) that simulates V in time
0(T3).

The rest of this section is the proof of lemma 2.7

Given a simrdv controlled adder machine D with
k adders 1. T “. k, we construct an alarm clock ma-
chine A which simulates D. First, we overview the
simulation shortly, and then prove its correctness in
greater detail.

The alarm clocks O. . . k of A simulate the adders.

Alarm clock O is used as the ‘O” value to be com-
pared with the other k alarm clocks. An adder i
is simulated by the alarm clock i, by its temporal
shift from alarm clock O. That is. if aclder i is set to
n, then clock i has the same period as clock O, but
alarms n time units after clock O alarms. We always
ensure that the period of the clocks is greater than
their phase differences, thus avoiding wraparound
problems. The correspondence between adders and
the alarm clocks 1, k is as follows:

Adder-i] Alarm clock-i

Inc(A-i) delay(i)
Compare(A-i, A-j) Compare shift phase of

clocks i and j from O

One subtlety is how to implement the Compare op
eration. The alarm clock machine’s finite control
is only allowed to remember the alarm sequence
for the last 0(1) time steps. However, after sim-
ulating the tth time step of the adder machine any
two alarm clocks may be phase shifted by K!(t)time
units. We need to perform the comparisons and
represent this information in a way usable by the
finite control. We accomplish this task by having a
set of O(kz) auxiliary counters used to collect this
information.

For each pair of clocks (i, j), i < j, the auxiliary
clock Zj determines whether the phase shift of clock
i is less than or equal to the phase shift of clock j.
The auxiliary reference clock 00 is used to synchro-
nize the auxiliary clocks.

We now describe how the finite control uses the aux-
iliary clocks to compare the phase shift of the adder
clocks. The period of the auxiliary clocks is main-
tained to be one greater than the period of the adder
clocks. Thus, they alarm one time-step later in each
successive cycle of the adder clocks. Conceptually
the finite control uses these clocks to sweep through
the adder clock cycle, and records the information
it needs by delaying the auxiliary clocks.

Initially, we assume that all of the auxiliary clocks
alarm in synchrony with clock 00, and that their
phase shift with respect to clock O is less than that of
any of the adder clocks (this is easily accomplished
by suitably setting the initial conditions). The finite
control works as follows:

● If clocks 00, ij and i alarm simultaneously, but
not clock j, then the finite control delays clock
ij once. If j but not i alarms, it delays clock
ij twice.

139

● If clocks 00 and O alarm simultaneously, then
the finite control waits for 2 more steps. At this
point, the alarm pattern determines whether
clock Z’S phase shift is less than, equal to or
greater than that of clock j. The finite control
then delays the auxiliary clocks so that they
will again be synchronous.

It is easy to verify that each of these operations can
be performed by remembering the alarm history of
the last 4 time steps.

Once the finite control has the comparison infor-
mation, it determines if the original adder machine
would have halted, and halts accordingly. Oth-
erwise, it determines adders the original machine
would have incremented, and delays their corre-
sponding clocks. Finally, in order to ensure that
the phase shift for the adder clocks do not wrap
around, the finite control lengthens the period of
all of the clocks by 1.

To simulate the tth step of the adder machine, the
alarm clock machine performs the comparisons in
0(t2) time (the period is O(t)) and in 0(1) time
it performs the requisite delays and lengthens the
clock periods. Thus, 0(t3) steps are required to
simulate t steps of the adder machine.

2.3 Simulating Clocks with Counters

We now show how to simulate the clocks in the uni-
versal alarm clock machine with simple restricted
counters. This will make the simulation of alarm
clock machines by sigmoidal networks -described
in the next section— easier. A similar idea was
used in [5]. To simplify matters, we assume that
the universal alarm clock machine runs a valid sim-
ulation of a simply controlled adder machine, and
thus behaves as described above.

We implement each clock i with a morning counter
Mi and an evening counter E,. When the clock is
in its steady state (neither being delayed or length-
ened) with period p, the value of each counter has
the following periodic behavior:

,.. 0001234 ,. (2p-1) . ..4321000 . . .

TO achieve this oscillatory effect, we put Mi and Ei

p time steps out of phase. If Mi (resp. Ei) is decre-
mented to O at time t,then Ei (resp. Mi) (which
has been incrementing) starts decrementing at time
t + 2 and Mi (resp. -Ei) starts incrementing at time
t+3.

Thus, in its steady state, the system oscillates with
a period of 4p. We interpret a unit of clock time
as four units of counter time, and identify the event
that Mi turns from 1 to O with the clock alarming.
Here is an example for p = 3:

M= ..03210 001234543210001 O..

E= . .. 1234543210001234543 . . .

(This construction does not handle clocks with pe-
riod 1. However, such clocks are not necessary for
our alarm clock machine to be universal.)

We now show how to implement the delay and
lengthen operations. For these operations, we aa-
sume that neither counter is equal to O and that it
is known which counter is decrementing and which
counter is incrementing. By inspection of our “pro-
gram,” one can verify that the finite control will
always have this information within 0(1) time af-
ter it has woken up, and that it must wait only O(1)
steps before the nonzero condition is met. For ex-
ample, when the finite control haa received all of its
comparison information, it can wait a few steps and
ensure that the morning counters of all the compar-
ison clocks and the O clock are incrementing, while
the morning counters of all the adder clocks are
decrementing.

To delay a counter, the finite control for one
time step increments the counter it had previously
been decrementing (and continues to increment the
counter it was incrementing), and then at the next
time step resumes its normal operations. Here is an
example:

steady state: M = . .. 345654321 . . .

E= . .. 210001234 . . .

deiay operation: M= . . . 32345654 . . .

E= . .. 23210001 . . .

To lengthen the day’s period, the finite control in-
crements, for one time step, the counter that it was
previously decrementing. For example:

steady state: M= . .. 345654321 . . .

E= . .. 210001234 . . .

lengthening: M = . .. 34567876543 . . .

E= . .. 23210001234 . . .

Note that this operation will also alter the phase
shift of the counters. However, since it will be per-
formed on all of the clocks in the simulation, the
relative phase shifts will be preserved.

3 Sigmoidal Networks are Universal

Definition 3.1 A valid sigmoid * is a function
which satisfies:

1. Existence of exponential attractors:

3A1, A2 and 3B so that VZ 6 range ~i 16(l?z) –

Ail < ~1~ –Ail, where ~$2BAi ~ Ti, i = 1,2.

140

2.

3.

4.

c-closeness of the range including Ai and 2BAi:

VZ G r[[~(Bz) - Ail < t for some c <.01 and
A:, 2BAi E r[.

Differentiability around A,:

6’ and W exist in ranges rj’, i = 1, 2 where r!
includes all y = ti(~) when z c ri.

Approximation of z by 5(z) around z = O.
5(2) = z + 0(22).

A valid sigmoidal network as described in the intr-
oduction is a network of N neurons, each of which
updates its activation by

N

Z,(t + 1) = 6(Z WijZj ‘+ 8:)
i=l

for constants wij, 8; and any valid sigmoid function
5. Our main result is as follows.

Theorem 2 Given an alarm clock machine A

(with no input) that computes the function $ in time

T, there is a valid sigmoidal network ~ that com-

putes 4 in time O(T), Furthermore, the size of this

network i~ linear in the number o,~ clocks and the

size of finite control of A.

For clarity, we describe the simulation in terms of
the standard sigmoid function. It is very easy to
generalize the result to any other valid sigmoid func-
tion.

We first show that the standard sigmoid is indeed
valid.

● For every b > 1 and c, a(bz) has three fixed
points. One is zero and the two others are dk-
noted -A and –A, as they difler only in sign.
The larger b is, the closer A gets to 1. For ex-
ample, using 15 decimal digits in the precision:

b = 5 A = 0.9856236 !3130483

b = 10 A = 0.999909121699349

b = 30 A = 0.999999999999812

b = 100 A=l

● For b > 1 and for every point z, z # O, c(b,z)

is attracted exponentially to either A or – A

(depends on its sign). This can be verified by
the Taylor expansion around bA, which results
in the formula: cr(bz) = a(bA) + &(bA)bc +

c& ’(bA)b2e2 ,. For b sufficiently large, cr’(bi4)

and &’(bA) decrease exponentially with b, and
(for example)

l~(bz) -Al= Iu(bz) - a(bA)l < & - A).

In fact, we can achieve d-t convergence for any
d >0 by a suitable choice of b,

Let c be a constant. In the case where we have

the equation c(ba + c), the fixed points are

shifted aa a function of c, and the exponential
convergence property holds provided that x is
not equal to the unstable middle fixed point.
The fixed points of the equation a(bz + c)

(b> 1) are denoted as Al (% -1) and A2 (= 1).

● For every z, a(z) = z + 0(z3). (Hence, if z is
a small number then u(z) x z.) This is proved
by considering the Taylor expansion around O.

Now, we show the simulation: Given an alarm clock
machine A, the network ~ that simulates A con-
sists of three main components: a finite control, a
set of counters, and a set of flip-flops.

~

Figure 1: Block diagram of our simulation.

Implementing the Finite Control

It has long been known how to simulate any finite
control FCA of A by a network of threshold devices
([6], [7]). If the original finite control depends only
on the last 0(1) time steps, the resulting threshold
network can be made to be feed-forward.

We substitute each threshold device Zi(t + 1) =

fi(~~l wijzj + 6i) with a sigmoidal device ~i (t+

1)= ~(~.(~~1 ~ij~j + @i)) , for a large fixed con-
stant CYo. As long as the summation in the above
expression is guaranteed to be bounded away from
O, the output values of the neuron using the sig-
moid activation function will closely approximate
the output of the neurons using the Heaviside acti-
vation function. By choosing aa sufficiently large,
we can make this approximation as close as we de-
sire.

Note that the number of states in our “finite con-
trol” is in fact infinite, since every neuron can take
on an infinite set of values. Since these values fall
within a small neighborhood of either 1 or -1, we
can conceptually discretize them; however the con-
tinuous nature of these values result in accuracy
problems.

For each counter i, the finite control has two out-
put lines (implemented as neurons), Start-Inci and
Start-Deci. When Start-Inq is active (i.e., % 1), it
means that counter i should be continually incre-
mented. Similarly, an active Stad-Deci means that
counter i should be continually decremented. Most
of the time both output lines are in an inactive state
(i.e., % 0). In this case counter z is treated accord-
ing to the last issued command, allowing operations
to be performed on the counter when the finite con-
trol is inactive. It will never be the case that both
signals are 9imultanecmsly active.

141

Bi-directional Flip-flops

Recall that to avoid unrecoverable data corruption,
we implement finite controls that converge to a con-
stant “ground state” during the the long periods
between interesting events. In order to maintain
control of the counters during these quiet period,
we introduce special flip-flop devices. These devices
will have two stable states, and are guaranteed to
exponentially converge to one of them during the
quiet periods. While the finite control is active, it
can set or reset the value of a flip-flop. Otherwise,
the flip-flop maintains its current state.

The update equation of each flip-flop is ffi =
a(afl(Start-Inci —Start-Deci)+af 2ffj+a\3), where
af ~, ~j2 and ai3 are suitably chosen constants.

Counters

Each counter of A is implemented via three sig-
moidal neurons: one, called the counter netiTon,
holds the value of the counter, and the other two
assist in executing the Inc/Dec operations. Let B

be a constant B > 2. A counter with the value
v c IN is implemented in a counter neuron with
a value “close” to B-o. That is, a value O in a
counter is implemented as a constant close to 1 in
the network. When the counter increases, the im-
plementing counter neuron decreases by a factor of
B.

Thus, at each step, the counter neuron is multiplied
with either B or ~. To do this, we use the approx-
imate ion:

O(U(V + CZj) — O(V)) X ~’(V)CZj ,

for sufficiently small c and IZi I < 1. Let V be the
direction input signal, coming from the ith flip flop.
That is, V converges to either Al or A2. A counter
neuron updates itself by the equation:

~:(t + 1) = U[~~la(@~zV + ~~3 + &~AZi(t)) –

~~l~(&czV + 0!=3) + ~CS2i]

% U[(@~lU’(~~zV + ~~3) + ~.5)Ct.4Zj(t)]

By a suitable choice of the constants acl, aC5,
we have:

QCl~C4U’(~czAl + &e3) + CY,.5 =B

QCl~C4fl’(~CZAZ + ~c3) + ~cs = + .

If the value of Zi is close enough to O, we can
approximate a[(CZCla’(aCZV + CZC3)+ aC4)Z,] %
(~c~&’(~~zV + ~~s) + O!cA)Zi .

The above discussion provides the intuition of why
the update equation 4 of counter i computes either
Bxi or -&-Zi. When Zi is close to 1, and it is “mul-
tiplied by B> then it will in fact be drawn towards
a fixed point of the above equation. This acts as a
form of error correction.

3.1 Proof of Convergence: Sketch

Ideally, our finite-state neurons would all have {O, 1}
values, our flip-flops would take on precisely two
values (Al, A2) and a counter neuron would have
a value of B-o, where v is the value of the sim-
ulated counter. Unfortunately, it is inevitable that
the neurons’ values will deviate from their ideal val-
ues. To obtain our result, we show that these errors
are controllable.

The proof of convergence is organized inductively
on the serial number of the day. As the network hf
consists of three parts: FA, FF, and counters: for
each part we assume a “well behaved input” in day
d and prove a “well behaved output” for the same
day. As at the first day, input to all parts is well
behaved, the correctness follows inductively.

Lemma 3.2 In following three claims, 1 ~ 2, 2 ~
3,and3 al.

(1) At each day d, FC sends 0(1) signals (intention-
ally non-zero) to the ffs. Each signal has an error
bounded by a <.01. The sum of errors in the sig-
nals of the FC during the dth day is bounded by
the constant ~ <.1.

(2) At each day d, O(1) of the signals sent by FF
have an error of ~, where ~ can be made arbitrarily
small. The sum of error of all signals during the
dth day are bounded by 6, where 6 can be made
arbitrarily small. {Al, A2}.

(3) At each day d, a counter with a value y acquires
total multiplicative error ~ <.01. That is, the ratio
of the actual value with the ideal value will always
be between .99 and 1.01.

Proof.

1*2:
Assume the finite control sends Start-Inci and
Start-Deci to ffi, and never these two values are
both active. The update equation of each flipflop
is

St~t-Deciffi =

● When either
ffi is set to

bounded by

a(afl (Start-Inci – Start-Deci) +

atzffi + aj3) .

Start-Inci or Start-Deci is active,
the new value. The error ~ is

‘y <11 –U(afl(l –a) – clf2 +Q3)I .

It is easy to see that when Iatll – lat21 – laf3]
increases, ~ decreases. That is, y is control-
lable. For example, if atl ~ a-l, atz, and

a~3 S 20 then -T K .01.

● When both StaTt-Inci and StaTt-Deci are small,
ffi converges to its closer fixed point. If
(Start-Inci – St~t-Deci) were exactly O, then
by an anal ysis similar to that of observation ??,
ff: would be attracted exponentially to its c105
eat fixed point, If at2 is large enough, the fixed

142

P -:LS can be made arbitrarily close to -1 and
1. rlhrthermore, noise from atl (Start-Inci –
Start-Decl) can be arbitrarily attenuated, since
l~tlu’(~tzffi + at~)l can be made vanishingly
small by a suitable choice of ,constants.

2*3:
The update equation of a counter x, is given by

Zi = O[@Cl~(~~zV + ~~3 + ~~q~i)

‘@~lfY(~~zV + ol~3’) + ~~s~i] .

We show that by using such an update equation,
the counter neuron xi multiplies itself by either B

or ~ with a small controllable error.

Recall that for y small,

u(a(V + y) - u(V)) * cr’(A)y.

We can choose constants CYC1,ac.3, cY~3,a~d, cY~5such
that

aClClC4a’(~CZAI + ClC3) + ~c51 =B

1
~cl~c4d(&2.& + f2~3) + ~.5 = — .

B

The deviation from this ideal behavior is caused by
four elements:

● the error caused by approximating the differ-

ence equation by the differential.

. the error in a’(crc2V + crC3) relative to the de-
sired d(~C2Ai + CXC3),

● the error caused by using the approximation
a(z) % z for z small.

In the first case, the multiplicative error is propor-
tional to &’(Ai)(~c4~i) 2. However, ~i shrinks exl?o-
nentially (and then grows back in a symmetric m;an-
ner). Hence, in a given day, these terms form two
exponentially decreasing sums. In the second case,
we can bound the resulting multiplicative error b,y a
function of acl, aC2, CYC4and &’(~C:2Ai + CY=3) times
the error in V relative to Ai. Finally, note that
a(x) = z + O(Z3) = z(1 + 0(z2))) Since z; expo-
nentially vanishes (and reappears), the multiplicat-
ive error terms form two exponentially decreasing
sums.

By “summing” these multiplicative errors, we get
the desired bound. We can then use the identity
that

(1 +6,)(1 +62) . . . (I+c$k) =l+o(c$, +...+c$k),

when 61 + .-0 + bk is Sufficiently Smd

3 * 1: B“ecause the finite control is feed-forward,
and since each counter alarms 0(1) times a day,
the finite control will output (intentionally) nonzero
signals only 0(1) times a day, We can bound
the errors caused by the counters being nonzero as
some constant c times the sum of the values of idl
the counters at every time in the day. By choosing
the weights appropriately, we can in fact make c aa
small aa desired. E

Acknowledgements

This research was partially supported in part by US
Air Force Grant AFOSR-91-0343.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Cleeremans A., D. Servan-Schreiber, and J.
McClelland, “Finite State Automata and Sim-
ple Recurrent Recurrent Networks”, Neural
Computation, vol 1, No. 3, p. 372 (1989).

Elman J. L., ‘Finding Structure in Time”, Cog-
nitive Science, vol 14, p. 179 (1990).

Giles C. L., C.B. Miller, D. Chen, H.H. Chen,
G.Z. Sun and Y.C. Lee, ‘Learning and Ex-
tracting Finite State Automata with Second-
Order Recurrent Neural Networks,” Neural
Computation, vol 4(3), pp: 393-405 (1992).

Hopcroft, J. and J. Unman, Introduction to

Automata Theory, Languages, and Computa-

tion, Addison-Wesley, 1979.

Koiran, P., Universal Neural Networks,

Manuscript.

W.S. McCulloch, W. Pitts, “A logical calcu-
lus of the ideas immanent in nervous activity,”
Bull. Math, Biophys. 5(1943): 115-133.

M.L. Minsky, Computation: Finite and In-

finite Machines, Prentice Hall, Engelwood
Cliffs, 1967.

Pollack J. B., On Connectionist Mode18 of Nat-

ural Language Processing, Ph.D. Dissertation,
Computer Science Dept, Univ. of Illinois, Ur-
bana, 1987.

Pollack J .B., ‘The Induction of Dynamical
Recognizes”, Tech Report 90-JP-Automata,
Dept of Computer and Information Science,
Ohio State U. (1990).

Siegelmann, H. T. and E. D. Sontag, “’Ihring
Computability with Neural Networks” Appl.

Math. Lett. 4:6, November 1991.

Siegelmann, H. T. and E. D. Sontag, “On
the Computational Power of Neural Networks”
Proc. 5th AC&l WoTkahop on Computational

Learning

Siegelmann, H, T., and E. D. Sontag, “Neural
networks with Real Weights: Analog Compu-
tational Complexity” — journal submission,

Williams R. J., and D. Zipser, A Learning Algo-
rithm for Continually Running Fully Recurrent
Neural Networks, Neural Computation, Vol. 1,
No. 2, P.270, (1989).

143

