
TA7 = 1O:OO
Some Recent Results on Computing With “Neural Nets”

Hava T. Siegelmann’
Department of Computer Science, Rutgers University, New Brunswick, NJ 08903

Eduardo D. Sontag’
Department of Mathematics, Rutgers University, New Brunswick, NJ 08903

Abstract
Neural networks, understood here as systems consist-

ing of linearly interconnected dynamical elements (inte-
grators in continuous-time, or delay lines in discrete-
time) and scalar nonlinearities, provide an appealing
model of analog computation. We describe some re-
cent results on: (1) approximation properties and (2)
computational capabilities, of such dynamical systems.

1. Introduction

“Neural networks” provide an appealing model of ana-
log computation. These are discrete- or continuous-time
systems built by linearly combining dynamic elements
- d e l a y limes or integrators respectively- with memory-
free scalar elements, each of which performs the same
nonlinear transformation a : lR + IR. on its input. In
this paper we concentrate on “recurrent” nets.

The function a could be sign(z) = x/IzI (zero for
2: = 0). Often one wants a differentiable saturation,
and for this, especially in the neural network field, it is
customary to consider the hyperbolic tangent tanh(x),
which is close to the sign function when the “gain” 7
is large in tanh(yz). Also common in practice is a
piecewise linear function, ~ (z) := 2: if I t 1 < 1 and
~(z) = sign(x) otherwise; this is sometimes called a
“semilinear” or “saturated linearity” function. See Fig-
ure 1.

sign 7r tanh

Figure 1: Different Functions D

The type of system that we consider in this paper is
given by the model

IAx = a , (A z + B u) , y = C x I (1)

where A E lR*””, B E R”’”, and C E W’”, for some
integers n (the dimension of the system), m (number
of inputs) and p (number of outputs). Here and later,
we use the following notational convention. For each
a : R + R, we let a, : lRr + lRr be the map that lets
D act coordinatewise, that is,

ar((z1, - 7 xr)’) = (~ (z l) , 3 ~ (c r)) ‘

‘This research supported in part by grant AFOSR-91-0343

and we drop the subscript T when clear from the context.
Similarly, the symbol A indicates respectively time-shift
(Ax)(t) ; z+(t) = z(t+l) or time-derivative (Ax)(t) =
;(t) = ;irx(t) depending on the context (discrete- or
continuous-time), and we denote by Az the application
of A to each coordinate of the vector x. We call these
a-ayatems or recurrent neuml nets. See Figure 2.

Figure 2: Recurrent Network

In the continuous-time case, we assume that a is glob-
ally Lipschits, so that solutions are defined for all time,
for any measurable essentially bounded control. (This
is a reasonable assumption for all applications, and in
any case it could be relaxed as long as one keeps track
of domains of definition.)

The study of recurrent networks has many different
motivations. They constitute a very powerful model
of computation, as we review below, and are capable
of approximating -in a restricted sense- rather arbi-
trary behaviors. Such systems have been proposed as
models of large scale parallel computation, since they
are built of potentially many simple processors or “neu-
rons”. Electrical circuit implementations of recurrent
networks, employing resistively connected networks of
n identical nonlinear amplifiers, with the resistor char-
acteristics used to reflect the desired weights, have been
proposed as models of analog computers, in particular
in the context of constraint satisfaction problems and
in content-addressable memory applications. Recent
papers have explored the computational and dynami-
cal properties of several different variations of recurrent
networks; see for instance [5], [3] and references there.

Some authors have been motivated by a loose analogy
to neural systems -hence the terminology- and for
this reason the entries of the matrices A, B, and C are
sometimes called “weights” or “synaptic strengths” and
D -taken to be of a sigmoidal type- is called the “ac-
tivation function” (which represents how each neuron
c , responds to its aggregate stimulus). In this context,
the outputs y(t) can be thought of as measurements
recorded by probes that average the activation values of
many neurons.

CH3229-2/92/0000-1476$1 .OO Q 1992 IEEE 1476

In speech processing applications and language in-
duction, recurrent net models are used as identification
models, and they are fit to experimental data by means
of a gradient descent optimization (the so-called "back-
propagation" technique) of some cost criterion.

In this paper, we will mention some recent results
on the computational power of a-systems, and we re-
view their approximation capabilities. A number of re-
cent papers explore related issues and provide further
results. In the paper [18], other structures somewhat
less general than recurrent networks are also studied,
and connections are made to various system theoretic
questions of observability and controllability. The paper
[17] includes more details on the use of these systems as
well as other neural-net based models for identification
and control, in particular in the role of discontinuous
feedback (when a discontinuous activation is used) for
stabilization of nonlinear systems. The paper [l], also in
these Proceedings, discusses the problem of parameter
identifiability of recurrent networks.

2. Approximation

In a restricted sense, with recurrent networks one may
approximate a wide class of nonlinear plants. Approxi-
mations are only valid on compact subsets of the state
space and for finite time, so interesting dynamical char-
acteristics are not reflected. However, there are many
instances in control and signal processing where recur-
rent networks may play a role analogous to that of bi-
linear systems, which had been proposed previously (see
e.g. [19]) as universal models. Before showing how a
universal approximation property arises, we recall some
standard facts from neural network theory.

2.1. Approximation, Interpolation, Classification

Given a function a : IR + R, let F,, be the affine
span of the set of all the maps uo,b(z) := a(az + b) ,
with a , b E R. That is, the elements of 3,, are those
functions R + IR that are finite linear combinations
CO + Cic;a(a,z + b,) . We say that the mapping U is
a universal nonlinearity if for each -cm < a < p < 00

the restrictions to the interval [a, p] of the functions
in F,, constitute a dense subset of Co[a,p], the set of
continuous functions on [a,/3] endowed with the metric
of uniform convergence.

Not every nonlinear function is universal in the above
sense, of course; for instance, if U is a polynomial of
degree le then 3,, is the set of all polynomials of de-
gree < le, hence closed and not dense in any Co. But
most nonlinear functions are universal. Indeed, Hornik
proved in [6] that any a which is continuous, noncon-
stant, and bounded is universal (see also [4] for related
results). (M. Leshno has recently shown that universal-
ity holds for any continuous function which is not a poly-
nomial.) In the rather general case of "sigmoidal" func-
tions, that is, nondecreasing functions with the property
that both limz+-m a(.) and limz-.+a, a(z) exist (with-
out loss of generality, assume the limits are -1 and $1

respectively), universality is not hard to prove, as fol-
lows. Take any continuous function f on [c I , ~] . One
can first approximate f uniformly by a piecewise con-
stant function, i.e. by an element of Fsjpn; then each
sign function is approximated by u(rz), for large enough
positive 7.

We recall that to say that a function F is computable
b y a one-hidden-layer net means that F factors as

F(u) = Fl(ar (F2(~))) 7 (2)

where F1 : R' + RP and Fz : R" + IR' are affine
maps. That is to say, each coordinate of F is in 3,. It
is a standard fact that universality of a implies that, for
each m,p and each compact subset K of R", the set of
functions F : Rm + R P computable by single hidden
layer nets is dense in C o (K) .

2.2. Approximations of Nonlinear Systems

We now explain how the above translates into the
fact that recurrent nets provide universal identification
models, in a suitable sense. Consider a continuous- or
discrete-time, time-invariant, control system E:

i [o r E +] = f (z ,u) (3)
Y = N E)

where z (t) E IR", u(t) E R", and y (t) E IRp for all
t , and f and h are continuously differentiable. For any
measurable essentially bounded control U (.) : [O,T] -+

R", we denote by ~ (~ , E o , u) the solution at time t of
(3) with initial state t (0) = XO; this is defined at least
on a small enough interval [O , E) , E > 0. For recurrent
networks, when a is bounded or globally Lipschitz with
respect to E , it holds that E = T; we will assume here
that we are dealing with controls for which solutions
exist globally, a t least for the states on some compact
set of interest. For each control, we let A(u) = Xc,,,(u)
be the output function corresponding to the initial state
~ (0) = E O , that is, X(u)(t) := h(d(t , E O , U)) . We wish to
see that, on compacts, and for finite time intervals, this
system can be approximately simulated by a recurrent
network. We first define what is meant by approximate
simulation.

Assume given two systems C and 5, as in (3), where
we use tildes to denote data associated to the second
system, and with same number of inputs and outputs
(but possibly 5 i # n). Suppose also that we are given
compact subsets K1 R" and K2 R", as well as an
E > 0 and a T > 0. Supposed further (this simplifies
definitions, but can be relaxed) that for each initial state
20 E K1 and each control U (.) : [0, T] + K2 the solution
4(t,zo,u) is defined for all t E [O,T]. We'll say that
the system 5 simulates C on the sets K1, K2 in time
T and up to accuracy E if there exist two continuous
mappings a : R" + R" and /3 : R" -+ R" so that the
following property holds: For each xo E K1 and each
U (.) : [O,T] + Kz, denote t(t) := 4(t , E O , U) and Z(t) :=

- -

1477

&t,P(zo), U); then this second function is defined for all
t E [O,T], and

Il4t) - 4W)ll < E 7 Ilh(4t)) - Wt)) l l < E

for all such t.
One may ask for more regularity properties of the

maps cr and P as part of the definition; in any case the
maps to be constructed below can be taken to be at least
differentiable.

Assume that a is a universal nonlinearity in the sense
defined earlier. Then, for each system C and for each
K1, K2, E , T as above, there is a recurrent network
5 that simulates C on the sets K1, K2 in time T and
up to accuracy E. Some variations of this result were
given earlier and independently in [lo] and [8], under
more restrictive assumptions and with somewhat differ-
ent definitions. As we haven't found it in this manner
in the literature, we next sketch a proof.

The final maps a and p will be built up out of several
elementary maps. The first step is to add, if necessary,
the eauation

in the continuous case, or

Y+ = h(f(X,U))

in discrete-time, so that from now on one may take with-
out loss of generality h linear, that is, y = Cz for some
matrix C. The enlarged system simulates the original
one via a(z , y) = z and p (t) = (t , h(z)) .

Next one finds a function as in equation (2) that
uniformly approximates f(z, U) (for the extended sys-
tem) close enough on K1 x K2; this will imply the de-
sired approximation of solutions, by any standard well-
posedness result, as discussed e.g. in [16], Theorem 37.
This new function is specified by matrices and vectors

Ti E R n X r , A E I R r X n , B E R r X m , ~ , ~ E R n

and
f(z, U) M Tlur(A2 + a + Bu) + P.

Finally, one needs to show that a system with such a
right-hand side and output y = Cz can be itself simu-
lated by some recurrent network. Changing coordinates
in IR" if necessary, one may assume that TI has the form
(T'O)', where T is of full row rank. Thus the equations
take the form

51 [or zf] = Tur(Alz1 +A222 + a + B u) + &
x 2 [or.:] = pZ

and the output function is y = C l z l + C2z2 in these
coordinates. Write n2 = n - rankT for the size of the
2 2 variable. This is ementially a recurrent network after
a change of variables z = Tz and elimination of the
constant ("bias") vectors a, P I , p2. More precisely, we
proceed as follows.

First, there is a so that T& = /31 (since T has
full row rank). Consider the system of dimension r + n2
consisting of the above equation for z2 together with:

i l [or z?] = a , (A ~ T z l + A222 +a + Bu) + 31
and output y = C l T z l + C2x2. Given any initial con-
dition ((I ,&)' E R", and any control U(-), pick the
solution of the (21,~~) system that has ~ (0) = C and
2 4 0) = (2, where C is any vector so that TC = € 1 (again
use that T is onto). Write z l (t) := Tz l (t) along this
solution. Then (z l (t) , zz(t))' satisfies the original equ&
tions, and has the initial value ((1, &)', so it is the state
trajectory corresponding to the given control. In con-
clusion, each trajectory of the original system can be
simulated by some trajectory of the zl, x2-system. Let
an,(0) = 7; then the equation for 2 2 can be written with
right-hand side a(Oz + Ou) + (pZ - 7); thus, redefining
n as r + n2, one is reduced to studying systems of the
following special form:

5 [o r z +] =a,(Az+Bu+a)+P,

with linear output y = C t . One is only left to elim-
inate the bias terms a and p. Consider first treat the
continuous-time case. Pick any real numbers p , Y so that

pa(v) = 1

;=an (Az + pzn+ 1 AP+ ~ (z n + 2 a + Bu), in+l=u(~/4zn+2),
and consider these equations in dimension n + 2:

i n + 2 = 0 , with output y = C (z + /4zn+&), where ~ (t) E
IR". Given any initial E R" and any control U(-), pick
the solution of this extended system for which z(0) = t ,
z n + 1 (0) = 0, and ~ n + 2 (0) = 1/p. Consider

z (t) := ~ (t) + pzn+l(t)P.

Observe that zn+2 E l / p and in+l a(vp:) = l/p.
Therefore i (t) = an(Az + Bu + a) + 0, and z(0) =
~ (0) + pzn+l(O) = t , 80 the z, z n + l , zn+2 system pro-
vides the desired simulation. In discrete time, the only
modification needed consists of replacing the z2 equ&
tion by zf = ~ (~ p ~ n + z) . This completes the sketch of
the proof of the approximation result.

Thus, recurrent nets approximate a wide class of non-
linear plants. Note, however, that approximations are
only valid on compact subsets of the state space and for
finite time, so that many interesting dynamical charac-
teristics are not reflected. This is analogous to the role
of bilinear systems, which had been proposed previously
(work by Fliess and Suesmann in the mid-1970s) as uni-
versal models. As with bilinear systems, it is obvious
that if one imposes extra stability assumptions ("fading
memory" type) it will be possible to obtain global a p
proximations, but this is probably not very useful, as
stability is often a god of control rather than an as-
sumption.

For applications of these types of approximations to
signal processing see [8], and [lo] for applications to con-
trol and identification.

1478

3. Computing Power

In the work [ll], [12], and [13] we dealt with the
computational capabilities of recurrent networks, seen
from the point of view of classical formal language
theory. There we studied discrete-time systems with
U = R . Though more general nonlinearities as well as
continuous-time systems are of interest, note that us-
ing R = sign would give no more computational power
than finite automata. Our main results -after suitable
definitions, see below- are: (1) with rational matrices
A , B , and C , recurrent networks are computationally
equivalent, up to polynomial time, to Turing machines;
(2) with real matrices, all possible binary functions, re-
cursive or not, are “computable” (in exponential time),
but when imposing polynomial-time constraints, an in-
teresting class results.

Restricting for simplicity to language recognition, the
(extremely elegant) situation can be summarized as fol-
lows, where “(usual) P” stands for the standard class of
polynomial-time computable problems, and “circuit P”
is discussed further later.

Computational universality, both in the rational and
real cases, is due to the unbounded precision of state
variables, in analogy to the potentially infinite tape of
a Turing machine. In the cellular-automata literature,
other Turing and super-Turing models have been pro-
posed, but they involve an unbounded number of state
variables (processor units), as opposed to a finite num-
ber fixed in advance as in our work.

An immediate consequence of the universality results
is the fact that the problem of determining if a recur-
rent network ever reaches an equilibrium, from a given
initial state, is effectively undecidable; note that this
is precisely the question relevant when using such sys-
tems for content-addressable retrieval, where the initial
state is the “input pattern” and the final state is in-
terpreted as the retrieved output or classification. This
consequence follows from an immediate reduction to the
halting problem of Turing machines.

We now state precisely the simulation results (the
forms are slightly different, but equivalent to, those in
the papers cited above, which should be consulted for
details). We deal with recurrent networks with = R ,

the piecewise-linear saturation, and having just one in-
put and output channel (m = p = 1). A pair consisting
of a recurrent network C and an initial state E E R”
is admissible if the following property holds: Given any
input of the special form

U(.) = a1,. . . , (Y k , O , O ,..., (4)
where each a, = k l and 1 5 k < 00, the output that
results with z(0) = (is either y G 0 or is a sequence of

the form

LJ -.
8

where each Pi = f l and 1 5 1 < 00. The pair (E,()
will be called rational if the matrices defining C as well
as the initial (all have rational entries; in that case, for
rational inputs all ensuing states and outputs remain
rational.

Each admissible pair (E,<) defines a partial function

4 : {-1) 1}+ + {-1) 1}+,

where {-1,1}+ is the free semigroup in the two symbols
rtl, via the following interpretation: Given a sequence
w = a1,. . . , ak, consider the input in Equation (4), and
the output, which is either identically zero or has the
form in Equation (5). If y G 0, then we say that 4 (w) is
undefined; otherwise, if Equation (5) holds, then 4 (w) is
defined as the sequence P I , . . .,Pi, and we say that the
response to the input sequence w was computed in time
s + 1. One says that the (partial) function 4 is realized

In order to be fully compatible with standard recur-
sive function theory, we are allowing the possibility that
a decision is never made, corresponding to a partially
defined behavior. On the other hand, if for each input
sequence w there is a well-defined 4(w), and if there
is a function on positive integers T : IN + IN so that
the response to each sequence w is computed in time at
most T(lwI), where 1 ~ ~ 1 , . . .,akl = k , we say that (E,[)
computes in time T .

In the special case when 4 is everywhere defined and
4 : {-1,1}+ -+ (-1, l}, that is, the length ofthe output
is always one, one can think of 4 as the characteristic
function of a subset L of {-1, l}+, that is, a language
over the alphabet {-1,1}.

Given T : IN + IN, we say that the language L is
computed in time T if the corresponding characteristic
function is, for some admissible pair that computes in
time T. For a function T : IN + IN, we let NET (T) be
the class of languages computed by admissible pairs in
time T.

by (E, E) .

3.3. Arbitrary Time

Disregarding computation time, some of the main re-
sults from [12] and [13] can be summarized as follows:

Theorem. Let q5 : {-1,1}+ + {-1,1}+ be any par-
tial function. Then q5 can be realized by Some admissible
pair. Furthermore, q5 can be realized by some rational
admissible pair if and only if q5 is a partial recursive

For the rational case, one shows how to simulate an
arbitrary Turing machine. In fact, the proof shows how
to do so in linear time, and tracing the construction re-
sults in a simulation of a universal Turing machine by
a recurrent network of dimension roughly 1000. The

function. I

1479

main idea of the proof in the real case relies in storing
all information about 4 in one weight, by a suitable en-
coding of an infinite binary tree. Then, r-operations are
employed, simulating a chaotic mapping, to search this
tree. In both the real and rational cases, the critical part
of the construction is to be able to write everything up in
terms of r, and the use of a Cantor set representation for
storage of activation values. Cantor sets permit making
binary decisions with finite precision, taking advantage
of the fact that no values may appear in the “middle”
range.

3.4. Polynomial Time

It is of course much more interesting to impose re-
source constraints, in particular in terms of computation
time. We restrict to language recognition, for simplic-
ity of exposition, but similar results can be given for
computation of more general functions.

In order to present our results, we need to briefly re-
call some of the basic definitions of non-uniform families
of circuits (see e.g. [2]), a concept which appears often
in current theoretical computer science. A Boolean cir-
cuit is a directed acyclic graph. Its nodes of in-degree
0 are called input nodes, while the rest are called gates
and are labeled by one of the Boolean functions AND,
OR, or NOT (the first two seen as functions of many
variables, the last one as a unary function). One of the
nodes, which has no outgoing edges, is designated as the
output node. The size of the circuit is the total number
of gates. Adding if necessary extra gates, we assume
that nodes are arranged into levels 0, 1, . . . , d, where the
input nodes are a t level zero, the output node is at level
d, and each node only has incoming edges from the pre-
vious level. The depth of the circuit is d, and its width
is the maximum size of each level. Each gate computes
the corresponding Boolean function of the values from
the previous level, and the value obtained is considered
as an input to be used by the successive level; in this
fashion each circuit computes a Boolean function of the
inputs.

A family of circuits C is a set of circuits

{ c f l , n E IN} .
These have sizes S c (n) , depth D c (n) , and width
W c (n) , n = 1,2,. . ., which are assumed to be mono-
tone nondecreasing functions. If L {0,1}+, we say
that the language L is computed by the family C if the
characteristic function of

is computed by c,, for each n E IN. One says, then, that
L can be computed by a “circuit of size Sc.” (Though
standard, this is not a good terminology, as Sc is re-
ally a function, and “circuit” now means a family of
circuits.) Given S : IN + IN, we say that the language
L is computed by circuits in size S if there is a circuit
of size S that computes L. For such a function S, we

let CIRCUIT (S) be the class of languages computed by
(families of) circuits of size S.

The concepts of circuit size and neural network com-
putation time can be related as follows; see [13] for a
proof.

Theorem. For each function F(n) 2 n:

0 CIRCUIT (F(n)) E NET (nF2(n)) .

0 NET(F(n)) c CIRCUIT(F3(n)). I

What matters most from this implication is that the
two measures of complexity are polynomially related.
Thus, languages computed by polynomial size circuits
are the same as those compuied by networks in poly-
nomial time. This allows, in turn, the application of
standard results from nonuniform circuit theory, in par-
ticular those results dealing with polynomial size, to
networks. The class of languages computed by polyno-
mial size circuits is often called “P/poly” and coincides
with the class of languages recognized by Turing m e
chines “with advice sequences” in polynomial time. It
also coincides with the class of languages recognized in
polynomial time by Turing machines which consult or-
acles, where the oraclee are sparse sets. Sparse sets are
those for which, for each length n, the number of words
which are not longer than n is bounded by a polyno-
mial. Furthermore, one knows that, in a precise sense,
all languages can be recognized in exponential circuit
size, and hence exponential time using networks, and
that for most languagea such exponential time is in fact
necessary (use the result for circuits given in [2], theo-
rem 5.11, pg 122).

3.5. Nondeterministic Neura l Networks

One of the more interesting areas in computer science
deals with the concept of nondeterministic computation
time. Essentially, one is interested in comparing the
time it takes to verify that a proposed solution to a
problem is indeed a solution with the time it would take
to actually find a solution. For many problems, the f i s t
(verification time) is easy to estimate, but the latter is
not.

In [13] we define a nondeteminietic network to be
an admissible pair having an extra binary input line,
the Guess line, in addition to the input line already
assumed. A language L is said to be accepted by a
nondeterministic admissible pair in time T if for each
word w of length n which belongs to L there is a “guess”
input w’ of length polynomial in n so that the input
(w , w‘) gives an accepting output.

The concept of a nondeterministic circuit family is
defined in the literature, also by means of an extra input.

Our results apply in the nondeterministic case as well.
That is, the class of languages accepted by a nondeter-
ministic network in polynomial time, and the class of
languages accepted by a nondeterministic non-uniform
family of circuits of polynomial size, turn out to be the
same.

.

1480

Since the standard class NP of nondeterministic poly-
nomial time languages is included in that of languages
accepted by a nondeterministic networks in polyno-
mial time, (one may simulate a nondeterministic Tur-
ing machine by a nondeterministic network with ratio-
nal weights,) the equality “P=NP” for neural networks
would imply that NP P/poly. Thus, from [7] we con-
clude that this equality is impossible, unless a widely
believed conjecture would be false (the polynomial hier-
archy collapses to Cz).

In summary, even though networks, as analog devices,
can “compute” far more than digital computers, they
still give rise to a rich theory of computation, in the
same manner as the latter.

4. Remarks

One of the most exciting challenges in current con-
trol theory and signal processing is that of formulat-
ing a rich mathematical framework in which to study
the interface between the continuous (analog) world
and discrete (digital) computers which are capable of
symbolic processing. Succesful approaches will even-
tually allow the interplay of modern control with au-
tomata theory and other techniques from computer sci-
ence. This is needed because, although classical con-
trol techniques have proved spectacularly successful in
automatically regulating relatively simple systems, in
practice controllers resulting from the application of the
well-developed theory are often used as building blocks
of far more complex systems. The integration of these
systems is often accomplished by means of ad-hoc tech-
niques that combine pattern recognition devices, various
types of switching controllers, and humans -or, more re-
cently, expert systems- in supervisory capabilities. The
need to understand the analog/digital interface has mo-
tivated much research into areas such as discrete-event
systems, supervisory control, and more generally “intel-
ligent control systems”. One would hope that the study
of dynamical systems as analog computing devices may
be a useful component of the general approaches that
will eventually emerge.

References

[l] Albertini, F., and E.D. Sontag, “For neural net-
works, function determines form,” Proc. IEEE Conf.
Decision and Control, Tucson, Dec. 1992, IEEE
Publications, 1992.

[2] BalCazar, J.L., J. Diaz, and J. Gabarro, Structural
Complezity, Springer-Verlag, Berlin, 1988.

[3] Cohen, M.A., and S. Grossberg, “Absolute stabil-
ity of global pattern formation and parallel mem-
ory storage by competitive neural networks,” IEEE
%ns. Systems, Man, and Cybernetics 13(1983):
815-826.

[4] Cybenko, G., “Approximation by superpositions of
a sigmoidal function,” Math. Control, Signals, and
Systems 2(1989): 303-314.

[5] Hopfield, J.J., “Neurons with graded responses have
collective computational properties like those of two-
state neurons,” PTOC. of the Natl. Acad. of Sciences,

[6] Hornik, K., “Approximation capabilities of mul-
tilayer feedforward networks,” Neural Networks
4(1991): 251-257.

[7] Karp, R.M., and R. Lipton, “Turing Machines that
take advice,” Enseign. Math. 28(1982): 191-209.

[8] Matthews, M., “On the uniform approximation of
nonlinear discrete-time fading-memory systems us-
ing neural network models,” Ph.D. Thesis, E.T.H.
Zurich, Diss. ETH No. 9635, 1992.

[9] McCulloch, W.S., and W. Pitts, “A logical calcu-
lus of the ideas immanent in nervous activity,” Bull.
Math. Biophys. 5(1943): 115133.

[lo] Polycarpou, M.M., and P.A. Ioannou, “Identifica-
tion and control of nonlinear systems using neural
network models: Design and stability analysis,” Re-
port 91-09-01, Sept. 1991, Dept. of EE/Systems,
USC, Los Angeles.

[ll] Siegelmann, S., and E.D. Sontag, “Turing com-
putability with neural nets,” Appl. Math. Lett.
4(6)(1991): 77-80.

[12] Siegelmann, H.T., and E.D. Sontag, “On the com-
putational power of neural nets,” in Proc. Fifth
ACM Workshop on Computational Learning The-
ory, Pittsburgh, July 1992, pp. 440-449.

[13] Siegelmann, H.T., and E.D. Sontag, “Analog com-
putation, neural networks, and circuits,” submitted.

141 Sontag, E.D., “Feedforward nets for interpolation
and classification,” J. Comp. Syst. Sci., 45(1992):

151 Sontag, E.,D., “Feedback Stabilization Using Two-
Hidden-Layer Nets,” in Proc. Amer. Automatic Con-
trol Conference, Boston, June 1991, pp. 815-820.

161 Sontag, E.D., Mathematical Control Theory: De-
terministic Finite Dimensional Systems, Springer,
New York, 1990.

[17] Sontag, E.D., “Neural nets as systems models and
controllers,” in Proc. Seventh Yale Workshop on
Adaptive and Learning Systems, pp. 73-79, Yale Uni-
versity, 1992.

[18] Sontag, E.D., “Systems combining linearity and
saturations, and relations to “neural nets,” in Proc.
Nonlinear Control Systems Design Symp., Bordeaux,
June 1992 (M. Fliess, Ed.), IFAC Publications, pp.

[19] Sussmann, H.J., “Semigroup representations, bilin-
ear approximations of input-output maps, and gen-
eralized inputs,” in Mathematical Systems Theory,
Udine 1975 (G. Marchesini, Ed.,) Springer-Verlag,
New York, pp. 172-192.

USA 81(1984): 3088-3092.

20-48.

242-247.

1481

