
On The Computational Power Of Neural Nets

1

We

Hava T. Siegelmann

Department of Computer Science
Rutgers University

New Brunswick, NJ 08903
siegelma@paul.rutgers .edu

Abstract

This paper deals with finite networks which
consist of interconnections of synchronously
evolving processors. Each processor updates
its state by applying a “sigmoidal” scalar non-
linearity to a linear combination of the pre-
vious states of all units, We prove that one
may simulate all Turing Machines by rational
nets. In particular, one can do this in linear
time, and there is a net made up of about 1,000
processors which computes a universal partial-
recursive function. Products (high order nets)
are not required, contrary to what had been
stated in the literature. Furthermore, we aa-
sert a similar theorem about non-deterministic
Turing Machines. Consequences for undecid-
ability and complexity issues about nets are
discussed too.

INTRODUCTION

studv the computational capabilities of recurrent
first-ord& neural n&works, or as ‘we shall say from now
on, processor nets. Such nets consist of interconnec-
tions (with possible feedback) of a finite number IV of
synchronously evolving processors. The state ~i (t) of
the ith processor at each time t = 1,2,... is described
by a scalar quantity; Zi (t) is updated at each t accord-
ing to u(. . .), where the expression inside the parenthe-
sis is an affine (i.e., linear -I- bias) combination of the
previous states ~i (t – 1) of all processors and an exter-
nal input signal u(t).In our results, the function a is
the simplest possible “sigmoid~ namely the saturated-
Iinear function

{

O ifx<O
a(z) := z ifO~x~l (1)

1 ifz>l,

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advsntage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

COLT’92-71921PA, USA

01992 ACM 0-89791 -498 -8/92 /000710440 . ..$.1 .50

Eduardo D. Sontag
Department of Mathematical

Rutgers University
New Brunswick, NJ 08903
sontag@hilbert .rutgera.edu

but other nonlinearitiea are of course of interest as well.
One of the processors is singled out aa the “output node”
of the net. Another processor, called the “validation
node,” signals when the output occurs.

The use of aigmoidal functions —as opposed to hard
thresholds— ia what distinguishes this area from older
work that dealt only with finite automata. Indeed, it
has long been known, at least since the classical papers
by McCulloch and Pitts ([12], [9]), how to implement
logic gates by threshold networks, and therefore how
to simulate finite automata by such nets. For us, how-
ever, nets are essentially analog computational devices,
in accordance with models currently used in neural net
practice.

In [14], Pollack argued that a certain recurrent net
model, which he called a %euring machine,” is uni-
versal. The model in [14] consisted of a finite num-
ber of neurons of two different kinds, having identity
and threshold responses, respectively. The machine was
high-order, that is, the activations were combined using
multiplications as opposed to just linear combinations,
Pollack left as an open question that of establishing if
high-order connections are really necessary in order to
achieve universality, though he conjectured that they
are. High-order models have also been used in [6] and
[21], as well as by many other authors, often with an
added infinite external memory device. Underlying the
uae of high-order neta ie the conjecture that their com-
putational power is superior to that of linearly intercon-
nected nets.

Also related is the work reported in [7], [4], and [5], some
of which deals with cellular automata. There one aa-
sumea an unbounded number of neurons, aa oppoaed to
a finite number fixed in advance. This potential infinity
is analogous to the potentially infinite tape in a Tur.

ing Machine; in our work, the activation valuea them-
selves are used instead to encode unbounded informa-
tion, much as is done with the standard computational
model of register machines.

We state that one can simulate all (multi-tape) Tur.
ing Machines by nets, using oniy first-order (i.e., lin-
ear) connections and rational weights. Furthermore,
this simulation can be done in linear time. In partic-
ular, it is poaaible to give a net made up of about 1,000
procesaora which computes a universal partial-recursive
function. Non-deterministic Turing Machinea can be

440

simulated by non-deterministic rational nets, also in lin-
ear time.

We restrict to rational states and weights in order to pre-
serve computability. It turns out that using reai valued
weights results in processor nets that can “calculate”
arbitrary partial functions, not necessarily recursive.

With zero initial states, and restricting for simplicity to
language recognition, the situation is as follows:

The real-coefficient result requires exponential time,
however. Imposing polynomial-time constraints leads
to nontrivial connections with circuit complexity; see
[18].

1.1 RELATED WORK

The idea of using continuous-valued neurons in order
to attain gains in computational capabilities as com-
pared with threshold gates had been investigated before,
However, prior work considered only the special case of
feedforward nets –see for instance [20] for questions of
approximation and function interpolation, and [10] for
questions of Boolean circuit complexity.

In [20] it is shown that, provided that one can pick a
suitable “sigmoid” (not the piecewise linear one given
above), generalization from examples by feedforward
nets is impossible, because any set of examples can be
loaded into a two-node net. Obviously, the type of ques-
tions asked in this research have similar relevance to
learning theory, and they will be pursued in future work.

There are close relationships between our work and no-
tions of circuit complexity. Certainly an “unfolding”
of the dynamics up to time T provides a circuit (with
u-gates) that has size NT, where N is the number of
processors. One could say that we deal with ‘super-
uniform” circuits, in the sense that through such an
unfolding not only are the architectures of nets for dif-
ferent input sizes recursively specified, but in addition
the weiehts are basicallv the same at each deDth. Such
“super-~niformity” seer& not to have been ~onsidered
in circuit-complexity studies, but it is natural from the
point of view of recursive computation. See [18] for work
along these lines.

The computability of an optical beam tracing system
consisting of a finite number of elements was discussed
in [15]. One of the models described in that paper is
similar to our model, since involves operations which are
linear combinations of the parameters, with rational co-
efficients only, passing through the optical elements, and
having recursive computational power. In that model,
however, three types of basic elements are involved, and
the simulated Turing Machine has a unary tape. Fur-
thermore, the authors of this paper assume that the sys-
tem can instantaneously differentiate between two num-

bers, no matter how close, which is not a logical as-
sumption for our model.

1.2 CONSEQUENCES AND FUTURE
WORK

The simulation result has many consequences regarding
the decidability, or more generally the complexity, of
questions about recursive nets of the type we consider.
For instance, determining if a given neuron ever assumes
the value “O” is effectively undecidable (as the halting
problem can be reduced to it); on the other hand, the
problem appears to become decidable if a linear acti-
vation is used (halting in that case is equivalent to a
fact that is widely conjectured to follow from classical
results due to Skolem and others on rational functions;
see [2], page 75), and is also decidable in the pure thresh-
old case (there are only finitely many states). As our
function u is in a sense a combination of thresholds and
linear functions, this gap in decidability is perhaps re-
markable. Given the linear-time simulation bound, it
is of course also possible to transfer NP-completeness
results into the same questions for nets (with rational
coefficients). Another consequence of our results is that
the problem of determining if a dynamical system

z+ = a(Az + C)

ever reaches an equilibrium point, from a given initial
state, is effectively undecidable. Such models have been
proposed in the neural and analog computation litera-
ture for dealing with content-addressable retrieval (work
of Hopfield and others: here the initial state is taken as
the “input pattern” and the final state as a class repre-
sentative).

Another corollary is that higher order networks are com-
putationally equivalent, up to a polynomial time, to iirst
order networks.

Our result opens up a number of interesting problems.
One obvious question deals with the use of other ac-
tivation functions. It is not hard to see that various
other choices are suitable. Using the “standard sig-
moid” 1/(1 + e-m) presents some technical difficulties,
because rational numbers are harder to deal with. For
instance, requiring an output sequence of exact “1’s” is
too stringent, but there are obvious modifications that
can be done; we are currently studying this extension.
On the other hand, an equation of the type

z+= T(Az+bu+ c),

where ~ is a hard threshold (Heaviside) function, can
only simulate a finite automaton, as all states are essen-
tially binary. These models are all closely related to the
classical linear systems from control theory ([19]); see
for instance [16] for some basic control-theoretic facts
about systems that use identity, a, and T activations.

Many other types of “machines” may be used for uni-
versalist y (see [19]? especially Chapter 2, for general
definitions of continuous machines). For instance, we
can show that systems evolving according to equations
~+ = ~+ T(Az+bu+c), where T takes the sign in each Co-

ordinate, again are universal in a precise sense. It is in-
teresting to note that this equation represents an Euler

441

approximation of a differential equation; this suggests
the existence of continuous-time simulations of Turing
Machines, quite different technically from the work on
analog computation by Pour-El and others. A different
approach to continuous-valued models of computation
is given in [3] and other papers by the same authors; in
that context, our processor nets can be viewed as pro-
grams with loops in which linear operations and linear
comparisons are allowed, but with an added restriction
on branchhg that reflects the nature of the saturated
response we use.

The rest of this summary is organized aa follows. First
we define precisely nets and we state the main result.
Then we prove the result through a few intermediate
steps, and we provide an estimate of the number of pro-
cessors used.

2 STATEMENT OF RESULT

We model a net, as described in the Introduction, as
a dynamical system. At each instant, the state of this

system is a vector z(t) G QN of rational numbers! where
the ith coordinate keeps track of the activation value of
the ith processor. There are two input lines. The first
one has the role of a data line it carries a binary input
signal. When no signal is being transferred, the data
line assumes the default value “O”. The other line is
used to indicate when the input is active. It is set to
“l” as long as the input is present, and is “O” when the
information line is not active. This line, the validation

line, is reset to “O” only once, thus guaranteeing that the
input data will appear consecutively. We refer to these
lines as ‘D” and “V”. A similar convention applies to
the output processors.

In general, a discrete-time dynamical system (with two
binary inputs) is specified by a dynamics map

F: @x{o,l}2 +@’

where N is a positive integer, the dimension of the sys-

tem. Given any initial state X“ c QN, and any infinite
sequence

u = U(1), U(2), . . .

with each

‘Z6i(’t) = (D~(t), ~(t)) e {O, 1}2

(thought of as external inputs), one defines the state at

time t, for each integer t >1, as the value obtained by
recursively solving the equations:

Z(l) := N: , Z(t + 1) := x(fc(t), U(t)), -t = 1, 2 . . .

From now on we write just

z+ = F(z, u)

to display such a difference equation. We also assume
that two coordinates of z, XOand XV (the ‘output node”
and “validation node”, respectively) have been selected.
The sequence

v(f) = (Zo(t), zv(t)), 1 = 1,2,...

is called the “output produced by the input u“ (for a
given initial state).

For each j’? ~ IN, we denote the mapping

(qI,... ,qN) I-+ (a(q,), ~(q~)) by 5A? : QN ~ QN

and we drop the subscript N when clear from the con-

text. (We think of elements of QN as column vectors,
but for display purposes we sometimes show them as
rows, as above. As usual, Q denotes the rationals, and
IN denotes the natural numbers, not including zero.)

Here is a formal definition.

Definition 2.1 A u-processor net ~ with two binary
inputs is a dynamical system having a dynamics map of
the form

for some matrix A G QNXN and three vectors bl, bz, c G

QN. •1

The “bias” vector c is not needed, as one may always
add a processor with constant value 1, but using c sim-
plifies the notation and allows the use of zero initial
states, which seems more natural. When bl = bz = O,

one has a net without inputs. Processor nets appear fre-
quently in neural network studies, and their dynamic
properties are of interest (see for instance [11]).

It is obvious that —with zero, or more general rational,
initial state- one can simulate a processor net with a
Turing Machine. We wish to prove, conversely, that
any function computable by a Turing Machine can be
computed by such a processor net. We look at partially
defined maps

: {o, 1)*+ {o, 1}*

that can be recursively computed. In other words, maps
for which there is a multi-tape Turing Machine M so
that, when a word w E {O, 1}* is written initially on the
input tape, M halts on w if and only if ~(w) is defined,
and ~(w), in that case, is the content of the tape when
the machine halts.

In order to state precisely the simulation result, we need
to encode the information about # into suitable pairs of
signals (data, validation) for inputs and outputs of a
dynamical system. This is done as follows: For each

w=al . ..a~G{O. l}*,

with
#(W) = b, . .. bl~{O.l}*

or undefined, and each T 6 IN, define the six functions

and

%9?4W : IN + {o, l}*,

all follows:

VW(t) =lfort=l,..., k, Vu(t) = O for t > k,
D@(t) =ak_t+l for t= 1,..., k, Dw(t) = O for t> k,
GU,r(t) =lfort= r,..., (T+l)l)

if the output +(w) is defined, and is O when ~(w) is

442

not defined, or if t is outside of the given range; and
finally

stack is one in which u(4q~) = O, and it is not empty
precisely when this value is 1. Note that a binary rep-

Hw,r(t)= b~_r+Ifort = r, (r+ / – 1)
resentation, rather than a base-.4 representation, would

not allow such simple stack operation.

if the output +(w) is defined, and is O when #(w) is
not defined, or if t is outside of the given range. The
functions

Yw,r(t) = (~u,r(t), Gw,r(t))
are defined for all t.

Theorem 1 Let # : {O, 1}* ~ {O, 1}” be any rectir-
sively computable partial function. Then, there ezists a

proce.wor net hf with the following pr’operty:

If Af is started from the zero (inactive) initial state, and
the input sequence UW is applied, hf produces the output
y~,t. (where EW,~ appears in the ‘output node, ” and GW,r
in the ‘validation node”) for some r.

Furthemnope, if a Turing Machine M (of one input tape

\

and several working tapes) computes 4 w) in time T(w),

then one may take r(w) = 4T(w) + 0(wI). m

Note that in particular it follows that one can obtain
the behavior of a universal Thing Machine via some
net. An upper bound from the construction shows that
N = 1058 processors are sufficient for computing such
a universal partial recursive function.

We now describe the main ideas of the proofi more de-
tails are sketched below. For simplicity, we prove the
result for a Turing Machine M with one tape only. A
generalization to multi-tape machines is included later
on. First of all, one starts with a simulation of M

through a push-down automaton with two binary stacks
([8]). The control unit can be easily simulated by a
net; this is basically the old automata result ([12]), but
care must be taken in seeing that it is possible to let
inputs (from stacks) enter additively rather than mul-
tiplicatively. More than that, the time per simulated
operation must be kept to a constant.

The contents of each stack can be viewed as a rational
number between O and 1 of the form &, O < p <49. We
think of the ith element from the top as corresponding
to the ith element to the right of the decimal point in
a finite expansion in base 4. A “O” stored in the stack
is associated with a ‘l” in the expansion, while a “l”
in the stack is associated with the value ‘3”. An empty
stack is represented by zero. Thus, only numbers of the
special form

(or zero) will ever appear as activation values in the cor-
responding processor. These numbers form a “Cantor-
like set”. For such numbers, affine operations are suffi-
cient: the stack operation “push(I)” where 1 ~ {O, 1},

corresponds to q. * ~q. + $ + 1, while “POP(I)” cor-
responds to q, u 4q8 – 21 – 1. Reading a nonempt y
stack is done in constant time: if q. encodes the stack
value, then c(4q$ – 2) = 1 if and only if the top symbol
is “l”, and a(4q, – 2) = O if the top element is “O”. This
encoding also makes the emptiness test easy: an empty

A critical aspect of the construction is to show that
the whole design can be integrated without introduc-
ing high-order connections, that is, products. This is
achieved basically by using negative values that act as
“inhibitors” when fed into the activation function u. As
an illustration, consider just the “no-op’> and “pop>> ac-
tions, and assume a binary control signal c (which is
computed from the current states and stacks) is given,
so that the required effect, on a stack having value q$ (t),

is:

q,(t+l) =
{)

q, (t ifc=O
4q, t) – 21–1 ifc=l

where 1 is the top element. The net guarantees that

qs (t) # O in the second case, that is, one does not at.
tempt to pop an empty stack. Then one may use the
update:

q,(t + 1) = a[a (4q, (t) – 21+ 3C – 4) + a(q, (t) – c)]

(the outside u is redundant, but is needed in order to
obtain the desired form).

3 PRELIMINARIES

As a departure point, we pick single-tape Turing Ma-
chines with binary alphabets. As is well-known, by stor-
ing separately the parts of the tape to the left and to
the right of the head, we may equivalently study push-
down automata with two bhary stacks. We choose to
represent the values in the stacks as fractions with de-
nominators which are powers of four. An algebraic for-
malization is as follows.

3.1 TWO-STACK MACHINES

Denote by C4 the “Cantor 4-set” consisting of all those
rational numbers q which can be written in the form

with O < k < 00 and each ai = 1 or 3. (When k = O,
we interpret this sum as q = O.)

Elements of CA are precisely those of the form 6[w].
(Note that the empty sequence gets mapped into O.)

The instantaneous description of a two-stack machine,
with a control unit of n states, can be represented by a
3-tuple

(s, ti[w~], 6[W2]),

where s is the state of the control unit, and the stacks
store the words w 1 and W2, respectively. (Later, in the

443

simulation by a net, the state s will be represented in
unary, as a vector of the form (O, 0,...,0, 1,0,..., O).)

For any q E CA, we write

and:

([d:={; ;;:1,

{ O ifq=O
T[q] := 1 ifq #O.

We think of ([o] as the “top of stack,” as in terms of the
base-4 expansion, <[q] = O when al = 1 (or q = O), and
([q] = 1 when m = 3. We interpret ~[.] as the ‘empty
stack” operators. It can never happen that <[q] = 1
while r[q] = O; hence the pair (<[q], T[q]) can have only
three possible values in {O, 1}2.

Definition 3.1 A two-stack machine M is specified by
a 6-tuple

(S, 51, $H, 60,81, 02),

where S is a finite set, 81 and ~H are elements of S called
the initial and halting dates, respectively, and the $i’s
are maps as follows:

ef):sx{o,l}4-+s

6i:s x{O, 1}4~ {(1,0,0),(~,0, ~),(~,o, ~), (4,–2,–1)}

for i = 1,2.

(The function 80 computes the next state, while the
functions 61 and 82 compute the next stack operation
for stackl and stack2, respectively. The actions depend
only on the state of the control unit and the symbol
being read from each stack. The values

(1,0,0),(:,0, ~),(~,0, :),(4,–2, -1)

of the @i should be interpreted as ‘no operation”,
‘(pushO”, “pushl”, and “pop”, respectively.)

The set .2! := S x C4 x C4 is called the instantaneous
description set of J4, and the map

P: X-+x

defined by

7(s, ql, q2) :=

[~o(% c[qll! @121,~[qll, ~[q21),
e~(s, ([ql], ([q2], ~[!711,@421) “ (ql> ([!711! 1)!
e~(s, ([ql], <[q2], ~[qll, ~[q21) “ (q2! CIWI$ 1)1

where the dot “.” indicates inner product, is the com-
viete dvnamics mav of M. As Dart of the defini-
~ion, it” is assume~ that the ma~s /?l, 02 are such
that 61(s, ([ql], ([qZ], O, ~[qz]), @2(s, ([ql], ~[qz]~ ~[ql]} 0)
(4, –2, –1) for all s, ql, q2 (that is, one does not at-
tempt to pop an empty stack).

Let w ~ {O, 1}* be arbitrary. If there exist a positive in-
teger k, so that starting from the initial state, sI, with
c5[u] on the first stack and empty second stack, the ma-
chi;e reaches after k steps
is,

@(sI, 6[W], o) =

the- halting state ‘sJf, that

(s~, 6[W,], 6[W2])

444

for some k, then the machine M is said to halt on the

input w. If w is like this, let k be smallest possible so
that

@-(sr, ‘5[0], o)

has the above form. Then the machine M is said to
output the stm”ng W1, and we let 4M (w) := u1. This
defines a partial map

4M : {o, 1}” + {o, l}*,

the i/o map of M. ❑

Save for the algebraic notation, the partial recursive
functions # : {O, 1}* ~ {O, 1}” are exactly the same
as the maps ~ti : C4 - C4 of two-stack machines as
defined here; it is only necessary to identify words in
{O, 1}* and elements of C* via the above encoding map
ii. Our proof will then be based on simulating two-stack
machines by processor nets.

3.2 A RESTATEMENT

It will be convenient to have a version of Theorem 1
that does not involve inputs but rather an encoding of
the initial data into the initial state.

For a processor net without inputs (that is, with bl =
b2 = O), we may think of the dynamics map F as a map

QN - QN. In th ta case, we denote by Fk the k-th it-

erate of ~. For a state f E QN, we let ~~ := ~~((). We
now state that if @ : {O, 1}* ~ {O, 1}* is a recursively
computable partial function, then there exists a proces-
sor net Af without inputs, and an encoding of data into
the initial state of ~, such that: ~(w) is undefined if
and only if the second processor has activation value al-
ways equal to zero, and it is defined if this value ever
becomes equal to one, in which case the first processor
has an encoding of the result.

Theorem 2 Let # : {O, 1}* -+ {O, 1}* be any recur-
sively computable partial function. Then there exists
a processor net hf without inputs so that the following

properties hold: For each w c {O, 1}*, consider the ini-

tial state

g(w) := (6[W],0, . . .,0) e (QN.

Then, if #(w) is undefined, the second coordinate ~(w)~
of the state after j steps is identically equal to zero, for

all j. If instead ~(w) is defined, then there is some k so

that

~(w)~=O, j= O,...,l, <(w)~)~ = 1,

and ~(w)f = b[~(w)].

4 PROOF OF RESULT

The proof of Theorem 1 is organized as follows. In sec-
tion 4.1, we build a processor net without inputs as
needed for Theorem 2. In section 4.2, we describe in
graphical terms the architecture being used, accomp~
nied by a detailed explanation. Subsection 4.3 gener-
alizes the result from single to multi-tape Turing Ma-
chines. In subsection 4.47 we show how to modify a net
with no inputs into one with inputs.

Assume that a two-stack machine M is given. Without
loss of generality, we assume that the initial state 81, dif-
fers from the halting state SH (otherwise the function
computed is the identity, which can be easily imple-
mented by a net), and we assume that S := {O, s},
with 51 = O and 5H = 1.

4.1 MATHEMATICAL CONSTRUCTION

We build the net in two stages.

● Stage 1: As an intermediate step in the const ruc-
tion, we shall show how to simulate M with a certain
dynamical system over Q 8+2. writing a vector in Q*+2

Ss
(zI,...,)z47!l1792 7

the first s components will be used to encode the state
of the control unit, with O E S corresponding to the
zero vector Z1 = . . . = z~ =0, andi~S, i#O
corresponding to the ith canonical vector

ei=(O, O.l, O,O)., O)

(the ‘1” is in the ith position). For convenience, we also
use the notation e. := O c Q’. The qi’s will encode the
contents of the stacks. Formally, define

Pij : {0, 1}4 + {0, 1},

for i C {1,s}. j6{0,s} and

#j : {o, 1}’+ {o, 1},

for i = 1,2, j~{o,..., s}, k = 1,2,3,4 as follows:

/3ij(a, b, d, e) = 1 ~ @o(j, a, b,d, e) = i

(intuitively: there is a transition from state j of the
control part to state i iff the readings from the stacks
are: top of stackl is a, top of stack2 is b, the emptyness
test on stackl gives d, and the emptyness test on stack2
gives e),

y~j (a, b, 4 e) = 1 = Oi(j, a, b,d, e) = (1,0,0)

(if the control is in state j and the stack readings are
a, b, d, e, then the stack i will not be changed),

#’(a,b,4e) = 1 e @i(j, a,h4e) = (~,o,~)
(if the control is in state j and the stack readings are
a, b, d, e, then the operation PushO will occur on stack
i),

~~(a, b,d, e) = 1 u ei(~,a,b,d,e) = (~,o, ~)

(if the control is in state j and the stack readings are
a, b, d, e, then the operation Pushl will occur on stack
i),

y$(a, b,d, e) = 1 ~ @i(j, a, b,d, e) = (4,–2,–1)

(if the control is in state j and the stack readings are
a, b, d, e, then the operation Pop will occur on stack i).

Let ~ be the map Q*+2 * (Q*+2 :

where, using the notation Z. := 1 – ~~=~ Zj:

r. 1
~+ :=

i 1 Ju ~ Pij(<[ql],<[q21, T[911,T[921)zj (2)
j =0

fori=l ,.. ., sand

q: := (3)

[()o ~T}j(<[911,C[*21, T[qll,T[921kj 9i+
j =0

()~7?j(C[9dtC[921, ‘[911, ‘[921ki (&i+$ +
j=O

()

~7~(C[911,C[921, T[qll,T[q21kj (&i+j +
j=O

()1~’Yfj(C[qd,C[q21, ‘[qd,T[921kj (4qi-2C[9il-1)
jzO

for i = 1,2. Note that the “u” does not need to appear
on the right hand side of both equations. It is used only
for consistency in obtaining the desired result. Recall
that <[qi] is the map that provides the symbol at the
top of stack i, and T[qi] performs the emptiness test on
this stack.

Let ~ : X = S x CA x CA ~ (Q*+2 be defined by

$f(i, ql, qz) := (ei,q~, qz).

It follows immediately from the construction that

F(z(i, ql, q2)) = m(?(i, ql, qz))

for all (i, ql, qz) ~ X.

Applied inductively, the above implies that

Pk(eo, f5[bJ],O) = 7(?+(0, ti[w], o))

for all k, so ~(w) is defined if and only if for some k it

holds that ~k (eo, c$[w],O) has the form

(cl, 91, 92)

(recall that for the original machine, SI = O and SH = 1,
which map respectively to e. = O and el in the first s
coordinates of the corresponding vector in Q8~2). If
such a state is reached, then ql is in C4 and its value is
J[(j(w)] .

● Stage 2: The second stage of the construction simu-

lates the dynamics ~ by a net. Subsection 4.2 provides a
pictorial description of the following mathematical con-
struction. We first need an easy technical fact.

Lemma 4.1 For each function @ : {o, 1}4 + {0,1}
there exist vectors

V1, V2, . . . , ~lfj G @

445

and scalars
C.l, C2, ..., clG c Q

such that, for each a, b, d, e, z ~ {O, 1} and each q 6

P>11,
16

/3((Z,b, d, e)z = ~ CiC(Wi . /4)
i=l

and

(
16

~(a, b, d, e)zq =
)

~ q+~cia(vi”p)–1 ,
i=l

where we denote p = (1, a, b, d, e, z) and ‘.” = dot prod-

uct in Q6.

Proof Write @ aa a polynomial ~(a, b, d, e) = c1 + cza +

c3b +cAd+cse+ cGab+cTad+csae +cgbd+clobe +cllde+

c12abd + C13 abe + c14ade+ c15bde + c16abde, expand
the product ~(a, b, d, e)z, and use that for any sequence
n,..., lk of elements in {O, 1}, one has

11...zh=~(ll+-..+lk+l)l).

Using that z = u(z), this gives that

/3(a, b, d, e)z =

clfJ(z)+cW(a+z– 1)+ ...+cmu(a+b+d+e+z-4) =

~~~~ CiU(Vi . /J)

for suitable ci’s and vi’s. On the other hand, for each
r c {O, 1} and each q ~ [0, 1] it holds that ~q =
a(q + r – 1) (just check separately for ~ = O, 1), so
substituting the above formula with 7 = /3(a, b, d, e)z
gives the desired result. m

Apply Lemma 4.1 repeatedly, with the “fl” of the
Lemma corresponding to each of the ~ij ‘S and ~~j ‘s, and

using variously q = ~i, q = (~~i + ~), ~ = (*f?i + ~)t or

q = (4~i –2~[~i] – 1). Write also a(4qi –2) whenever ([qi]
appears (using that <[q] = 0(4q – 2) for each q ~ CA),

and u(4q) whenever -r[g] appears. The result is that ?
can be written as a composition

~ = FIOF20F30F4

of four “saturated-affine” maps, i.e. maps of the form
8(Az + C): F4 : QS+2 -+ QP, FS:QPb Qv, F2:Qv *

Qq, F1 : Qv - (Q’+2, for some positive integers p, v, q.
(The argument to the function F4, called below zq, of
dimension (s+ 2), represents the s ~i’s of Equation (2)
and the two qi’s of equation (4.1). Functions F1, F2, F3

compute the transition function of the xi’s and qi’s in
three stages.)

Consider the set of equations

where the .zi’s are vectors of sizes s + 2, q, v, and p
respectively. This set of equations models the dynamics
of a u-processor net, with

N=s+2+#+v+q

processors. For an initial state of type Z1 = (co, 6[u], O)
and ~i = 0, i = 2,3,4, it follows that at each time of
the form t = 4k the first block of coordinates, Z1, equals

@(e0,6[u],0).

All that is left is to add a mod-4 counter to impose
the constraint that state values at times that are not
divisible by 4 should be disregarded. The counter is
implemented by adding a set of equations

q : dY2),

;3 : ~(Y3)!
— u(y4),

Y~ ‘a(l–y2–y3–yA).

When starting with all yi(0) = O, it holds that gl(-t) = 1
if t = 4k for some positive integer k, and is zero other-
wise.

In terms of the complete system, ~(w) is defined if and
only if there exists a time t such that, starting at the
state

Z1 = (eO, /i[w],O), ~i = O,i= 2,3,4, yi = O$i= 1,2,3,47

the first coordinate z1l (t) of zl(t) equals 1 and also
Y1(t) = Yz(t – 1) = 1. To force .z1l(t)not to output
arbitrary values at times that are not divisible by 4, we
modify it to

Z;l =a(. . . + Z(yz – l)),

where ‘. . .“ is as in the original update equation for
z1l, and 1 is a positive constant bigger than the largest
possible value of z1l. The net effect of this modification
is that now Z1l (t) = O for all t that are not multiples of
4, and fort = 4k it equals 1 if the machine should halt
and Ootherwise. Reordering the coordinates so that the
first stack ((s + l)st coordinate of z1) becomes the first
coordinate, and the previous z1l (that represented the
halting state SH of the machine &f) becomes the second
coordinate, Theorem 2 is proved. I

4.2 A LAYOUT OF THE CONSTRUCTION

The above construction can be represented pictorially
as in Figure 1 (see below).

For now, ignore the rightmost element at each level,
which is the counter. The remainder corresponds to the
functions F4, F3, F2, Fl, ordered from bottom to top.
The processors are divided in levels, where the output
of the ith level feeds into the (i – l)st level (and the
output of the top level feeds back into the bottom).
The processors are grouped in the picture according to
their function.

The bottom layer, F4, contains five groups of processors.
The leftmost group of processors stores the values of the
s states to pass to level F3. The “zero state” processor
outputs 1 or O, outputting 1 if and only if all of the
s processors in the first group are outputting O. The
“read stack i“ group computes the top element ( [qi] of
stack i, and ~[qi] c {O, 1}, which equals O if and only if
stack i is empty. Each of the two processors in the last
group stores an encoding of one of the two stacks.

446



F1 : @ &

s states
F2 :

2 “stacksn counter 1

po:””q ~ QOQ &
8 states 4 “news tackl” 4 “news tack2” counter 2

F3 : po”:”””q & ~ &
9(9+1) top of stacks 2 “stacks” counter 3

Fd : po; ””q Q QQ Q(J QcJ &
8 states zero state read ‘stackl” read “stack2” 2 “stacks” counter 4

Figu?’e 1: The Net Simulating a Two Stack Turing Machine

Layer F3 computes the 16 terms a(vi . p) that appear in
the needed equations for each of the possible s + 1 val-
ues of the vector z. Only 9(s + 1) processors are needed,
though, since there are only three possibilities for the or-
dered pair (<[~i], ~[~i]) for each of the two stacks. (Note
that each such p contains c[ql], <[q2], T[ql], r[q2], M well

aszo, ..., Z$, that were computed at the level F4.) In
this level we also pass to level Fz the values c[ql], <[92]
and the encoding of the two stacks, from level F4.

At level F2 we compute all the new states as described

\

in equation 2) (to be passed along without change to
the top layer . Each of the four processors in the “new
stack in group computes one of the four main terms
(rows) of equation (4.1) for one stack. For instance, for
the fourth main term we compute an expression of the
form:

16

~(4~i – 2<[~i] – 1 + 5 ~cija(Vi - P) – 1).

~=0 i=l

Note that each of the terms qi, <[qi], u(~i . p) has been
evaluated in the previous level.

Finally, at the top level, we copy the states from level F3,
except that the halting state Z1 is modified by counter2.
We also add the four main terms in each stack and apply
a to the result.

After reordering coordinates at the top level to be

‘tI, zo, . . ..z$. tz,

the data processor and the halting processor are first
and second, respectively, as required to prove Theorem
2. Note that this construction results in values

p=s+7, v=9s+ 13, andq=s+8.

4.3 GENERALIZATION TO MULTI-TAPE
TURING MACHINES

Let p (p ~ 1) be the number of tapes in a multi-tape
Turing Machine. Stage 1 of the construction would sim-
ulate now a machine &f with p tapes, i.e. 2p stacks, as
a dynamical system over Q8+2P. That is, we define

Pij : {0, 1}4P + {0, 1}, (4)

for i e {1, . ...8}, jc{o, . . ..s}

and
~& : {o, 1}4P + {o, 1}, (5)

for i=l,2 ,...2p, jc{O,..., s}, k=l,2,3,4
similarly to the above definitions. The dynamics maps
are now functions of 4p stack readings rather than only
four.

In stage 2, we use a more general lemma, which states

Lemma 4.2 For each function @ : {O, 1}4P a {0,1}
there exist vectors

Vl, VZ, . . .. V42~e Q (4F+2)

and scalars
cl,cz,...,C42~EQ

such that, for each al, a2, . . . . a4~P ~ {O, 1} and each
q e [0, 1],

~(al, az, . . .,a42p)Z = ~cia(vi oP)
i=l

and

42P

~(a~,az,..., a4ap)aq = ~ (q+ ~ci~(’Vi . fJ) ‘1) ,
i=l

where we denote p = (l, al, a2, . . . . a4a*, z) and “.” =

dot product in Q(4P+2). •1

The size of the resulting network is p = s + 1 + 6p,
v=9P(s+ l)+4p, andq=s+8p.

4.4 INPUTS AND OUPUTS

We now explain how to deduce Theorem 1 from Theo-
rem 2. In order to do that, we first show how to modify
a net with no inputs into one which, given the input
Uu (.), produces the encoding 6 [w] as a state coordinate
and after that emulates the original net. Later we show
how the output is decoded. As explained above, there
are two input lines: D = U1 carries the data, and V = U2
validates it.

So assume we are given a net with no inputs

~+ = a(llz + c) (6)

447



as in the conclusion of Theorem 2. Suppose that we
have already found a net

Y+ = u(Fy + gul + hu2) (7)

(consisting of 5 processors) so that, if ul(”) = DW(S) and
u2(”) = VU(”), then with Y(O) = O we have

. ..06[u]00 . . . and ys(”)=~ll””” ,

and

{

O ift~lwl+2
y5 (t) = 1 otherwise.

Once this is done, modify the original net (6) as follows.
The new state consists of the pair (z, y), withy evolving
according to (7) and the equations for x modified in this
manner (using Ai to denote the ith row of A and ci for
the ith entry of c):

x: = a(Alz + c.1Y5+ y4)

~+ –
i— u(Ai~+ciy5)1 i=2>. ..?n.

Then, starting at the initial state y = z = O, clearly
zl(t) = O for t = 0,. ... lwl+ 2 and z1(IwI + 3) = 15[u],
while, fori> 1, ~i(t)=0 fort =0, . . ..lwl +3.

After time Iul + 3, as y5 s 1 and U1 = U2 = O, the
equations f or z evolve as in the original net, so z(t) in
the new net equals z(t – IWI – 3) in the original one for
t~lwl+3.

The system (7) can be constructed as follows:

11
Yt = a(iyl + ~ul + ;+ U2–1)

Y; = C(U2)

Y: = a(yz – U2)

Y: = C(yl+yz–uz–1)

Yi!- = a(y3 + ys)

This completes the proof of the encoding part. For the
decoding process of producing the output signal yl, it
will be sufficient to show how to build a net (of dimen-
sion 10 and with two inputs) such that,

starting at the zero state and if the input sequences are
al and x2, where zl(k) = 6[w] for some k and zz(t) = O
for t < k, 02 k) = 1 (q(t) C [0,1] for t # k, *z(t) 6

\[0, 1] fort> k , then for processors .z9, ZIO it holds that

Z9 =

{

1 ifk+4~t~k+3+lu]
O otherwise ,

and

{

~t_k_s
Z1O=

ifk+4~t~k+3+lwl
o otherwise .

This is easily done with:

+–Z1 —

+—Z2 —

+–
23 —

z: =
+=

25

+–Z6 —

+–z~ —

+–ZS —

+=
Z9

+=
‘%0

C7(252+ ZJ

CT(ZI)

u(’q )

u(q)
U(Z4 + Z1 – .q – 1)

fY(4z4 + Z1 – 2Z2, – 3)

0(16zs – 827 – 6,z3 + ZG)

~(4zS – 2.ZT– 23 + z5)

u(4~s)

a(z7) .

In this case the output is y = (zlo, Z9).

Remark 4.3 If one would also like to achieve a reset-
ting of the whole network after completing the opera-
tion, it is possible to add the processor

z:. = U(zlo) ,

and to add to each processor that is not identically zero
at this point of time,

‘J = U( . ..+zll– Zlo) , v (E {z, y,z} ,

where “, . .“ is the formerly defined operation of the pro-
cessor.

5 THE SIZE OF THE NETWORK

Following the construction above, we can estimate the
size of a network needed to compute a recursively com-
putable partial function. Let @ be a recursively com-
putable partial function, and let s be the number of
states in the control unit of some 2p-stack machine com-
puting ~. Then there exists a processor net A/ that
computes ~, and consists of

[P+~+?+’+2P+4]+ [5] +[10+1]=
~w ~
system without inputs input output

9P(s + 1) + 3s + 20P+ 21 processors.

6 THE UNIVERSAL NET

A consequence of Theorem 1 is the existence of a uni-
versal protessor net, which upon receiving an encoded
description of a recursively computable partial function
(in terms of a Turing Machine) and an input string,
would do what the encoded Turing Machine would have
done on the input string.

To approximate the number of processors in such a pro-
cessor net, we should calculate the number s discussed
above, which is the number of states in the control unit
of a two stack universal Turing Machine. Minsky proved
the existence of a universal Turing Machine having one
tape with 4 letters and 7 control states, [13]. Shannon

448



showed in [17] how to change the number of letters in a
Turing Machine. Following his construction, we obtain
a 2-letter 63-state Turing Machine. However, we are in-
terested in a two-stack machine rather than one tape.
Similar arguments to the ones made by Shannon, but
for two stacks, leads us to s = 84. Applying the formula
12s + 50, we conclude that there is a universal net with
1058 processors. (This estimate is very conservative. It
would certainly be interesting to have a better bound.
The use of multi-tape Turing Machines may reduce the
bound. Furthermore, it is quite possible that with some
care in the construction one may be able to drastically
reduce this estimate. One useful tool here may be the
result in [1] applied to the control unit—here we used a
very inefficient simulation.

7 NON-DETERMINISTIC
COMPUTATION

A non-deterministic processor net is a modification of a
deterministic one obtained by adding a guess input line
(G) in addition to the validation and data lines. Hence,
the dynamics map of the network is now

F: Q~x{o,l}3+Q~.

Equations (4) and (5) are modified into

Pij : {o, I}(’p+’) + {o, 1},

for ie{l,..., s}, jC{O,. ... s}

V!j : {0, I}(’p+’) ~ {O, 1},

for i= 1,2,...2p, jc {0,..., s}, k= 1,2,3,4

where the arguments of the functions ~ij and Y& are

the 4p stack readings as above, along with the current
guess G(t).

The language L accepted by a nondeterministic formal
network in time B is

L = {w13 a guess G,~N(w, G) = l, T..(s B(lw\)} .

The function B is called the computation time.

Theorem 1 can be restated for the non-deterministic
model in which Af is a non-deterministic processor net
and A-4 is a non-deterministic Turing Machine. The the-
orem remains correct in this non-deterministic version.

Acknowledgements

This research was supported in part by US Air Force
Grant AFOSR-91-0343.

References

[1]

[2]

N. Alon, A.K. Dewdney, T.J. Ott, ‘(Efficient simu.
lation of finite automata by neural nets,” J. A. C.M.

38 (1!)91): 495-514.
J. Berstel, C. Reutenauer, Rational Series and
Their Languages, Springer-Verlag, Berlin, 1988.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

L, Blum, M. Shub, and S. Smale, “On a theory of
computation and complexity over the real numbers:
NP completeness, recursive functions, and univer-
sal machines,” Buii. A.M.S. 21(1989): 1-46:
S. Franklin, M. Garzon, “Neural computablhty,” in
Progress In Neural Networks, Vo/ 1 )(0. M. Omid-
var, cd.), Ablex, Norwood, NJ, (1990): 128-144.
M. Garzon, S. Franklin, “Neural computability
H,” in Proc. .%d Int. Joint Conf. Neural Networks

U1989: I, 631-637.
.L. iles, D. Chen, C.B. Miller, H.H. Chen, G.Z.

Sun, Y.C. Lee, “Second-order recurrent neural net-
works for grammatical inference,” Proceedings of

the International Joint Conference on Neural Net-

works, Seattle, Washington, IEEE Publication, vol.
2 (1991): 273-278.
R. Hartley, H. Szu, “A comparison of the compu-
tational power of neural network models,” in Proc.

IEEE Conf. Neural Networks (1987 : III 17-22.
IdJ.E. Hopcroft, and J .D. Unman, ntro uction to

Automata Theory, Languages, and Computation,

Addison-Wesley, 1979.
S.C. Kleene, “Representation of events in nerve
nets and finite automata,w in Shannon, C, E., and
J. McCarthy, eds., Automata Studies, Princeton
Univ. Press 1956: 3-41.
W. Maass, G. Schnitger, E.D. Sontag, “On the
computational power ‘of” sigmoid versus boolean
threshold circuits,” Proc. of the M?nd Annual

Symp. on Foundations of Computer Science (1991):

767-776.
C.M. Marcus, R.M. Westervelt, “Dynamics of
iterated-map neural networks,” Phys. Rev. Ser. A

Ld
401989:3355-3364.
w. . cCulloch, W. Pitts, “A logical calculus
of the ideas immanent in nervous activity,” Bull.

Math. Biophys. 5(1943): 115-133.
M.L. Minsky, Computation: Finite and Infinite

Machines, Prentice Hall, Engelwood Cliffs, 1967.
J.B. Pollack, On Connectionist Models of Natu-
ral Language Processing, Ph.D. Dissertation, Com-
puter Science Dept, Univ. of Illinois, Urbana, 1987.
J.H. Reif, J.D. Tygar, A. Yoshida “The com-
putability and complexity of optical beam tracing,”
Proc. of the 31st Annual Symp. on Foundations of

Computer Science 1990: 106-114.
R. Schwarzschild, ki .D. ontag, “Algebraic theory
of sign-linear systems, “ in Proceedings of the Au-
tomatic Control Conference, Boston, MA, June

Lk
1991:799-804.
.E. hannon, “A universal turing machine with

two internal states,” in Shannon, C. E., and J. Mc-
Carthy, eds., Automata Studies, Princeton Univ.
Press 1956: 157-165.
H.T. Siegelmann, E.D. Sontag, “Analog computa-
t ion, neu;al networks, and cir&its,” su~mitt~d.
E.D. Sontag, Mathematical Control Theory: De-
terministic Finite Dimensional Systems, Springer,
New York, 1990.
E.D. Sontag, “Feedforward nets for interpolation
and classification,” J. Comp. Syst. Sci., to appear.
G.Z. Sun, H.H. Chen, Y.C. Lee, and C.L. Giles,
“Turin~ equivalence of neural networks with second
order ~on~ection weights,”
Nets, Seattle, 1991:11,357-.

in Int .Jt. Conf.Neural

449


