On the Allocation of Documents in
Multiprocessor Information Retrieval Systems

Ophir Frieder
Dept. of Computer Science

George Mason University
Fairfax, VA 22030

Abstract. Information retrieval is the seclection of
documents that are potentially relevant to a user's
information need. Given the vast volume of data stored in
modern information retrieval systems, searching the
document database requires vast computational resources.
To meet these computational demands, various researchers
have developed parallel information retrieval systems. As
efficient exploitation of parallelism demands fast access to
the documents, data organization and placement
significantly affect the total processing time. We describe
and evaluate a data placement strategy for distributed
memory, distributed I/O multicomputers. Initially, a
formal description of the Multiprocessor Document
Allocation Problem (MDAP) and a proof that MDAP is
NP Complete are presented. A document allocation
algorithm for MDAP based on Genetic Algorithms is
developed. This algorithm assumes that the documents are
clustered using any one of the many clustering algorithms.
We define a cost function for the derived allocation and
evaluate the performance of our algorithm using this
function. As part of the experimental analysis, the effects
of varying the number of documents and their distribution
across the clusters as well the exploitation of various
differing architectural interconnection topologies are
studied. We also experiment with the several parameters
common to Genetic Algorithms, e.g., the probability of
mutation and the population size.

1.0 Introduction

An efficient multiprocessor information
retrieval system must maintain a low system
response time and require relatively little storage
overhead. As the volume of stored data continues
to increase daily, the multiprocessor engines must
likewise scale to a large number of processors.
This demand for system scalability necessitates a
distributed memory architecture as a large number
of processors is not currently possible in a shared-
memory configuration. A distributed memory
system, however, introduces the problem

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
titte of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1991 ACM 0-89791-448-1/91/0009/0230...$1.50

Hava Tova Siegelmann
Dept. of Computer Science
Rutgers University

New Brunswick, NJ 08903

associated with the proper placement of data onto
the given architecture. We refer to this problem as
the Multiprocessor Document Allocation Problem
(MDAP), a derivative of the Mapping Problem
originally described by Bokhari [Bok81].

We assume a clustered document database. A
clustered approach is taken since an index file
organization can introduce vast storage overhead
(up to roughly 300% according to Haskin
[Has81]) and a full-text or signature analysis
technique results in lengthy search times. In this
context, a proper solution to MDAP is any
mapping of the documents onto the processors
such that the average cluster diameter is kept to a
minimum while still providing for an even
document distribution across the nodes.

To achieve a significant reduction in the total
query processing time using parallelism, the
allocation of data among the processors should be
distributed as evenly as possible and the
interprocessor communication among the nodes
should be minimized. Achieving such an
allocation is NP Complete. Thus, it is necessary
to use heuristics to obtain satisfactory mappings,
which may indeed be suboptimal.

Genetic Algorithms [DeJ89, Gol89, Gre85,
Gre87, Hol87, Rag87] approximate optimal
solutions to computationally intractable problems.
We develop a genetic algorithm for MDAP and
examine the effects of varying the communication
cost matrix representing the interprocessor
communication topology and the uniformity of the
distribution of documents to the clusters.

1.1 Mapping Problem Approximations

As the Mapping Problem and some of its
derivatives are NP complete, heuristic algorithms
are commonly employed to approximate the
optimal solutions. Some of these approaches
[Bok81, Bol88, Lee87] deal, in some manner,

This work was partially supported by grants from DCS,
Inc. under contract number 5-35071 and the Center for
Innovative Technology under contract number 5-34042.

230

with the mapping of a communicating set of
processes onto an architecture with a fixed
interconnection topology. This problem is similar
to MDAP in that both problems must map a set of
tasks (items) onto a given architecture. However,
the goals of the above efforts differ from MDAP
as MDAP does not aim to maximize the amount of
concurrent interprocess communication, but
instead, aims at reducing the total communications
diameter of its logical tasks (clusters).

Bokhari [Bok81] introduced a pairwise-
exchange heuristic algorithm that accepted as input
two adjacency matrices representing graphs G (set
of communicating processes) and G' (target
architecture). Using the cardinality of the number
of communicating pairs that directly
communicated with their neighbor as the objective
function, Bokhari developed and evaluated an
algorithm that mapped graph G onto graph G'.
Lee and Aggarwal [Lee87] extended that effort by
developing objective functions that more
accurately quantified the communication
overhead. Using a set of objective functions
(parametric equations) that corresponded to the
cost associated with the given mapping, Lee and
Aggarwal precisely measured the optimality of the
derived mapping. The main limitation in their
approach was that it only employed a fixed path
routing scheme for the network traffic.

Bollinger and Midkiff [Bol88] used a two-
phase simulated annealing algorithm to map a
logical system onto a physical architecture. The
first phase, process annealing, assigned the
processes onto the physical nodes. The
connection annealing phase mapped the logical
connections onto the network data links so as to
minimize communication link conflicts. This
effort improved upon Lee and Aggarwal [Lee87]
in that it utilized the information concerning the
actual routing rules.

Du and Maryanski [Du88] attacked a variation
of the mapping problem. This variation
concerned the allocation of data in a dynamically
reconfigurable environment. The allocation
algorithm used a set of "benefit" functions and a
greedy search algorithm. The underlying
execution architecture was based on a client/server
model (a heterogeneous system). Although their
problem more closely resembles MDAP, as the
underlying architectural model significantly differs
from the MDAP execution environment, their
assumptions are not relevant to MDAP.

1.2 Related Multiprocessor Systems
Distributed-memory information retrieval
systems have been investigated as a mean of

providing short response times to users' requests.
Some of these systems include various efforts on
the Connection Machine [As090, Sta86, Sta89,
Sta90], on the Distributed Array Processor (DAP)
[Pog87, Pog88], on a network of Transputers
[Cri90], and on hypercube systems [Sha89].
Both the commentary on and the extensions of the
Connection Machine efforts [Aso90, Sal§8,
Sta89, Sta90, Sto87] as well as the hypercube
[Sha89], DAP [Pog87, Pog88] and Transputer
[Cri90] efforts have all addressed the notion of
data organization in the search and retrieval
scheme employed.

Stone [Sto87] demonstrated analytically that,
by indexing keywords, a uniprocessor system
with comparable memory to that of the
Connection Machine employed in the Stanfill and
Kahle effort [Sta86] can achieve similar user
retrieval response times to those times reported in
[Sta86]. Via keyword indexing, the volume of
data that had to be searched was reduced,
significantly reducing the total I/O processing
time. A parallel index-based retrieval effort on
the Connection Machine was later reported in
Stanfill, Thau, and Waltz [Sta89] and in Asokan,
Ranka, and Frieder [As090]. Additional parallel
text retrieval search methods are described in
Salton and Buckley [Sal88].

Various descriptions of efforts that focus on
the organization of data for the DAP system,
appear in the literature. In Pogue and Willett
[Pog87], an approach using text signatures is
proposed and evaluated using three document
databases comprising of roughly 11000, 17000,
and 27000 documents. Pogue, Rasmussen, and
Willett [Pog88], describe several clustering
techniques using the DAP. Both reports clearly
demonstrate that if a proper document mapping
onto the individual Processing Elements (PEs) is
established, the DAP system readily achieves a
high search rate. However, an improper mapping
results in a poor search rate stemming from the
inability of the DAP system to access the
documents.

Cringean, et. al., [Cri90] describe early
efforts aimed at developing a processor-pool
based multicomputer system for information
retrieval. The physical testbed hardware consists
of an Inmos Transputer network. To reduce the
volume of data accessed and hence the total query
processing times, a two phase retrieval algorithm
is proposed. The initial phase acts as a filter to
retrieve all potentially relevant documents. By
using text signatures, the majority of the non-
relevant documents are eliminated from further
processing. This filtering of documents vastly

231

reduces the volume of data processed in the
compute intensive second phase. (Some non-
relevant documents are selected as a consequence
of false-drops. False-drops are common to all
text signature analysis approaches.) In the second
phase, full text search is performed. The two
phase algorithm is yet another example that
emphasizes the need for intelligence in the
organization and retrieval of documents.

Finally, Sharma [Sha89] describes a
hypercube-based information retrieval effort. The
results presented are based on the timing
equations provided. To reduce the volume of data
read, Sharma relies on the fact that the documents
are initially partitioned into clusters, and only
documents that belong to "relevant” clusters are
retrieved. As in our approach, Sharma does not
address nor is dependent on any particular
clustering technique. Sharma does require,
however, that the cluster scheme employed yield
non-hierachical clusters, whereas we do not
impose such a restriction. Thus, all the clustering
schemes, including the numerous schemes
described in Willett [Wil88] can also be employed
in our scheme. Sharma partitions the clusters
across the individual nodes according to an
architectural topology-independent, best-fit
heuristic. No evaluation of the document
distribution algorithm is provided.

We also rely on clustering, but use a genetic
algorithm approach that uses information about
the underlying architecture to map the documents
onto the nodes. As the actual dataset used in the
[Sha89] evaluation is not described, it is not
possible to directly compare the results of our
algorithm to the algorithm described in [Sha89].
For tutorials on clustering and other information
retrieval related topics, the reader is referred to
[Bra90, Sal83, Wil88].

The remainder of the paper is organized as
follows. A proof that MDAP is NP-Complete is
sketched in Section 2. Section 3 comprises of a
description of a proposed Genetic Algorithm for
MDAP. Results from an experimental evaluation
of our approach are illustrated in Section 4. We
conclude in Section 5.

2.0 MDAP is NP-Complete

An instance of MDAP consists of a
homogeneous distributed memory architecture
with n nodes, Xj, 0 £i <n - 1, and partitions of
the documents D;, 0 €1 <d - 1, called clusters, C.
Each cluster Cj, 0 <i<c - 1, represents a list of
all the documents associated with it. Typically, Vd

< ¢ < d/constant [Sha89]. The distance between a
pair of nodes is defined as the cost of sending a

packet from node i to node j and is represented by
the internode communication cost matrix, M;j, 0 <
i, j < n - 1. The diameter of a cluster is the
maximum distance between any pair of nodes that
contain documents belonging to the given cluster.
MDAP requires the documents to be evenly
distributed across the nodes, such that the sum
over all cluster diameters is minimal. As the sum
of the cluster diameters is reduced, the total
communication traffic is minimized.

To prove that MDAP is NP-Complete a
polynomial-time reduction of the Quadratic
Assignment Problem [Gar79] to the decision form
(yes/no problem) of MDAP is provided. MDAP
is formally defined as:

Instance: .
A distributed memory architecture with:

X=({X;jl0<i<n-1};

Nodes (PEs):
Cost:

A clustered document domain with:

Documents: D={D;jl0<i<d-1};

Clusters: C=({C;10<i<c-1,Cje D};
A real value bound: B.

Question:

Is there an allocation of the documents to the
processors such that:

1. The number of documents at each node

Xj is %, (0<ign-1)
2. 2 diameter (Cj) < B.
all clusters Cj, 0<j<c-1
where diameter (Cj) = max(My), and

documents Dk, Dje Cj,0<k, 1<d- 1,
0 €£j <c¢ - 1, reside at nodes r and t,
respectively.

Theorem 1. MDAP is NP-Complete.
Proof:

1. Given an instance of MDAP, the defined
allocation can be checked to satisfy the stated
equality and bound requirements (statement 1
and 2) using a polynomial time algorithm.
Therefore, MDAP is in NP.

232

2. To show the NP-Completeness of MDAP, we
use the NP-Complete, Binary Quadratic
Assignment Problem [BQAP] defined in
Garey and Johnson [Gar79].

Binary Quadratic Assignment Problem [BQAP]:

Instance:
Non-negative costs:

bjje {0,1}, bjj=bj; 1<i,j<g;

Distances: mgj, 1<k,1<h;
Bound: Ze 7t
Question:

Is there a one to one function f:{1, 2, 3, ...,
g} — (1,2, 3, ..., h} such that

> bij * mgiyrg) $Z 7
1#]

Given an instance of the BQAP, define the
instance of MDAP as follows:
An architecture with h processors;
Cost matrix My =mgj, 1 <k,1<h;
A set of g documents;

A mapping of the documents to clusters such
that each cluster consists of two documents.
{Dj, Dy} is a cluster iff bjj=bjj=1;

AboundB=§.

The transformation takes not more than
polynomial time in the input's size and results in
an even distribution of documents if and only if
there exists a one-to-one function when g < h.
The sum of the clusters' diameters is not more
than B if and only if the sum of bjj * mgj)fj) is
not more than twice B, namely Z.

Thus, MDAP is NP-Complete. a

3.0 A Genetic Algorithm for MDAP

As MDAP is NP-Complete, obtaining an
optimal allocation of documents onto the nodes is
not computationally feasible. The heuristic
algorithm proposed here is based on Genetic
Algorithms [Gol89]. In our representation, the
set of documents are represented by document
vectors which are a sequence of integers O to d -
1. A permutation of this sequence defines an
allocation of the documents onto the nodes where
a document Dj found at position j is stored at node
j modulus n. This representation scheme results

in all nodes containing an equal number of
documents, with the possible difference of a
single document. Each allocation is evaluated as
the sum of the cluster diameters it defines. The
optimization function used is the inverse of the
sum of the cluster diameters. The lower the sum,
the better is the allocation.

As with most genetic algorithms, the proposed
algorithm comprises of three major phases
(initialization, reproduction, and crossover) and
an additional secondary phase (mutation). In the
initialization phase, a set of random permutations
of the document vectors are generated. Each
random permutation represents a possible
allocation of the documents onto the nodes. By
repetitively modifying the permutations, a near
optimal allocation is generated. The number of
simultaneous permutations (p) is an experimental
parameter that is evaluated in Section 4.

The reproduction phase replaces permutations
that represent poor mappings with those
permutations that are viewed as good. Using the
sum of the cluster diameters as an objective
function, the merit of each permutation is
evaluated. A biased roulette wheel favoring the
better permutations (allocations) is created. A
randomly sampled value is obtained. Using the
biased roulette wheel and the sampled value, a
corresponding allocation is determined. Each
selection corresponds to the birth of a new
allocation. The permutation that is replaced by
this new birth is deemed as deceased. Upon the
completion of each reproduction phase, with a
high probability, the poor allocations are killed,
while additional copies of the good allocations are
reborn.

The crossover phase represents the cross-
fertilization of permutations, similar to the
composition of genes from both parents in a birth,
and consists of a position-wise exchange of
values between each randomly paired
permutations. Two random numbers are chosen
and serve as the bounds for the position-wise
exchange. Each document of the first permutation
that falls within the determined bounds is
swapped with the corresponding document of the
second permutation, and likewise the second
permutation with the first.

Finally, to lower the probability of
convergence of the allocation to local values that
are not a global minima, a mutation phase is
incorporated into the algorithm. Periodically,
with a low probability, a permutation is randomly
modified.

233

ALGORITHM;
Initiglization Phase;

1.

Create a permutation matrix, Pjj 0<i <
p-1,0<j<d-1). Every row of P, P;,
(0 <i<p-1)isacomplete permutation of
all documents Dj, (0 <j <d - 1). For
example, if p = 3 and d = 6, a possible
permutation matrix is P.

N o
—
_ W W
S W oa

. Define the document to node mapping

function f;: D -> X for any given row of
P,P;,(0<i<p-1)asfj(Dx) =j mod n,
where j is the index in row P; of document
Dg, (0 £k <d- 1). Continuing with the
above example, if n = 3, row Py implies
that documents O through 5 are mapped to
nodes 1, 0, 2, 1, 2, 0, respectively.

Reproduction Phase:

3.

Given the mapping function fj for a given
row Pj, (0 <i<p- 1), determine the
cluster radii, Rjj, (0 <j<c-1) for each
cluster association list array entry, C; .

Rjj = Max{Mf;(Dy), P10k I<d-1

and Dg, Dje C;}. Then, if

0 1 2

0610 2 4

1]l2 o 1 €= 1102
214 1 o0
then R is
0 1
0o la 1
R:
1[4 2
214 4

4. Define an evaluation function, E. This

function measures the "goodness" of the
allocation defined by arow P;, (0<i< p-
1), and the corresponding mapping
function fj. In our case,

234

5. Create a biased roulette.

c-1

E®) =) Rjj
j=0

0<i<p-1

Compute the
reciprocal of each E (Py), (0 <i<p- 1)
Call them E-! (P;). Bias the roulette
proportionally to El (P;). Assign each
allocation an interval on the unit vector 0
to 1 based on the corresponding biased
probability. In the above example, E (Pg)
=5, E (P1) =6, and E (Pp) = 8, resulting
in the following roulette wheel.

B Alloc 0-0.20
Alloc 1-0.17
4 Alloc 2-0.13

Thus, permutations Pg, Py, and Py, are
weighted at a probability of 0.4, 0.34, and
0.26, and are assigned the intervals [0.0,
0.4), [0.4, 0.74), [0.74, 1.0],

respectively.

. Replace the permutation matrix P.

Randomly choose p numbers from within
the interval {0.0, 1.0]. For each of the p
random values obtained, copy the
allocation permutation whose assigned
interval corresponds to the random value
generated into row P;, (0<i<p-1). To
insure the survival of successful document
allocations (permutations), the lowest cost
allocation is always kept. Therefore, if the
permutation corresponding to the largest
interval, say P;, (0 <j<p-1),1is not
selected within the first p - 1 selections, P;
is assigned to row Py_;. In the example, i
0.23, 0.92, and 0.36 were the random
numbers obtained then P would be

Crossover Phase:

7. While maintaining a copy of the lowest-

cost permutation, say P';, randomly pair
up the rows in P. If p is odd, ignore the
unpaired row. Randomly generate two
integer values, i and j, such that 0 <1 <j <
d - 1. For each pair of rows in P, say A
and B, position-wise exchange Aj, Aj+1,
Ai+2, ..., Aj-1, Aj, with Bj, Biy1, Biyo,
..., Bj-1, Bj, respectively within the two
strings. Replace the highest cost
permutation with P't. The replacement of
the resulting highest cost permutation by
P'y guarantees the survival of the "most-
fit" parents. For example, if i =3, j =4,
A =Pj, and B = P, mapping string A to
string B exchanges the 2 and 5 and the 1
and 3 in row B while mapping string B to
string A swaps the 5 and 2 and 3 and 1 in
row A. In this example, Pg is the
minimum-cost permutation. The resulting
Pis

0 0 2 3
P=
4 2 1 3
305 4
Mutation Phase;

8. Mutate the permutations periodically to

prevent premature loss of important
notions [Gol89}. Randomly choose a
number from the interval [0, 1}. If the
number falls outside the interval [0, q],
where q is the probability of mutation,
then terminate the mutation step.
Otherwise, select a random number, t,
that designates the number of mutations
that occur in the given step. For each of t
iterations, select three random integer
values i, j, k, such that 0<i<p- 1,0 <],
k £d -1, # k, and position-wise
exchange Pjj with Pjx. Given q = 0.01
and t = 1, a randomly generated value of
0.006,1 =0, j =1, and k = 5, then P
would be

0 i1 2
P=
114 2
3 05 4

Control Structure;

9. Repeat steps 3 through 8. The precise
number of iterations is dictated by an early
termination condition (all allocations are
identical) or by a maximum iteration
count. Throughout the experimentation
presented here, the maximum limit was set
at 1000. In the future, an appropriate
limit, possibly a percentage of the
population size and/or the number of
documents, will be determined
experimentally. A proof of convergence
of the derived allocation to an optimal
mapping is provided in Siegelmann and
Frieder [Sie91]. Upon termination,
evaluate the "goodness" of the allocation
defined by a row P;, (0 <i<p- 1), and
the corresponding mapping function fj.
Choose the best allocation.

4.0 Simulation Study

To evaluate the described algorithm, a
simulation was developed. Given a particular
multicomputer architecture (the number of nodes
and a cost matrix specifying the internode
communication topology) and a set of documents
partitioned into clusters, the simulation derived a
document allocation using the proposed genetic
algorithm. The cost of the derived allocations
over a magnitude of architectures and document
distributions were used to evaluate the merit of the
algorithm.

Various partitioning schemes of the
documents into clusters were considered. Sharma
[Sha89] stated that d-document collections form

from Vd to d/constant clusters and assumed such
a cluster organization in his evaluation. However,
he did not mention what assumptions were made
regarding the number of documents per cluster.

In this study, we assumed Vd clusters and varied
the number of documents per cluster. That is, the
number of documents per cluster varied from a
uniform distribution of documents to clusters to a
partitioning in which 25 percent of the clusters
contained 50 percent of the documents. The
behavior of the proposed algorithm was observed
in terms of these varied allocations.

Several multicomputer architectures were
considered. These include a 16-node hypercube
engine and three mesh configurations (1 by 16, 2
by 8, 4 by 4). Future studies will include various
additional interconnection topologies and the
varying of the number of nodes.

The effects of varying several parameters
common to many genetic algorithms were studied.

235

B Hyper 16
4 Hyper 16M
Mesh1x16
-+ Meshixi6M 65
- Mesh2x8

O Mesh2x8M

© Hyper 16

> Hyper 16M
- Mohlx 16 907
* Mesh1216M
- Moh2ad 04 B Mah2:3
O Meh2x§M T Meshaxd
& Meshaxd el
4 MeshaxaM 24

= Hyper 16

~+ Meshlxls
+ Meh2x8
- Meshdxd

@ Hypor 16
-+ Meshix16 9

& Meshdxd .
& MeshdxdM 357 4%

Cost (hops)
Cost (hops)
&
Cost (hops)
2
.
Cost (hops)

——=——%
15 Frr Ty 13 ﬁ T
0 100 200 300 400 500 600 700 800 900 1000) 100 0 100 200 300 400 500 0

i 50 100 150 200 250 300 330 400
Iteration

ITteration Iteration

Fig. 1B. All architectures with a (64, 8, 25, 50) distribution

Iteration

Fig. 1A. All . N
Fig. 2B. Without mutation on a (64, 8, 25, 50) distribusion

with an even i i i i
Fig. 2A. Without mutation on an even distribution

These parameters include the size of the
population (number of permutations) and the
probability of mutation. Five population sizes
ranging from 10 to 50 permutations in increments
of ten permutations were examined. The
population sizes investigated were kept small to
coincide with the size of the database modelled
(64 documents). Future studies will involve
models comprising of more realistically-sized
databases and larger population samples. The
effects of both incorporating and not incorporating
the mutation phase were also investigated.

Figures 1 through 5 illustrate results for a 64
document database distributed over 16 node
systems of varying interconnection topologies.
The results for two different document to cluster
partitioning are presented. Both document
partitions employ 8 clusters but the distribution of
documents to clusters is varied. That is, in the
first distribution (figures 1(a), 2(a), 3(a), 4(a) and
5(a)), all clusters contain an equal (8) number of
documents. In the second distribution, (figures
1(b), 2(b), 3(b), 4(b) and 5(b)), 25 percent of the
clusters contain 50 percent of the number of
documents. For notational convenience, we
describe a document partitioning by a four-tuple
(D, C, x, y), where D is the number documents,
C is the number of clusters, and x and y represent
the x percentage of clusters containing y percent
of the documents. Therefore, (64, 8, 25, 50)
refers to the latter document distribution, while the
even document partitioning is represented by (64,
8, X, x), for all values of x, 0 < x £ 100.

Figures 1(a) and (b) present the results for all
the architectures considered. A point on any
curve represents an iteration in which a better
allocation was derived. As shown, the number of
points varies with the architecture considered. All
runs terminated at either a point in which the entire
population (document allocations), in this case 30,
were identical or after 1000 iterations (premature
termination), which ever came first. A point at
1000 indicates that premature termination
occurred. As expected, the higher the

< Hyper 16M

+ MehizisM
B Meah2x8M
-+ MeshaxdM

Cast (hops)
Cost (hops)

35
75
654
354
s 3

353

24 20 4

13

AR A Mt Tt 10
0 100 200 300 400 300 600 700 8GO 90 10001100

0 100 200 300 400 500 600 700 00 900 10001100
Ttecation
Iteration

Fig. 3B. With mutation on a (64, 8, 25, 50) distribution

Fig. 3A. With mutation on an even distribution

@ Hyper 16
~+ Hyper 16M
& Meshdx4
“+ MeshdxdM

<+ Hypes 16
-+ Hyper 16M 359
& Meshdxd

34 o MeshaxdM

204
25 4
15 4

L AMSLINMAMY LAMALANM atas L Ll w0
0 100 200 300 400 500 600 700 80D 900 10001100

Cost (hops}
8
Cost (hops)
b
.

0 100 200 300 400 500 00 700 £00 900 10001100

Tteration Tteration

Fig. 4A. Effects of mutation with an even distribution

communication diameter of the architecture, the
more significant was the improvement in the
derived allocation from the initial random
document distribution.

Figures 2(a) and (b) and 3(a) and (b) more
clearly illustrate the behavior of the proposed
algorithm in the case where no genetic mutations
are possible and when a 0.5 probability of
mutation exists, respectively. A 0.5 mutation
implies that with a probability of 0.5, a random
number of pairs ranging from 1 to 10, will be
exchanged. That is on average, 2.75 pairs will be
exchanged per iteration. Figures 4(a) and (b)
illustrate the effects of mutation on the allocations
derived for a hypercube and a 4-by-4 mesh
systems. As seen, and in all runs performed,
mutation results in better allocations. The better
allocations result from the prevention of local
minima interference.

236

Fig. 4B. Effects of mutation with a (64, 8, 25, 50) distribution

85
& Meshdxd —’ 803

= Meshdx4M 7
& Mesh16x 1
= Mesh (6x 1M »

Cost (hops)
8

Cost (hops)
8

8 8%

“@ Mesh4 x4
“* Mceshd g aM
Mesh16x 1
~* Mesh 16 x IM

(64, 8, 25, 50) (64, 8, x, x)
Hypercube 23 25
Mesh 16-by-1 66 76
Mesh 8-by-2 37 43
Mesh 4-by-4 28 33

T T y v T

0 10 20 30 40 50 50
Population Size

) Populution Size

Fig. 5A. Effects of populution size using an even distribution

Finally, figures 5(a) and (b) demonstrate the
effects on varying the population size from 10 to
50 allocations in increments of 10. When
mutations are not possible, the performance
consistently improves with the increase in the
population size. The improved allocations result
from the greater number of possibilities explored
during each iteration. In the case where mutation
is possible however, initially the performance is
improved and then eventually deteriorates. The
improvement, as in the case where mutations are
not possible, is caused by the increase in the
number of possibilities explored. Since the
maximum number of mutations per iteration is
kept constant throughout, increasing the
population size reduces the effects of mutation.
Thus, the benefit derived from the mutation phase
is diminished. Diminishing the effects of the
mutation phase results in a derived allocation that
more closely resembles the case in which no
mutation is possible. Hence, the performance
degrades. This result is a motivation for further
study aimed at determining the precise ratio
between the maximum allowable mutation and the
size of the population.

Ideally, the cost of the derived mappings
should be compared against the cost of an optimal
allocation. Since determining an optimal
mapping, in the general case, is not
computationally feasible (the problem was shown
to be NP-Complete in section 2), such a
comparison is not possible. Instead, to compare
the efficiency of the derived mapping, 100,000
permutations were randomly drawn. Given the
architectural specification and the document
distribution, the associated cost of each random
permutation was computed. The lowest cost
permutation was used to approximate the optimal
solution.

Figure 6 presents the cost of the pseudo-
optimal allocations for the respective architecture

5 Fig. 6. Cost of psuedo-optimal distributions

Fig. 5B. Effects of population size using a (64, 8, 25, 50) distribution

and document partitioning schemes. When
mutations are possible, for all combinations of
architectures, document partitioning schemes, and
population sizes evaluated, the proposed genetic
algorithm obtained better results than the pseudo-
optimal solution. When mutations were not
possible, the combination of a 16-by-1 Mesh, a
(64, 8, 25, 50) document database, and a
population size of 10, resulted in the pseudo-
optimal algorithm deriving a better allocation than
the genetic algorithm. This demonstrated the
danger of employing too small of a population. In
all other cases, the proposed algorithm derived
better allocations than those derived by the
pseudo-optimal algorithm. The results obtained
indicate that the proposed genetic document
allocation algorithm does indeed derive good
document allocations using a computationally
tractable, in contrast to using an exponential
algorithm, approach.

6.0 Conclusions

The performance of multiprocessor
information retrieval systems depend not only on
the underlying parallel technology employed but,
at least as significantly, on the organization of the
data to be retrieved. Poor data allocations result in
minimal performance gains on a parallel engine as
compared to a uniprocessor system. The problem
addressing the derivation of document allocations
that support efficient retrieval of documents from
a distributed-memory multiprocessor is called
MDAP. As an optimal solution to MDAP is not
computationally feasible (MDAP is NP-
Complete), we proposed a genetic algorithm for
MDAP. Via simulation, the derived document
allocations were analyzed. The results obtained
compared favorably with pseudo-optimal
document allocations and demonstrated the
success of the proposed algorithm.

237

We are presently continuing to evaluate our
proposed algorithm. Future experimentation will
consist of models representing larger document
databases, documents with non-uniform access
frequency, and correspondingly larger population
spaces. A detailed study of the effects of mutation
on the derived allocations will be conducted.

We are also presently developing a hypercube-
based multiprocessor information retrieval
system. Once developed, we will evaluate the
actual response time difference resulting from
various standard document allocation schemes,
€.g., round-robin, hashed, etc., and those
allocations derived by the algorithm described in
this paper.

References

[As0o90] Asokan, N., S. Ranka, and O. Frieder,
"A Parallel Free-text Search System with
Indexing," Proceedings of the IEEE
International Conference on Parallel
Architectures and Databases, pp 519-521,
March 1990.

[Bok81] Bokhari, S. H., "On the Mapping
Problem," IEEE Transactions on Computers,
30(3), pp 207-214, March 1981.

[Bol88] Bollinger, S. W. and S. F. Midkiff,
"Processor and Link Assignment in
Multicomputers Using Simulated Annealing,”
Proceedings of the 1988 International
Conference on Parallel Processing, pp 1-7,
August 1988.

[Bra90] Brajnik, G., G. Guida, and C. Tasso,
"User Modeling in Expert Man - Machine
Interfaces: A Case Study in Intelligent
Information Retrieval," IEEE Transactions on
Systems, Man, and Cybernetics, 20(1), pp
166-185, January/February 1990.

[Cri90] Cringean, J. K., R. England, G. A.
Manson, and P. Willett, "Parallel Text
Searching in Serial Files Using a Processor
Farm," Proceedings of the 1990 ACM SIGIR,
pp 413-428, September 1990.

[DeJ89] De Jong, K. A. and W. M. Spears,
"Using Genetic Algorithms to Solve NP-
Complete Problems," Proceedings of the Third
International Conference on Genetic
Algorithms, pp 124-132, June 1989.

[Du88] Du, X. and F. J. Maryanski, "Data
Allocation in a Dynamically Reconfigurable
Environment,” Proceeding of the IEEE Fourth
International Conference on Data Engineering,
pp 74-81, February 1988.

238

[Gar79] Garey, M. R. and D. S. Johnson,

Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman and
Co., New York, 1979.

[Gol89] Goldberg, D. E. Genetic Algorithms in
Search Optimization and Machine I earning,
Addison Wesley, New York, 1989.

[Gre85] Grefenstette, J., Proceedings of an
International onferen on netic
Algorithms and Their Applications, Lawrence
Erlbaum Associates Hinsdale, NJ, 1985.

[Gre87] Grefenstette, J., Genetic Algorithms and
Their Applications: Proceedings of the Second
International Conference on Genetic
Algorithms and Their Applications, Lawrence
Erlbaum Associates Hinsdale, NJ, 1987.

[Has81] Haskin, R. L., "Special-Purpose
Processors for Text Retrieval," Database
Engineering 4, pp 16-29, September 1981.

[Hol87] Holland, J. H., "Genetic Algorithms
and Classifier Systems: Foundations and
Future Directions,” Genetic Algorithms and
Their Applications: Proceedings of the Second
International Conference on Genetic
Algorithms and Their Applications, pp 82-89,
June 1987.

[Lee87] Lee, S.-Y. and J. K. Aggarwal, "A
Mapping Strategy for Parallel Processing,”
IEEE Transactions on Computers, 36(4), pp
433-442, April 87.

[Pog87] Pogue, C. A. and P. Willett, "Use of
Text Signatures for Document Retrieval in a
Highly Parallel Environment," Parallel
Computing, Elsevier (North-Holland), vol. 4,
pp 259-268, June 1987.

[Pog88] Pogue, C. A., E. M. Rasmussen, and
P. Willett, "Searching and Clustering of
Databases Using the ICL Distributed Array
Processor," Parallel Computing, Elsevier
(North-Holland), vol. 8, pp 399-407, October
1988.

[Rag87] Raghavan, V. V. and B. Agarwal,
"Optimal Determination of User-Oriented
Clusters: An Application for the Reproductive
Plan," Genetic Algorithms and Their
Applications: Proceedings of the Second
International Conference on Genetic
Algorithms and Their Applications, pp 241-
246, June 1987.

[Sal88] Salton, G. and C. Buckley, "Parallel
Text Search Methods,” Communications of the
ACM, 31(2), pp 202-215, February 1988.

[Sal83] Salton, G. and M. J. McGill,
Introduction to Modern Information Retrieval
McGraw Hill, New York, 1983.

[Sha89] Sharma, R., "A Generic Machine for
Parallel Information Retrieval," Information
Processing and Management, Pergamon Press,
25(3), pp 223-235, 1989.

[Sie91] Siegelmann, H. and O. Frieder, "The
Allocation of Documents in Multiprocessor
Information Retrieval Systems: An Application
of Genetic Algorithms," Proceedings of the
1991 IEEE International Conference on
Systems, Man, and Cybernetics,
Charlottesville, Virginia, October 1991.

[Sta86] Stanfill, C. and B. Kahle, "Parallel
Free-text Search on the Connection Machine
System," Communications of the ACM,
29(12), pp 1229-1239, December 1986.

[Sta90] Stanfill, C., "Partitioned Posting Files:
A Parallel Inverted File Structure for
Information Retrieval,” Proceedings of the
1990 ACM SIGIR, pp 413-428, September
1990.

[Sta89] Stanfill, C., R. Thau, and D. Waltz, "A
Parallel Indexed Algorithm for Information
Retrieval," Proceedings of the 1989 ACM
SIGIR, pp 88-97, June 1989.

[Sto87] Stone, H. S., "Parallel Querying of
Large Databases: A Case Study,” IEEE
Computer, 20 (10), pp 11-21, October 1987.

[Wil88] Willett, P., "Recent Trends in Hierarchic
Document Clustering: A Critical Review,"
Information Processing and Management,
Pergamon Press, 24(5), pp 577-597, 1988.

239

