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Abstract— In the last decade, neuro-energetics has become an 
important research topic, which can contribute to better 
understanding and interpreting brain imaging data. We need to 
understand how the brain encodes information coming from the 
environment, and how this information is converted to knowledge 
and meaning useful for intentional action and decision making. 
Valuable information can be derived from both single neuron 
and population (neuropil) recording in order to investigate the 
cognitive cycle. Usually pulses are measured with electrodes 
placed intracellularly while oscillations are measured through 
ECoG. Our main interest here is to investigate the relationship 
between the creation of knowledge and meaning and the 
metabolic cycle in neural populations, as well as the conversion of 
incoming action potentials to the dendritic structure of the 
neuron into currents which will contribute to new action 
potentials. This process we call the pulse-wave-pulse conversion. 
We model the coupling the energy consumption associated with 
new action potentials and the metabolic cycle, and the 
conclusions for future large-scale neuro-energetic models. 

Keywords - Neuro-energetics; Metabolic Cycle; Pulse-Wave-
Pulse Conversion; Cognitive Cycle; Cognition; Brain Dynamics, 
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I.  INTRODUCTION  
Perceptual and cognitive processes in the human brain are 

accomplished through the formation of patterns of neural 
activity, which can be monitored by advanced brain imaging 
techniques (Moseley et al., 2009; Freeman & Quiroga, 2013; 
Soares et al., 2016). Decades long studies by Freeman and 
colleagues point to the importance of amplitude-modulated 
(AM) patterns or frames of information in various cortical 
regions (Freeman, 1991; Kozma & Freeman, 2016). The AM 

patterns are formed through the cooperative activity of 
mesoscopic cortical regions, such as the olfactory, visual, 
auditory, or motor cortex. These cognitive perceptual frames 
are coordinated spatially through synchronization-
desynchronization transitions between narrow-band and 
broad-band (chaotic) oscillations (Tsuda, 2001; Freeman, 
2003; Davis & Kozma, 2012). The spatio-temporal 
coordination of these AM patterns or frames is essential in the 
formation of perceptions, thoughts, and behaviors in the 
human nervous system. In this work we study the interaction 
of metabolic processes and spiking activity in the cortical 
neuropil that lay down the basis of cognitive processing and 
the cognitive cycle (Davis et al., 2012).  

The metabolic cycle in neurons involves a set of energy 
transformations when electrical energy is converted into 
chemical energy and back into electric energy in dendritic 
transactions. There is an extensive literature on modeling the 
energy cycles in the brain; see, e.g., (Cloutier et al., 2009; 
Belanger et al., 2011; Joviet et al., 2015). There is less 
research on developing a detailed link between brain 
metabolism and spiking processing (Chandler & 
Chakravarthy, 2012; Chabria and Chakravarthy, 2016).  

We aim at creating a manageable hybrid of the metabolic 
approach to neurobiology and the information-processing 
approach exemplified by the canonical single-neuron “leaky 
integrate and fire (LIF)” or spiking neuron models that 
typically eschew any discussion of energy constraints on 
spiking behavior. Following our previous studies (Noack et 
al., 2017), we consider two main group of processes in this 
paper: (a) the metabolic cycle at a very high level including 
astrocytes, and (b) the creation of a new action potential when 
the threshold above resting potential is met in a neuron. We 
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model these processes by developing a set of differential 
equations for the mitochondria and astrocytes in the metabolic 
part, and the generation of action potentials in the Izhikevich 
Model (Izhikevich, 2003).  

The present work goes beyond previous studies by focusing 
on the pulse-wave and wave-pulse conversion processes in the 
neuropil. We connect these two components and test them, 
both separately and together, in order to improve our 
understanding of neuronal dynamics. The results on wave-
pulse-wave conversion are important for the interpretation of 
brain imaging experiments, and to better understand neural 
correlates of higher cognition and consciousness. 

 

II. CONCEPTUAL FRAMEWORK OF THE CAPILLARY-
ASTROCYTE-NEURON (CAN) MODEL 

 
Over the past several decades, remarkable advances have 

been made in non-invasive methods to study mammalian brain 
function--human brain function in particular (Bandettini, 
2009; Moseley et al., 2009; Tewarie et al., 2016).  With these 
new non-invasive techniques have correspondingly come new 
demands on the methods in which researchers are finding 
themselves having to model those brain processes. For 
example, for the greater part of the twentieth century, the 
golden age of neuroscience and neural network research, 
architectures built to simulate the computational intelligence 
of human brains relied almost exclusively on modeling the 
function of the individual neuron and then organizing these 
functional units into networks in the hope of simulating some 
human cognitive processes. This is no surprise—virtually the 
only data available to artificial intelligence modelers at the 
time came from single-unit neuron recordings in (mostly) rats 
and mice, electro-corticogram (ECoG) recording from local 
populations of cortical neurons in the same mammalian lab 
species, and electroencephalogram (EEG) scalp recording in 
humans. What these three recording techniques have in 
common is that they measure principally the electrical 
properties of individual and populations of interaction 
neurons, largely eschewing the contribution from the arguably 
equally important supporting elements of brain tissue, or 
neuropil, that the neurons are embedded in, such as neuro-glial 
cells and the brain’s vascular architecture. 

The end result of this myopic focus on a neuron-centered 
approach to the computational modeling of intelligent 
processes in humans, reflected in the so-called “neuron 
doctrine” of twentieth-century neuroscience research, was the 
spate of intelligently designed systems that essentially used 
only the “integrate and fire” property of the neuron, that 
defined the neuron doctrine, into the core element of its 
computational architecture. Accordingly, the intelligent 
model-simulations that were purportedly based on the function 
of the brain in the past century were of the type that viewed 
the neuron as functionally equivalent to a logic gate of sorts 
which subsequently sums associated inputs and feeds them up 
and down a hierarchical cascade of “processing layers” in an 
effort to classify or recognize certain input stimuli. The result 

of this thinking led to the emergence of the popular 
perceptron, backpropagation, and other artificial neural 
network architectures of the time.  In fact, the legacy of these 
neural network architectures survives even today in the 
recently popular machine learning, deep learning and other 
related intelligent architectures (Bengio et al., 2013; 2015; 
Schmidhuber, 2015).   

As popular as these new deep learning architectures have 
become, and despite their impressive ability for certain forms 
of feature recognition, natural language processing, and other 
predictive tasks, few of the artificial neural network models 
that existed in the last century, or even the ones that are 
around today, are biologically realistic. One of the principal 
reasons they are unrealistic is because they only work to 
model a simplified and idealized version of the functional 
architecture of the brain—interacting individual neurons. As 
stated above, what we are finding today in contemporary 
neuroscience study is that the fundamental units of neocortical 
function are composed of biologically complicated and rich 
interactions between the glia cells, neurons, and capillaries 
that make up cortical neuropil. Again, this important new 
discovery in neuroscience research has come about due to 
advances in non-invasive brain imaging that have forced 
researchers to relate the metabolic processes in the neuropil, 
such as blood flow and glucose utilization, in order to explain 
how recording techniques, such as the BOLD signal, 
influences functional magnetic resonance (fMRI) images. 

In light of these recent advances in what has come to be 
termed “neuro-energetics” research, several recent models 
have emerged which attempt to describe the complex 
interactions of glia (astrocytes), neurons, and the brain 
vasculature.  Some even go as far as trying to relate these 
neuro-energetic interactions to the information-processing of 
spiking behavior in individual neurons and populations of 
neurons (Chander & Chakravarty, 2012; Chabria & 
Chakravarty, 2016; Philips et al., 2016).  

We developed a mathematical model and computer 
simulation of what we are postulating is the basic 
metabolic/computational functional unit within the human 
cerebral cortex (Noack et al., 2017). This unit, what we call 
the Capillary-Astrocyte-Neuron (CAN) unit is roughly 
equivalent in size and structure to the canonical “cortical 
column” first identified by Mountecastle (1997) as the primary 
granular or atomistic functional module/unit of cortical 
operation. In the CAN unit model, we attempt to replicate the 
complicated cycle of energy flow through the unit by 
simulating the fluxes of energy precursors and metabolites 
between the elements of the unit, the electrochemical gradients 
established across the unit’s constituent neuron, and the 
integrate-and-fire properties of the neuron in its association 
with other neurons in the assemblage. 

The metabolic portion of the model is inspired by (Cloutier 
et al., 2009; Jolivet et al., 2015) and others, the principal 
challenge we faced was in deciding which of the biological 
processes described by the multitude of equations and 
parameters were essential to include in the CAN model. We 
decided that the important features of the Cloutier et al. model 
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we wanted to preserve were, 1) the flux of glucose from the 
CBF (cerebral blood flow) to astrocyte, 2) the capacity 
through which the astrocyte can store this glucose energy 
reserve in the form of glycogen (while the neuron is unable 
to), 3) the “astrocyte-neuron lactate shuttle,” the mechanism 
whereby the astrocyte breaks down its glycogen stores to 
deliver energy in the form of lactate to the neuron in times of 
need, and 4) the process whereby the neuron metabolizes 
lactate in the mitochondria to produce ATP, which, in turn, 
powers the neuron’s sodium-potassium pumps. We reduced 
the dozens of equations in the Cloutier et al. model into two 
differential equations. The first equation describes the rate of 
change of the state variable, g, which is a measure of the 
glycogen/energy store in the astrocyte available for the neuron 
to utilize. The second equation describes the rate of change of 
the state variable, m, which is a measure of the ATP available 
to reset the membrane potential of the CAN unit’s 
representative neuron. From here, we coupled our above 
formulation to the canonical IZ model through a parameter in 
the IZ model related to the resetting of the membrane potential 
and the m state variable of the reduced Cloutier model; see 
Fig. 1 for the schematics of the model (Noack et al., 2017). 

 

 
 

Figure 1: Schematic representation of the CAN unit model showing 
the flux relations between its various components; CBF – cerebral 
blood flow, vas – vascular connection, m – ATP level in the neuron, 
g glycogen/energy store in the astrocyte, v and u are state variables of 
the Izhikevich model; from (Noack et al., 20017). 

 
In order to close the form of the system of equations, we 

added a term in the equation modeling the g variable, which 
represented the glutamate concentration in the interstitial 
matrix surrounding the CAN unit’s representative neuron. In 
experimental studies (Belanger et al., 2011), this 
concentration, which is reflective of the metabolic activity of 
the CAN unit neuron, is sensed by the CAN unit astrocyte and 
serves to compel that astrocyte to dilate the capillary portion 
of the CAN unit. Dilating the capillary then serves to deliver 
more glucose to the astrocyte in response to the increased need 

for energy precursor molecules demanded via the increased 
activity in the CAN unit. 

The tentative conclusion we have come to after working with 
the model and its simulation, is that the method by which the 
human brain is able to perform such sophisticated 
computational feats at such a low energy cost, is through 1) 
coordination of delivery of energy molecule precursors to 
cooperatively interacting cortical regions, and 2) the phase 
synchrony in the oscillations of dendritic currents in the CAN 
unit neuron collectives that populate these interacting cortical 
regions. More specifically, we put forth the argument that the 
coordinated delivery of nutrients to cooperatively interacting 
cortical regions, set a tempo of the restoral of the resting 
membrane potential in their constituent neurons, which in turn 
help facilitate the cooperative phase-synchronized, narrow-
band oscillations seen between these interacting regions 
(Davis & Kozma, 2012; Davis et al., 2012). However, this 
remains a hypothesis to be tested with a finished CAN model 
which at the moment is a work in progress. 

The ultimate goal is to build a CAN model with interacting 
components, which describes mesoscopic oscillations in the 
cerebral cortex, as documented by brain imaging. As an 
example, Figure 2 illustrates an amplitude-modulated (AM) 
pattern, which manifests a frame of cognitive processing 
(Freeman, 1991). Perceptual and cognitive processes in the 
human brain are accomplished through the formation of AM 
patterns, which we intend to describe through the cooperative 
or synchronous activity in a collection of CAN units that 
compose a cytoarchitectonically circumscribed and defined 
region of cortex such as the visual cortex (V1) or the motor 
cortex (M1). The spatio-temporal coordination of these AM 
patterns or frames is essential in the formation of perceptions, 
thoughts, and behaviors. Disruption of the coordination of 
these rhythms due to inconsistencies in the energy cycle of the 
CAN units, such as is witnessed in, say, hypoglycemia or 
diabetes, could lead correspondingly to perceptual-cognitive 
deficiencies as well as psycho-motor coordination problems 
(Rosenthal et al., 2001).  

 
 
Figure 2: 6x10 micro-array of electrodes implanted on the olfactory 
cortex of a rabbit (left). Note the commonality of the frequency and 
phase of each of the sixty EEG recordings. While the frequency and 
phase of the oscillations are similar across the elements in the array, 
the amplitudes of each differ significantly (AM pattern), that can be 
visualized as a topographic map (right). In the current formulation, 
each of the 60 recordings in the array can be considered as a CAN 
unit coupled into a cooperative network; adopted from (Freeman, 
1991).  
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III. SYSTEMS THEORY APPROACH TO THE SIMPLIFIED CAN 
MODEL 

 
The neuron is stimulated by electrical impulses arriving to 

its dendrites, and the cell body processes these impulses to 
derive from it new action potentials (Buzsaki et al., 2012). In 
the neuron there are three types of potentials: resting potential, 
the graded potential, and the action potential. Action potential 
can lead to synaptic activity on the next neuron. The resting 
potential can be described as a separation of charge, as in a 
battery, across the axonal membrane. In a typical human 
neuron this corresponds to -70mV. In this state the neuron has 
a higher percentage of potassium (K+) inside, as well as 
negatively charged anions, whilst having a higher percentage 
of sodium (Na+) and chlorine (Cl-) atoms on the outside. 
Though significantly less, there are also potassium atoms on 
the outside, as well as some sodium and chlorine atoms on the 
inside. This state, the resting potential, is known as the 
electrochemical gradient and it is through the collective effect 
of incoming pulses converted to electrical currents that the 
resting potential meets a threshold (-55mV) that gives birth to 
a new action potential. 

These conversion processes require Adenosine 
Triphosphate (ATP) together with the generation of new 
action potentials at the trigger zone near the axon. Those 
transactions require the replenishment of glucose coming from 
the blood into glycogen molecules inside astrocyte cells, 
where glucose is stored. When the neuron has used a certain 
amount of ATP through these energetic transactions then the 
cell replenishes the needs for more ATP by processing glucose 
molecules, which are taken from the glycogen present in the 
astrocyte cell (Belanger et al., 2011).  

In order to give a better description of the system in a 
simple manner we present in Figure 3a-b using diagrams of 
system dynamics. In the base model in Fig. 3a, the glucose 
level rises with the intake of glucose from the blood. Once it 
reaches a certain point the intake slows down, with a delay, 
until it reaches carrying capacity; when the glucose level falls 
to a certain point the cycle repeats beginning with a 
replenishment of glucose from the blood. Dendritic activity 
(λ(t)) consumes ATP, thus triggering the cycle of glucose 
demand and intake from astrocyte cells. This in turn creates a 
reduction in the glucose level, which prompts further intake of 
glucose from the blood. Depending on the energy demands of 
the incoming action potentials into the dendrites of the neuron 
this model suggests that the system would replenish glucose 
and ATP to reach its respective carrying capacities with the 
possibility of displaying different dynamics, more likely 
oscillatory. The amount of glucose supplied to the astrocyte is 
a function of the energy consumed by the associated neurons’ 
sodium-potassium pumps. Having a similar concentration of 
ATP in the constitutive neurons in cooperatively interacting 
populations is essential for the requisite synchronous brain 
rhythms that drive sensory and cognitive processing in those 
networks.  
 

 
Figure 3a: Basic systems dynamics model of the Metabolic Cycle, 
describing the relationship between dendritic activity, glucose levels, and 
ATP consumption. 
 

 
Figure 3b: Extended diagram of a systems dynamics model of the 
Metabolic Cycle, together with the pulse-wave-pulse conversion process. 

 
 
The spiking frequency of neurons is directly affected by the 

immediate availability or concentration of ATP in the neuron 
during individual and population spiking “burst” epochs. 
Therefore, in order to coordinate cooperative activity in these 
networks, the metabolic cycling of energy precursor molecules 
must be coordinated between the interacting units that make 
up the populations. 

Following the system dynamics diagram in Fig 3a-b, a set of 
simplified differential equations were developed for the 
metabolic part in conjunction with the IZ model for the 
production of new action potentials, with its associated energy 
consumption, that eventually will lead to a model that feeds 
back into ATP consumption. For now we only illustrate how 
the action potentials arriving at the dendrites (λ(t) in Fig. 3) 
and converted into an energy demand (S) will cause the 
consumption of ATP (m), eventually manifesting the 
replenishment of ATP via the intake of glucose from 
astrocytes when converted into ATP. The production of new 
action potentials is simply carried on by the Izhikevich model 
where (S) is converted into (I) representing the Synaptic 
currents or any induced dc-current via a transfer function I(S). 
It is important to note that all the variables of this model are 
dimensionless. Following we present the set of differential 
equations for both the metabolic and IZ section of the model.  
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For the metabolic sub model we use the logistic model for 
population growth (P) with carrying capacity (k) and a growth 
factor (r) for both glucose (g) and ATP (m) levels: 
 

𝑑𝑃
𝑑𝑡

=  𝑟 ∗ 𝑃 ∗ 1 −
𝑃
𝑘

∗  𝐺(𝑆)                                    (1) 

 
Modified logistic equations are used for state variables g and 

m as follows, where r=1, k=1 is used: 
 

Metabolic Model 
 

𝑑𝑔
𝑑𝑡

=  𝑟 ∗ 𝑔 ∗ 1 − 𝑔 − 𝑔0 ∗ 𝐺(𝑆)                            (2) 
 

𝑑𝑚
𝑑𝑡

=  𝛾 ∗ 𝑔 ∗𝑚 ∗ 1 −𝑚 − 𝑆 − 𝑆∗(𝑣)                  (3) 
 

The IZ sub model is used as described in (Izhikevich, 2003). 
An important consideration for us is that I becomes a function 
of S, (I(S)) that feeds forward the generation of new action 
potentials. This is the Pulse-Wave conversion function (Davis, 
2017). The Wave-Pulse conversion function is performed by 
way of the IZ model: 

 
                              Izhikevich (IZ) Model 
 

𝑑𝑣
𝑑𝑡

=  0.04 ∗ v! + 5 ∗ v + 140 − u + I(S)           (4) 
 
𝑑𝑢
𝑑𝑡

=  a ∗ b ∗ v − u                                                   (5) 
 

If v >= 30 then {c = v; u = u + d} 
 

We link these two sub models through the pulse-wave-pulse 
conversion function, whereby I(S) is a function converting the 
dendritic currents associated with the energy demands S into a 
quantity representing membrane potential fluctuations. This 
variable, I(t), in turn will stimulate the IZ model in order to 
create new action potentials, S*(v). It is important to note that 
these new pulses will also generate their own ATP demands in 
the model together with the demands already present from 
dendritic activity. 

 

IV. RESULTS OF SIMULATIONS BY THE SYSTEMS MODEL 
 
We demonstrate five cases of simulations, where a) is a 

baseline without any dendritic activity where S = 0; b) is a 
scenario where S is a cyclical pulse train with a certain 
duration, where the system has been disabled from feedback 
from new action potentials coming from v; c) is the same as 
scenario b, however, with a step function that kicks in at t = 
500 representing a higher demand of energy; d) is a scenario 
where we add to the second one (scenario b) a function to 

represent ATP (m) consumption, S*(v) creating a feedback that 
has a contribution to itself through the neuro-populations that 
it is linked to; and scenario e) we change the parameter A in 
the Izhikevich Model to create a very busy neuron rich in 
action potentials per millisecond.  

 

 
Figure 4: Shows the results for the simulation for scenario a, b, c, 
d and e for glucose levels, ATP levels and new action potentials 
for IZ model. 
 

We show the results of the different scenarios in Figs 4-5, 
where we can appreciate for scenario: a) how both the levels 
of glucose and ATP reach their carrying capacity following a 
logistic function behavior; b) we can see how for this cyclical 
slow pulse train, both the levels of glucose and ATP oscillate 
showing us a behavior related to the cycle of replenishment for 
both ATP and glucose; c) we can see the same cyclical pattern, 
however the amplitude of the oscillations grows after t = 500 
due to the extra input provided to the system; for d) we can 
observe an extra drop in glucose level and ATP caused by the 
creation of the new action potentials which feedback into  the 
process of glucose and ATP consumption; and finally in e) we 
can see the effects of very rich and dense action and potential 
processes with its repercussion of the ATP and glucose 
consumption and replenishment cycles. 

In order to have a better insight into how the Izhikevich 
model couples with the demands of energy induced by λ(t) we 
show a set of graphs in Fig. 5, where we also modeled a 
number of scenarios, as follows: no feedback; energy demands 
pattern one (1); energy demands pattern two (2); feedback to 
dendrites; and feedback to dendrites and ATP demands. 
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Figure 5: Illustration of the results for the simulation for 
scenario a, b, c, d and e for energy demand (S), and new action 
potentials S*(v).  

 
In Scenario (1), we observe the output of the IZ model 

coupled with the energy demand pulses. In Scenario (2) we 
observe a similar pattern to Scenario (1), however, the 
duration of the pulse in energy demand is much shorter also 
reflecting in the pulse trains of the new action potentials 

generated by the IZ model. In the Scenario (3), we can observe 
the effect of the new pulse train pattern generated by the IZ 
model and its energetic impact in ATP availability, as well as 
glucose levels. Scenario (4) shows the effect of feeding back a 
contribution of the new set of action potentials generated by 
the IZ model, both in energy demands on ATP and glucose 
levels. Scenario (5) shows an extra level of ATP demand with 
its associated drop in glucose levels due to the feedback of the 
contribution of the simulated new action potential in the pulse 
density dendritic network. 

 

V. DISCUSSIONS 
 

The CAN model presents a system whereby the metabolic 
and spiking neuron dynamics of mammalian neuropil are 
merged into a single interactive framework in the effort to 
describe both the mesoscopic dynamics of neuron populations 
and the microscopic dynamics of individual “spiking” 
neurons. At its core, the metabolic equation models two state 
variables, g and m, which represent, respectively, the level of 
glucose concentration in astrocyte cells and ATP 
concentration in neuron cells. The dynamics of both the g and 
m variables are represented foundationally by a logistic 
function with a carrying capacity that tends to unity absent of 
systems constraints, yet showing biologically realistic 
oscillatory behavior when the various parameters and 
constraints of the model are placed on the system. These 
constraints represent the chemical fluxes and feedback loops 
between the neurons, astrocytes and capillaries that make up 
each individual CAN unit. 

In simulation runs of the CAN unit model, we demonstrated 
biologically realistic behavior reflecting the dependence of: a) 
blood glucose delivery from the vasculature, b) glucose level 
fluctuations in the astrocyte and c) ATP level fluctuations in 
the neuron comprising the CAN unit. The interdependency of 
these fluctuations is observed in the oscillatory coupled 
behavior of the g and m state variables, and these oscillations 
in turn, result in biological approximations of new action 
potentials manifested in the neuron and neuropil as observed 
by (Buzsaki et al., 2012; Werbos & Davis, 2016). 

It is important to state that we consider the present work as 
an initial, very crucial step towards a comprehensive theory of 
neuro-energetics. We are confident that this work will support 
future breakthroughs in understanding and interpreting brain 
behavior, as we advance in the challenging adventure of 
unravelling the mysteries of cognition and brain dynamics.  
 

VI. CONCLUSIONS AND FUTURE PERSPECTIVES 
During the process of the creation of knowledge and 

meaning, the brain needs to consume energy which derives 
mainly from glucose in order to produce electrical chemical 
signals that are the carriers of action potentials (pulses) and, in 
a broad sense, dendritic currents (waves) that are usually 
described as oscillations in broad frequency bands between 
2Hz and 120Hz. This study breaks new grounds in modeling 
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these conversion processes, thus embedding the pulse transfer 
and propagation into the electromagnetic field domain 
produced by the immense complexity of currents and 
associated biochemical processes. Progress in this field helps 
to interpret experiments on brain dynamics and better 
understand the relation between the creation of knowledge and 
meaning for decision making, through intentional actions 
(Davis et al., 2013; 2015). These models will allow us to 
explore the hypothesis on the presence of cycles in the brain 
(Werbos & Davis, 2016). The results can lead to the 
development of computers that are energy-aware, and thus 
capable of mimicking the energy constraints crucial in the 
emergence of human intelligence. 

Potential benefits include better understanding of energy and 
stress management for health and the prevention of diseases 
through healthy diets, exercise and the practice of relaxation 
and meditation. All of this could also improve our capacity for 
sustained inner peace and its positive repercussions for social 
harmony; ultimately better understanding ourselves and 
understanding between each other contributing for a bright 
future of humanity. 
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